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Abstract 
By means of Monte Carlo experiments using the weighted bootstrap, we evaluate the size and 
power properties in small samples of Chow and Denning’s [1] multiple variance ratio test and the 
automatic variance ratio test of Choi [2]. Our results indicate that the weighted bootstrap tests ex-
hibit desirable size properties and substantially higher power than corresponding conventional 
tests. 
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1. Introduction 
The foundation of the efficient market hypothesis lies in the ground-breaking works of Bachelier [3], Cootner 
[4], Samuelson [5] and Fama [6]. According to the efficient market hypothesis, the current level of the asset 
price fully reflects all available information, so no extraordinary gain can be made with publicly available in-
formation which directly points to random walk or martingale hypothesis. The study of the efficiency characte-
ristics of the market impacts the regulatory framework, as well as the evolution of the market in terms of trans-
parency and disclosures. It has policy implications which can help policy makers and regulators take steps to-
wards financial innovations and economic development. 

The existing literature provides several methods to investigate whether a given time series is a martingale or 
not. The variance ratio test is one of the most commonly employed procedures to study this property of the time 
series. The Lo and Mac Kinlay’s [7] individual variance ratio test and its multiple variance ratio variant, as pro-
posed by Chow and Denning [1], are widely used to test the martingale behaviour of the time series. These tests 
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are asymptotic in nature and so can give rise to misleading results in small samples. Choi [2] proposes the auto-
matic variance ratio test, spectral domain tests and average exponential tests to test the weak form efficiency of 
US real exchange rates. Wright [8] proposes a nonparametric variance ratio test based on the ranks and signs and 
Belaire-Franch and Contreras [9] use the principle of Chow and Denning’s [1] approach on Wright’s [8] indi-
vidual rank and sign tests and develop joint nonparametric variance ratio tests. 

In this paper, the weighted bootstrap procedure is proposed as an alternative to improve the small sample 
properties of the Chow and Denning [1] multiple variance ratio test and also the automatic variance ratio test. 
The weighted bootstrap is a resampling procedure which is applicable to data with conditional heteroskedasticity 
and provides a better approximation to the sampling distribution of the statistics concerned.  

Section 2 presents the methodology used in this study. Section 3 presents the results of the Monte Carlo expe-
riments. Section 4 provides conclusion of the study. 

2. Methodology 
2.1. Variance Ratio Test 
Suppose Pt is an asset price at time t, where 1, ,t T=  , and xt be ln(Pt), the log price series. The first order au-
toregressive model is given by: 

1t t tx xµ ε−= +∅ +  

where µ  is an arbitrary drift parameter and tε  is a random disturbance term. The random walk hypothesis 
(RWH) corresponds to 1∅ =  and it implies that the variance of the log price increments is linear in the obser-
vation interval. It plays a very important role in testing for the weak-form market efficiency. The variance ratio 
test exploits the property that, if a series of asset returns is purely random, then the variance of the k-period re-
turn (k-period differences of xt) is k times the variance of a one-period return.  

Suppose yt is an asset return at time t ( 1, ,t T=  ). The variance ratio for holding period k is defined as: 
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which follows the standard normal distribution asymptotically if yt is a martingale difference sequence, where  
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2.2. Multiple Variance Ratio Test 
Chow and Denning [1] propose a multiple variance ratio test for the joint null hypothesis VR(ki) = 1 for 

1, ,i m=  . The test statistics is given by: 

( )
1
max :

i m
MV M y k

≤ ≤
=                                    (3) 

The decision to reject the null hypothesis is based on the maximum of the absolute value of the individual va-
riance ratio statistics. 

