
Int. J. Communications, Network and System Sciences, 2016, 9, 152-159
Published Online May 2016 in SciRes. http://www.scirp.org/journal/ijcns
http://dx.doi.org/10.4236/ijcns.2016.95014

How to cite this paper: Xue, Z.W., Jin, Y.H. and Yang, T. (2016) A Cross-System Invocation Platform Based on Distributed
Network Performance Measurement System. Int. J. Communications, Network and System Sciences, 9, 152-159.
http://dx.doi.org/10.4236/ijcns.2016.95014

A Cross-System Invocation Platform Based
on Distributed Network Performance
Measurement System
Zhenwen Xue1, Yuehui Jin1, Tan Yang1,2
1State Key Laboratory of Networking and Switching Technology, University of Posts and Telecommunications,
Beijing, China
2School of Software Engineering Beijing, University of Posts and Telecommunications, Beijing, China

Received 12 April 2016; accepted 24 May 2016; published 30 May 2016

Abstract
The Distributed Network Performance Measurement Sys-tem provides functions to derive per-
formance indices of networks and services, which are significant for Network Management System.
To make these two systems cooperate, we realize this cross-system invocation platform, using
Web Service, a mechanism which allows two systems to exchange data over the internet through
publishing interfaces [1]. There are several mature Web Service frameworks, Apache Axis2,
Apache CXF etc. In this paper we choose Apache Axis2 to achieve the objective that the Network
Management System can invocate the net-work performance measurement functions via the Web
Services.

Keywords
Network Measurement, Cross-System, Web Service, Apache Axis2

1. Introduction
TANC is a distributed network performance measurement system, and provides a method and device which is
used to measure the IP network. It is divided into two subsystems, i.e. a cloud monitoring platform and measur-
ing probes. Figure 1 illustrates the overall architecture of the system.

The cloud monitoring platform which consists of a management platform (Arbiter), several Data Analyzers
(DA) and a Load Balancer (LB), uses cloud computing technology to complete the performance data integration,
consistency of treatment and other processes. Among those components, the management platform is the core
control platform, which is responsible for managing the dynamic probe deployment, adjustment and measuring
tasks. The main task of DA is to collect raw measured data from different probes, In order to balance the amount
of DA to the probe based on the load information of DA.

Measuring probe subsystem consists of probes deployed in large-scale network. Probe implements a variety
of measuring tasks of network performance index, collects the resource information itself at the same time and
reports it to the cloud monitoring platform in real time. During the collection process, the management platform

http://www.scirp.org/journal/ijcns
http://dx.doi.org/10.4236/ijcns.2016.95014
http://dx.doi.org/10.4236/ijcns.2016.95014
http://www.scirp.org

Z. W. Xue et al.

153

Internet

Data Analyzer
(DA)

Data Analyzer
(DA)

Clouding Monitoring Platform

Arbiter&Load Balancer

Probe

Probe
Probe

Probe

Figure 1. The distributed network performance measurement
system.

will adjust the location of probes flexibly relay on the resource status of probes [2].

The rest of the paper is organized as follows: Section 2 introduces the design of the invocation platform of the
TANC system. Section 3 describes the interfaces which should be provided for the Network Management Sys-
tem, and the process of the service publication. Section 4 presents the methods which we use to evaluate web
service. We propose problems for future and other works of our study in Conclusion.

2. Platform Design
The cross-system invocation platform provides network performance measurement functions of the TANC sys-
tem. The available indices includes time delay, packet loss and jitter rate etc. The Network Management System
or other systems invocate the open interfaces of the platform. On one hand, the platform can make full use of the
integrated measurement functions, reuse the software, improve the efficiency of TANC system and exchange the
data across systems. On the other hand, it can promote the loose coupling of internal system. For example, the
web of the TANC system can call the interfaces of the platform, rather than directly execute the reading and
writing operations to the database. Figure 2 shows the invocation platform architecture.

Web Service is a method of communication that allows two different software systems to exchange data over
the internet. Different software can be built using different programming languages, and hence there is a need
for a method of data exchange that does not depend upon a particular programming language. However, most
types of software can interpret XML tags, and Web Service use XML files for data exchange [3]. Thus Web
service is a good choice to use to implement the cross-system invocation.

