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Abstract 
First-order proximal methods that solve linear and bilinear elliptic optimal control problems with 
a sparsity cost functional are discussed. In particular, fast convergence of these methods is proved. 
For benchmarking purposes, inexact proximal schemes are compared to an inexact semismooth 
Newton method. Results of numerical experiments are presented to demonstrate the computa-
tional effectiveness of proximal schemes applied to infinite-dimensional elliptic optimal control 
problems and to validate the theoretical estimates. 
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1. Introduction 
In recent years, a great research effort has been made to solve optimization problems governed by Partial 
Differential Equations (PDEs); see, e.g., [1]-[3] and references therein. In many cases, this research has focused 
on objective functionals with differentiable 2L  terms and non-smoothness resulted from the presence of control 
and state constraints. However, more recently, the investigation of 1L  cost functionals has become a central 
topic in PDE-based optimization [4]-[6], because they give rise to sparse controls that are advantageous in many 
applications like optimal actuator placement [4] or impulse control [7]. 

A representative formulation of optimal control problems with 1L  control costs is the following  

( ) ( ) ( )

( )

2 2 1
1 2
0

2 2

,

1min
2 2

s.t. , 0, a.e. in ,

L L Ly u H L

a b

y z u u

c y u u u u

α β
∈ Ω × Ω

− + +

= ≤ ≤ Ω
                      (1.1) 
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where ( ), 0c y u =  represents a PDE for the state y including the control u. This problem has been discussed in 
[4] [5] for the case where ( ),c y u  represents a linear elliptic operator. Nonlinear PDE constraints have been 
considered in [6]. However, in these references a linear control mechanism is discussed. Concerning the 
optimization methodology for (1.1), the semi-smooth Newton method has been the solver of choice in [4]-[6]. 

On the other hand, in the field of signal acquisition and reconstruction, l1-based optimization and sparsity 
have been exploited to successfully recover “functions” from few samples; see, e.g., [8]-[10]. 

In this framework, it was shown [11] that l1-based inverse problems in signal recovery can be very efficiently 
solved by proximal methods. Nowadays, these iterative schemes are the method of choice in magnetic resonance 
imaging and a special proximal method called “Fast Iterative Soft Thresholding Algorithm” (FISTA) [12] is con- 
sidered the state-of-the-art method for solving finite-dimensional optimization problems of the following form  

2

2 1min ,
nx

Ax b xβ
∈

− +


 

where the rectangular matrix A represents a blur operator. 
We remark that the research and successful application of proximal schemes are attracting attention of many 

scientists and practitioners, which result in many new developments in this field. We refer to, e.g., [13] for 
recent results and additional references. 

The purpose of our work is to contribute to the field of PDE-based optimization with 1L  control costs by 
investigating proximal methods in this infinite-dimensional setting. In particular, we aim at implementing and 
analysing proximal schemes for solving (1.1) that exploit first-order optimality conditions. Our investigation is 
motivated by the fact that proximal methods may have a computational performance that is comparable to that 
of semismooth Newton methods. However, in contrast to the latter, proximal schemes do not require the con- 
struction of second-order derivatives and the implementation of, e.g., a Krylov solver. 

For our investigation, we consider (1.1) with elliptic operators and linear and bilinear control mechanisms. 
Notice that the latter case has been a much less investigated problem. One of our main contributions is to prove 
convergence for all variants of the proximal schemes that we discuss in this paper. In particular, we prove an 
( )21 k  convergence rate of the value of reduced cost functional, where k is the number of proximal iterations. 

This notion of convergence is used in l1-based optimization and in some application fields [14]. 
We remark that many arguments in our analysis are similar to those presented in the finite-dimensional case. 

However, some additional arguments are necessary in infinite dimensions, especially regarding the structure of 
our differential constraints and the discussion of our inexact proximal schemes. We refer to [13] for further 
results concerning the formulation of proximal schemes for infinite-dimensional optimization problems from a 
different perspective. 

In the next section, we discuss linear and bilinear elliptic optimal control problems, where for completeness, 
some conditions for the existence of a unique control-to-state operators are considered. Section 3 is devoted to 
optimal control problems with sparsity costs and governed by elliptic equations with linear and bilinear control 
mechanisms. We discuss conditions for convexity of the bilinear problem and state the optimality conditions. In 
Section 4, we present a Fast Inexact Proximal method (FIP) that represents an infinite-dimensional extension of 
the FISTA method. In Section 5, the convergence rate of this method is proven to be ( )21 k . In Section 6, an 
inexact semismooth Newton method in function spaces is presented as the state of the art method for comparison 
purposes. For completeness, the theory of this method is extended to the case of elliptic bilinear control pro- 
blems. A numerical comparison of the FIP and Semismooth-Newton methods is presented in Section 7. A 
section of conclusion completes this work. 