2.3. Automatic Variance Ratio Test 
Choi [2] suggests a data-dependent procedure to find the optimal value of k. Choi propose a variance ratio test 
based on the frequency domain. Cochrane [10] shows that the estimator of VR(k) which uses the usual consistent 
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estimators of variances is asymptotically equal to 2π times the normalized spectral density estimator at zero fre-
quency which uses the Bartlett kernel. Andrews [11] finds that the Quadratic Spectral kernel is optimal in esti-
mating the spectral density at zero frequency. Choi also employs the Quadratic Spectral kernel to estimate the 
variance ratio. Choi’s variance ratio estimator is defined as 
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where m(z) is the quadratic spectral kernel. Choi [2] stated that VR(k) is a consistent estimator of 2πfy(0), where 
fy(.) denotes the normalized spectral density of the time series {yt}. Choi [2] has stated that under the null hypo-
thesis (H0: 2πfy(0) = 1) the AVR(k) statistic is defined as 
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as , ,k T T k→∞ →∞ →∞ . The variance ratio test is a two-sided test, and its critical values are taken from 
both tails of the standard normal distribution. The AVR(k) result holds when yt is IID (independent and identi-
cally distributed) with finite fourth moment [12]. The variance ratio test defined here depends on the lag trunca-
tion point (or holding period) k. To select the truncation point optimally Choi [2] uses Andrews’ [11] method. 

2.4. Weighted Bootstrap Procedure 
The following steps define the procedure of using the weighted bootstrap on variance ratio test statistics: 
1. Find normalized returns ( ) ( )–t tz y y yσ= , where 1

1

T
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= −∑  is the standard deviation of the return. 

2. For each t, draw a weighting factor ( )1, ,tz t T∗ =   with replacement from the normalized returns zt.   
3. Form a bootstrap sample of T observations ( )1, ,t t ty z y t T∗ ∗= =  .  
4. Calculate the required test statistic (suppose VRS*(k*)), the VRS statistic obtained from { }1 , , Ty y∗ ∗

 . 
5. Repeat steps 1 to 4 sufficiently many (say m) times to form a bootstrap distribution of the test statistics 
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The two tailed p-value of the test can be obtained as the proportion of absolute values of ( ){ }* *
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greater than the absolute value of VRS(k). 

3. Results Based on Monte Carlo Simulation Experiment 
To evaluate the quality of Chow and Denning’s [1] multiple variance ratio (MVR) test and also the automatic 
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variance ratio (AVR) test statistics, we undertake Monte Carlo simulation experiments to study their size and 
power properties for samples of different sizes (N = 100, 500, 1000). For MVR and MVR* test, we set holding 
periods (k1, k2, k3, k4, k5, k6) = (2, 5, 10, 20, 40, 80). The following models are considered to evaluate the size 
properties of the tests used: 

Model 1: GARCH(1,1) 
2

1 1; 0.001 0.09 0.90t t t t t t tY h u h hε ε − −= = = + +  

Model 2: Stochastic volatility 

( ) ( )1exp 0.5 ; 0.95 ; ~  0,0.1t t t t t t t tY h u h h Nε −= = = +   

In these model, we use two types of random errors: the standard normal distribution (εt ~ N(0,1)) and the Stu-
dent-t distribution with 3 degree of freedom (as suggested by White (2000)). To evaluate the power properties of 
the MVR and AVR test statistics, we use model 3 and model 4 which take the error term from model 1 and 
model 2 (that is, ut term from model 1 and model 2 also act as error term in model 3 and model 4). 

Model 3: AR(1) model 

10.1t t tY Y u−= +  

Model 4: Long memory (ARFIMA (0, 0.1, 0)) model 

( )0.11 t tB Y u− =  

For all the cases, the number of Monte Carlo trials is set to 1000 and the significance level is set at 5%. In the 
following tables for evaluating size and power properties, GARCH_N and SV_N represents model 1 and model 2 
with error term from Standard Normal distribution; and GARCH_t and SV_t represents model 1 and model 2 with 
error term from the Student-t distribution with 3 degrees of freedom. To modify the size and power properties of 
MVR and AVR tests for smaller samples (N = 100, 500 and 1000), we propose the weighted bootstrap proce-
dure. The number of bootstrap iterations is set to 500. 