Axis2 and CXF are two Web Service frameworks both belong to the Apache Software Foundation. Axis2
comes from the well-known Axis1.x series, and is a total rewrite of Axis from the ground up. It uses a new
modular architecture that allows its functionality to be more easily extended. CXF is literally the offspring of the
XFire and Celtix projects, and has been extensively retooled. The chief differences between two frameworks are
as follows:

CXF has support for WS-Addressing, WS-Policy, WS-Security, and WS-I BasicProfile. Axis2 support each
of these except for WS-Policy, which will supported in an upcoming version. CXF was written with Spring in
mind, but Axis2 is not. Axis2 supports a wider range of data bindings, including XMLBeans, JiBX, JaxMe and
JaxBRI as well as its own native data binding, ADB. Note that support for JaxME and JaxBRI are still consid-
ered experimental in Axis2 1.2. CXF currently supports only JAXB and Aegis, support for XMLBeans, JiBX
and Castor will come in CXF 2.1.Axis2 supports multiple languages. There is a C/C++ version available in ad-
dition to Java version [4]-[6].

In this paper we choose Apache Axis as the frameworks to publish the service.

Z. W. Xue et al.

154

The Cloud Monitoring Platform

Web
Service

Interfaces

...

Arbiter

Load Balancer

...DA DA
Hbase

RDB

Figure 2. Invocation platform architecture.

3. Interface Definition and Service Publication
3.1. Interface Definition
The main functions of TANC system include task deployment, task state information query, and the return of the
task result etc. the platform needs to provide the interfaces of related functions, thus the Network Management
System or other system can call the interfaces in the process to complete related operations. Figure 3 shows the
interface invocation flow chart.

Before deploying task, it is necessary to request the topology information, probes information and task types.
The network topology information query interface requires administrator ID and password as parameters, and

returns all the networks the system have built up. Requestor can choose which network need to be measured via
the information requestor get. The information includes network topology name and its ID etc.

When requestor need to deploy single link performance measurement task, the probes information query in-
terface should be invocated first, which is used for service requestor to get the available probes in a network, and
it need network topology ID as a parameter. The information is stored in the system database. If ID is valid, the
system will query the database based on the parameter and return a string array containing IP of available
probes.

The task types query interface provides requestor with the network performance indices which TANC can
measure. It does not need any input parameters and if the invocation succeed, the interface will return the avail-
able types.

The task which requestor can deploy includes single link performance measurement task and network per-
formance measurement task. The single link performance measurement task requires two probe IPs, task type,
task start time and end time as parameters, then the system checks the validity and generates a task record if all
parameters are valid. The network performance measurement task requires network topology ID instead of
probe IPs as parameter.

Task status query interface is used when the requestor needs to know the status of a certain tasks, and returns
to requestor the task status at the moment. The status includes task been deployed, task into the waiting queue,
task executing, task success, failed to carry out task. When requestor invokes the interface, the task ID need to
be provided as a parameter, then the system returns a string representation of the status after querying the data-
base.

By calling the task result query interface, requestor can view the results of the completed tasks, and make the
judgment of network performance base on the analysis results. This interface also requires a task ID as interface
parameter, and returns the task result data as a JSON format string. The task data is stored in the Hbase after the
DA receives from the probes and analyses it.

Other interfaces can be designed and implemented on the invocation platform, which can make the invocation
more efficient. The above several interfaces provide the most basic functions to complete a network performance

Z. W. Xue et al.

155

Figure 3. Interface invocation flow chart.

measurement task.

3.2. Service Publication
Axis2 has taken an approach that makes it in many ways resemble an application server in miniature. Axis2
comes packaged with a WAR that can be deployed on a servlet container such as Tomcat that is designed to
make web services easier to manage and deploy. The Axis2 Web Administration module allows Axis2 to be
configured dynamically. While applications are running, new services can be uploaded, activated or deactivated
and their parameters may be changed. The administration UI also allows modules to be enabled on one or more
running services. The only downside to using the UI for these purposes is the fact that configuration changes
made through it are not persistent. They go away when the servlet container is restarted. Axis2 lends itself to-
wards web services that stand alone, independent of other applications, and offers a wide variety of functionality
and a good model for adding more functionality as time goes on through its modular architecture [4] [6].