2. Elliptic Models with Linear and Bilinear Control Mechanisms  
In this section, we discuss elliptic PDE models with linear and bilinear control structures. Notice that these 
models are already discussed in many references; see, e.g., [2] [15]-[17]. However, in this section, we report the 
main results required for our analysis of convergence of the proposed proximal methods. 

Consider the following boundary value problem  
inAy u f+ = Ω                                      (2.1) 

0 on ,y = ∂Ω                                       (2.2) 

where nΩ ⊂  , with 3n ≤ , is a bounded domain and ( )2f L∈ Ω . The operator ( ) ( )1 1
0:A H H −Ω → Ω  
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represents a second-order linear elliptic differential operator of the following form  

0
, 1

,
n

ij
i j j j

Ay a y a y
x x=

 ∂ ∂
= − +  ∂ ∂ 
∑  

such that ( ), 0,i ja a L∞∈ Ω , and ,i ja  satisfies the coercivity condition ( ) 2
1 2, 1 1

n n
ij ji j ja x ξ ξ θ ξ

= =
≥∑ ∑  a.e. in Ω   

for some 0θ >  and 0 0a ≥ . For the existence and uniqueness of solutions to (2.1) see ([15], Section 6). 
Further, we consider the following bilinear elliptic control problem  

inAy uy f+ = Ω                                  (2.3) 

0 on .y = ∂Ω                                   (2.4) 

In both linear and bilinear control settings, we require adu U∈ , with the following set of feasible controls  

( ){ }2: : a.e. in ,ad a bU u L u u u= ∈ Ω ≤ ≤ Ω                         (2.5) 

where 0a bu u≤ ≤ , a bu u< . 
Now, we discuss the existence of a unique weak solution to (2.3)-(2.4). For this purpose, we need the 

Poincaré-Friedrichs lemma and denote with cΩ  the Poincaré-Friedrichs constant; see, e.g., [15]. 
We denote ( )2: L Ω

⋅ = ⋅  induced by the inner product ( )2, : , L Ω
⋅ ⋅ = ⋅ ⋅ . 

Theorem 2.1. Let adu U∈ , where  

0 .au a
c
θ

Ω

> − −                                    (2.6) 

Then, there exists a unique weak solution ( )1
0y H∈ Ω  to the bilinear elliptic problem (2.3)-(2.4) and the 

following property holds  

( )1 1 .Hy C f
Ω
≤                                   (2.7) 

Proof. The proof is immediate using the Lemma of Lax-Milgram and the following result  

( ) ( )

( )( )
( ) ( )
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θκ κ
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=
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Ω ΩΩ Ω Ω

Ω Ω Ω Ω
Ω

Ω
Ω

 ∂ ∂
= + = + +  ∂ ∂ 

≥ ∇ + +

= ∇ + − ∇ + +

 
≥ ∇ + − + + 

 
 

≥ + + − = 
 

∑∫

∫

∫ ∫ ∫

∫ ∫ ∫

 

With 0: 0
1

au a c
c

θ
κ Ω

Ω

+ +
= >

+
, we have that 0ac u a cκ θ κΩ Ω= + + −  and therefore 0 :C cκ Ω= . In the forth  

line the Poincaré-Friedrichs was used. Hence, 1
1 0:C C−= .                                          □ 

Remark 2.1. In the case of ( )0,1 nΩ = , 3n ≤ , and A = −∆ , including homogeneous Dirichlet boundary 
conditions, we have 0 0a = , 1θ =  and 1 2c nΩ =  such that we can ensure invertibility for 2au n> − .  

Remark 2.2. In order to ensure a unique solution, we require condition (2.6) for the choice of au  in the 
bilinear case.  

Next, we recall the following theorem stating higher regularity of solutions to (2.3)-(2.4); see ([18], Theorem 
4.3.1.4).  

Theorem 2.2. Let nΩ ⊂  , 3n ≤ , be a convex and bounded polygonal or polyhedral domain. If in addition 
to the assumptions of Theorem 2.1, we have that ( )1

ija C∈ Ω , then ( ) ( )1 2
0y H H∈ Ω ∩ Ω  and the following 
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holds  

( ) ( )2 ,Hy C f y C f
Ω
≤ + ≤                                (2.8) 

for some appropriate constants , 0C C >  that only depend on Ω .  
Remark 2.3. Because ( )2H Ω  can be embedded in ( )L∞ Ω  for 3n ≤  [19] and using (2.8), we obtain  

( ) .Ly C f∞ Ω
≤                                      (2.9) 

Theorem 2.1 and Theorem 2.2 ensure the existence of a unique control-to-state operator  