Table 1 presents the size properties of the MVR, AVR, MVR* and AVR* test. We find severe size distortion 
across all data generating processes for all sample sizes for MVR and AVR test. But even after applying 
weighted bootstrap procedure on MVR and AVR test statistics, we find size distortion for sample sizes of 100 
and 500. We find the size distortion to be less of a problem for MVR* and AVR* test statistics for a sample size 
of 1000. 

 
Table 1. Size of the tests.                                                                                   

 GARCH_1 GARCH_2 SV_1 SV_2 
MVR     
100 0.020 0.026 0.025 0.033 
500 0.029 0.027 0.037 0.036 
1000 0.032 0.028 0.041 0.047 
AVR     
100 0.019 0.028 0.012 0.006 
500 0.020 0.064 0.007 0.016 
1000 0.024 0.111 0.021 0.006 

MVR*     
100 0.043 0.032 0.049 0.026 
500 0.054 0.061 0.048 0.052 
1000 0.054 0.053 0.054 0.049 
AVR*     
100 0.057 0.071 0.052 0.053 
500 0.047 0.069 0.056 0.059 
1000 0.044 0.043 0.043 0.046 

MVR* and AVR* represent the MVR and AVR tests with weighted bootstrap. 
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Table 2 reports the power properties of the MVR, AVR, MVR* and AVR* tests when model 3 (AR(1) model) 
is the alternative. We find a significant improvement in the power properties of MVR and AVR tests by the ap-
plication of the weighted bootstrap procedure on the conventional tests used. When we compare the power 
properties of MVR* and AVR* test statistics, we can see that the power of AVR* test statistic is higher than that 
of MVR* test statistic for most of the cases against the AR(1) model alternative.  

Table 3 presents the power properties of the MVR, AVR, MVR* and AVR* tests when model 4 (long memo-
ry) is employed as the alternative. We find higher power for MVR* and AVR* test statistics for sample size 1000. 
For other sample sizes, we find improvement in power properties of MVR and AVR test. 

 
Table 2. Power of the tests against the AR(1) alternative.                                                          

 GARCH_1 GARCH_2 SV_1 SV_2 

MVR     

100 0.082 0.071 0.067 0.076 

500 0.285 0.272 0.407 0.398 

1000 0.542 0.445 0.753 0.738 

AVR     

100 0.089 0.105 0.077 0.060 

500 0.345 0.343 0.317 0.352 

1000 0.582 0.566 0.636 0.650 

MVR*     

100 0.113 0.073 0.099 0.091 

500 0.389 0.355 0.476 0.459 

1000 0.650 0.520 0.808 0.749 

AVR*     

100 0.157 0.201 0.185 0.186 

500 0.418 0.419 0.553 0.561 

1000 0.641 0.579 0.811 0.820 

 
Table 3. Power of the tests against long memory.                                                                

Long Memory GARCH_1 GARCH_2 SV_1 SV_2 

MVR     

100 0.128 0.134 0.151 0.161 

500 0.654 0.685 0.407 0.398 

1000 0.948 0.951 0.936 0.957 

AVR     

100 0.137 0.144 0.127 0.145 

500 0.563 0.555 0.569 0.588 

1000 0.888 0.889 0.885 0.897 

MVR*     

100 0.159 0.167 0.166 0.166 

500 0.750 0.732 0.742 0.722 

1000 0.950 0.963 0.956 0.963 

AVR*     

100 0.257 0.272 0.285 0.288 

500 0.748 0.755 0.731 0.750 

1000 0.952 0.951 0.957 0.945 



D. Kumar 
 

 
431 

4. Conclusion 
In this study, we evaluate the small sample size and power properties of the Chow and Denning’s [1] multiple 
variance ratio test and the Choi’s [2] automatic variance ratio test with and without weighted bootstrap approach. 
The size and power properties are examined based on different sample sizes (N = 100, 500 and 1000). The 
number of Monte Carlo trials and weighted bootstrap iterations is set to 1000 and 500 respectively. The results 
indicate that the size and power properties of the multiple variance ratio test and the automatic variance ratio test 
with weighted bootstrap are superior to the corresponding size and power properties of the multiple variance ra-
tio test and the automatic variance ratio test without weighted bootstrap. 
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