Comparing with Apache Axis2, Most configuration of Apache CXF is done via the API instead of XML files.
Spring integration is heavily emphasized, including support for Spring 2.0 and APIs of CXF. Spring configura-
tion mirror one another fairly closely. CXF emphasizes code-first design, using simple APIs to make develop-
ment of services from existing applications easier [5] [6].

In publishing the web service, the organization provides a service description containing the interface and im-
plementation details including its data types, operations, binding information and network location. This defini-
tion is constructed using WSDL [7]. We publish web service by means of Eclipse in combination with Apache
Axis2, and use two Eclipse plugins, the Service Archive Wizard as well as the Code Generator Wizard. Service
Archive Wizard is used to package service code as suffix .aar file, and Code Generator Wizard is used to gener-
ate the WSDL file and parse the WSDL file to generate the client code. We just need to put the two plug-in jar
packages in Eclipse directory under the plugins folder, restart the Eclipse. Then we need get an axis2.war file via
unzipping axis2-1.6.2-war.zip, and put it into the webapps file of tomcat, start the tomcat.

Take the interface file GetMapInfoByUserID.Java as an example. Service code should be packaged into .aar

Service requestor Invocation Platform

Request topology information

Request probes information

Request available task types

Query task status

Request task result

Deploy task

Task data if the task is completed
 else failure message

Task Id if successful else -1

Z. W. Xue et al.

156

file, here we use the above mentioned Axis2 Service Archiver plug-in. After a series of steps, the corresponding
GetMapInfoByUserID.aar file is generated. Then the file needs to be put in tomcat/webapps/Axis2/ WEB_INF/
services/folder below. Other class file and configuration files need to be put in tomcat/webapps/Axis2/
WEB_INF/classes. Restart the tomcat. And then visit http://localhost:8080/axis2/, click on Services, and a web
service which is related with getting all network topology information is shown. Click on the web service and
the web page displays the related WSDL information.

Figure 4 introduces the structure of the WSDL file. The WSDL file is a simple XML document, which con-
tains a series of definition that describes a web service. The type element defines the data types of web service.
For maximum platform neutrality, WSDL uses XML Schema syntax to define data types. The message element
defines the data elements of an operation. Each message is composed of one or more parts which can be com-
pared to the parameters of a function in a traditional programming language. The portType element is the most
important WSDL element. It describes a web service and its operations that can be performed as well as other
related information. The binding element defines the message format and protocol details for each port [8].

4. Service Interface Evaluation
After getting the published Service WSDL file, it is necessary to test that if it can provide normal services, one
method is by using the Axis2 Code Generator plugin to generate the client code, but another popular method is
by SoapUI which is an open source test tools via soap/HTTP to check and call. Apache JMeter is used to test the
performance of the interfaces.

4.1. Client Code
Axis2 Code Generator plugin can generate client code easily and automatically according to the WSDL file, thus
we can simply call the generated Code to complete the web service invocation. At the same time, we can also try
to invoke the service interface on other platforms, with the Android development platform as an example, it is
practicable to invocate the interface with the help of the ksoap2, a client develop library which is more suitable
for the Android mobile platform.

Figure 5 describes the Android Ksoap2 sends web service request to the server to get all network topology
information in the system.

4.2. SoapUI
SoapUI is an open-source web service testing application for service-oriented architectures (SOA) and repre-

Figure 4. The structure of WSDL file.

http://localhost:8080/axis2/

Z. W. Xue et al.

157

Figure 5. The request by android Ksoap2.

sentational state transfers (REST). Its functionality covers web service inspection, invoking, development,
simulation and mocking, functional testing, load and compliance testing. SoapUI can test SOAP and REST web
services, JMS, AMF, as well as make any HTTP(S) and JDBC calls [9]. We can use SoapUI software or SoapUI
plug-in in Eclipse to complete our testing. A new project need to be created based on the URL of the WSDL file,
and the test result of network topology information query interface is shown as follows.