( ) ( ) ( )1 2
0: , ,adS U H H u S u→ Ω ∩ Ω                         (2.10) 

where in the linear case ( ) ( )1
lS u A f u−= −  represents the unique solution to (2.1) and in the bilinear case 

( ) ( ) 1
bS u A u f−= +  is the unique solution to (2.3). In the following, we use the expression ( )S u  when it is 

valid for both the linear and the bilinear systems.  
Remark 2.4. The control-to-state operator ( )bS u  is not Fréchet-differentiable in the 2L  topology since for 

every 0ε >  there is always an ( )2h L∈ Ω  with h ε≤  such that adu h U+ ∉  and therefore it is not neces- 
sarily defined. However, we only need the following weaker form of differentiability, which is a directional dif- 
ferentiability in all adv U∈  in the directions ( )u v−  for adu U∈ . This is called Q-differentiability; see [16].  

Definition 2.1. (Q-differentiability). Let U X⊂  be a convex set and :T U Y→ . Then T is called 
Q-differentiable in v U∈ , if there exists a mapping ( ) ( ),UT v X Y′ ∈ , such that for all u U∈  the following 
holds  

( ) ( ) ( )( )
0 if 0.U Y

X
X

T v u v T v T v u v
u v

u v

′+ − − − −
→ − →

−
 

In the following, we omit the index U and write UT T′ ′= .  
The Q-derivatives of ( )bS u  have the following properties.  
Lemma 2.3. The control-to-state-operator bS  is at least two times Q-differentiable in adU  with  

( )2,X Y L= Ω  and its derivatives have the following properties for all directions ( )2
1 2, Lφ φ ∈ Ω :   

i) ( )( ) ( ) ( )1 2
1 0bS u H Hφ′ ∈ Ω ∩ Ω  is the solution y′  of  

( )1 .bAy uy S uφ′ ′+ = −                                 (2.11) 

ii) ( )( ) ( ) ( )1 2
1 2 0,bS u H Hφ φ′′ ∈ Ω ∩ Ω  is the solution y′′  of  

( )( ) ( )( )2 1 1 2 .b bAy uy S u S uφ φ φ φ′′ ′′ ′ ′+ = − −                         (2.12) 

iii) The following inequalities hold  

( )( )1 2 1 ,bS u C fφ φ′ ≤                               (2.13) 

( )( )1 2 3 1 2, .bS u C fφ φ φ φ′′ ≤                            (2.14) 

Proof. Part (i) and (ii) can be shown by direct calculation (see ([16], Lemma 2.9). So part (iii) is left to be 
proved. If ( )( ) ( ) ( )1 2

1 0: by S u H Hφ′ ′= ∈ Ω ∩ Ω  is a solution to  

1= ( ),bAy uy S uϕ′ ′+ −  

for adu U∈  and ( )2f L∈ Ω , by using (2.9), we obtain  

( ) ( ) ( )1 1 2 1 ,b bL L
y C y C S u C S u C fφ φ φ∞ ∞ Ω
′ ′≤ ≤ ≤ ≤                 (2.15) 

where the constants depend on the measure of Ω  and not on y. Therefore we obtain (2.13) and ( )y L∞′∈ Ω . 
conclude Furthermore, let ( )( ) ( ) ( )1 2

1 2 0: ,by S u H Hφ φ′′ ′′= ∈ Ω ∩ Ω  be a solution to the following problem  

( )( ) ( )( )2 1 1 2 ,b bAy uy S u S uφ φ φ φ′′ ′′ ′ ′+ = − −  

for adu U∈  and ( )2f L∈ Ω . With the same arguments as above and using (2.15), we obtain  

( )( ) ( )( )2 1 1 2 3 1 2 .b by C S u S u C fφ φ φ φ φ φ′′ ′ ′≤ + ≤  
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Therefore, we obtain (2.14), which completes the proof.                                         □ 

3. Elliptic Optimal Control Problems with Sparsity Cost Functional  
In this section, we discuss optimal control problems governed by the linear- and bilinear-control elliptic systems 
discussed in the previous section. We consider the following cost functional  

( ) 1
2 21, : ,

2 2 LJ y u y z u uα β= − + +                          (3.1) 

where ( )2z L∈ Ω , ( )1
0y H∈ Ω , adu U∈  and , 0α β > . This functional is made of a Fréchet-differentiable 

classical tracking type cost with 2L -regularization and a nondifferentiable 1L -control cost. Using the control- 
to-state operator (2.10), we have the following reduced optimal control problem  

( ) ( ) 1
2 21ˆmin : .

2 2ad
Lu U

J u S u z u uα β
∈

= − + +                        (3.2) 

The nondifferentiable part ( ) 11̂ : LJ u uβ=  is convex. Therefore, in order to state convexity of the reduced  

functional ( )Ĵ u , we investigate the second-derivative of the differentiable part ( ) ( ) 2 2
2

1ˆ :
2 2

J u S u z uα
= − + .  