Figure 6 and Figure 7 describes the success of the request and response operations using SoapUI to test the
basic information of the network topology respectively. For example, the requester need to provide the User ID,
here is admin, as a parameter, then the interface return the information as a JSON string, which contains the ID
information of network topology and its name.

4.3. Performance Evaluation
JMeter, which is developed by Apache, is applied to the performance evaluation of Web applications widely. It

Z. W. Xue et al.

158

can be used in the simulation under the condition of heavy load performance of the entire server. The test of
JMeter, including the creation of loops and thread group, uses default delay to simulate continuous requests to
the server, and the thread group is designed to simulate concurrent load [10].

We choose three different thread numbers, 5, 50, and 500 to test the performance of the network topology in-
formation query interface. Throughput is the number of requests the server can deal with per minute. Average is
the total running time divided by the number of requests sent to the server. Median represents the time, which
half of the server response time less than it [10]. From Table 1, the throughput of 5 threads is less than half of
50 and 500 threads, which two has a similar value, about 5500 per minute. Both average and Median is in-
creased dramatically as the number of the concurrent threads increases.

5. Conclusion
In this paper, we choose the Web Service technology to implement the cross-system invocation platform based

Figure 6. The request of SoapUI.

Figure 7. The response of SoapUI.

Table 1. The interface performance evaluation.

Threads Throughput/min Average/ms Median/ms

5 2676.182 62 66

50 5436.752 363 147

500 5702.41 3392 1123

Z. W. Xue et al.

159

on a distributed network performance measurement system TANC. Web service is an independent, loosely cou-
pled, self-contained platform based on the programmable Web application. Different applications running on
different environments can exchange data or integrate by web service without using additional third party sys-
tem. We define basic interfaces required to complete a measurement task, including deploying task, task status
view, task results back, etc. Apache Axis2 is a popular Web Service framework, and we use it to publish the
service and generate the corresponding WSDL file. The services are tested by two ways, the client code test and
a convenient test tool, SoapUI. And in the end we use Apache JMeter to evaluate the performance of the inter-
faces. More interfaces of the TANC system need to be published in the future in order to make the invocation
more efficient.

Acknowledgements
This work was sponsored by the 973 Project of China (No.2009CB320505), the 863 Project of China
(No.2011AA01A102) and the Fundamental Research Funds for the Central Universities of China (No.
2014RC0501).

References
[1] https://en.wikipedia.org/wiki/Web_service
[2] Chen, X., Jin, Y.H. and Yang, T. A Low Coupling Analysis Method for Large-Scale Network Performance. Proceed-

ings of 2013 5th IEEE International Conference on Broadband Network & Multimedia Technology.
http://dx.doi.org/10.1109/icbnmt.2013.6823906

[3] Papazoglou, M.P. (2009) Web Servies Prinples and Technology. China Machine Press.
[4] http://axis.apache.org/axis2/java/core/
[5] http://cxf.apache.org/docs/index.html
[6] Townsend, B. (2007) Axis, Axis2 and CXF: Surveying the WS Landscape. TheServerSide.com.
[7] McGregor, C. and Schiefer, J. (2003) A Framework for Analyzing and Measuring Business Performance with Web

Services. Proceedings of the IEEE International Conference on E-Commerce (CEC’03).
[8] http://www.w3school.com.cn/wsdl/wsdl_documents.asp
[9] http://www.soapui.org/about-soapui/what-is-soapui-.html
[10] Nevedrov, D. (2006) The Application of JMeter in WebService Performance Test. dev2dev.

https://en.wikipedia.org/wiki/Web_service
http://dx.doi.org/10.1109/icbnmt.2013.6823906
http://axis.apache.org/axis2/java/core/
http://cxf.apache.org/docs/index.html
http://www.w3school.com.cn/wsdl/wsdl_documents.asp
http://www.soapui.org/about-soapui/what-is-soapui-.html

	A Cross-System Invocation Platform Based on Distributed Network Performance Measurement System
	Abstract
	Keywords
	1. Introduction
	2. Platform Design
	3. Interface Definition and Service Publication
	3.1. Interface Definition
	3.2. Service Publication

	4. Service Interface Evaluation
	4.1. Client Code
	4.2. SoapUI
	4.3. Performance Evaluation

	5. Conclusion
	Acknowledgements
	References