We have  

( )( ) ( )( ) ( )( ) ( ) ( )( )2
ˆ , , , , , .J u v w S u v S u w S u z S u v w v wα′′ ′ ′ ′′= + − +  

In particular, in the linear case, we have  

( )( ) ( )
2 21 2

2
ˆ , 0, for all , 0.J u v v A v v v L vα−′′ = + > ∈ Ω ≠                  (3.3) 

We conclude that the reduced functional is strictly convex in the linear case. 
In the bilinear case, we have a non-convex optimization problem. However, local convexity can be guar- 

anteed under some conditions. To be specific, we chose the sufficient condition stated in the following theorem.  
Lemma 3.1. Let ( ) ( )( )1: sup ,bvC u S u v v≤′′ ′′= , if the following inequality holds  

( ) ( ) ,bC u S u z α′′ − <                                   (3.4) 

then the reduced functional ( )Ĵ u  is strictly convex in a neighborhood of adu U∈ .  

Proof. Since ( ) 11̂ : LJ u uβ=  is convex, we have to prove that ( ) ( ) 2 2
2

1ˆ :
2 2bJ u S u z uα

= − +  is strictly  

convex in u. Therefore we show that the reduced Hessian is positive definite in adU  as follows  

( )( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( )( )

2

2

ˆ , , , , ,

,

b b b b

b

J u v v S u v S u v S u z S u v v v v

C u S u z v

α

α

′′ ′ ′ ′′= + − +

′′≥ − −
 

and thus ( )Ĵ u  is strictly convex in u.                                                         □ 
We remark that the result of Lemma 3.1 is well known. It expresses local convexity of the reduced objective 

when the state function is sufficiently close to the target and the weight of the quadratic 2L  cost of the control 
is sufficiently large. Indeed, local convexity may result with much weaker assumptions. However, since our 
focus is the investigation of proximal schemes, we make the following strong assumption. 

Assumption 1. We assume that (3.4) holds for all adu U∈ .  
Because of Lemma 2.3, this assumption holds if the regularization parameter ( )3> C f C f zα + . 

In the next step, the first-order optimality conditions for (3.2) are derived. First, we need the definition of the 
subdifferential.  

Definition 3.1. Let H be a Hilbert space and :F H →   be convex. We call the set-valued mapping 
*:F H H∂   given by  

( ) ( ) ( ){ }*: : , for all .F u g H g v u F v F u v H∂ = ∈ − ≤ − ∈  

the subdifferential of F in u.  



A. Schindele, A. Borzì 
 

 
972 

From ([20], Remark 3.2), we obtain that u  is a solution of (3.2), if and only if there exists a ( )1̂J uλ ∈∂  
such that  

( ) ( )( )* , 0, for all ,adS u S u z u u u u Uα λ′ − + + − ≥ ∈                     (3.5) 

where *  denotes the adjoint operator. From (3.5), one can derive the optimality system by using the Lagrange 
multipliers ( )2,a b Lλ λ ∈ Ω . We have the following theorem (see [4], Theorem 2.1). 

Theorem 3.2. The optimal solution u  of (3.2) is characterized by the existence of  
( ) ( ) ( ) ( )2 2 2, ,a b L L Lλ λ λ ∈ Ω × Ω × Ω  such that  

( ) ( )( )* 0,b aS u S u z uα λ λ λ′ − + + + − =                           (3.6) 

( )0, 0, 0,b b b bu u u uλ λ≥ − ≥ − =                            (3.7) 

( )0, 0, 0,a a a au u u uλ λ≥ − ≥ − =                            (3.8) 

{ }a.e. on : 0 ,x uλ β= ∈Ω >                               (3.9) 

{ }a.e. on : 0 ,x uλ β≤ ∈Ω =                             (3.10) 

{ }a.e. on : 0 .x uλ β= − ∈Ω <                             (3.11) 

If one introduces the parameter : b aµ λ λ λ= + − , it is shown in [4] that conditions (3.7)-(3.11) are equivalent 
to  

( ), 0,B u µ =                                     (3.12) 

where  

( ) ( ){ } ( ){ }
( ){ } ( ){ }

, : max 0, min 0,

max 0, min 0, ,b a

B u u u c u c

u u c u u c

µ µ β µ β

µ β µ β

= − + − − + +

+ − + − + − + +
 

where 0c >  is arbitrary. With this setting, the optimality system (3.6)-(3.11) reduces to the following  

( ) ( )( )* 0,S u S u z uα µ′ − + + =                            (3.13) 

( ), 0.B u µ =                                     (3.14) 

In the linear-control case, the Equation (3.13) becomes the following  

( )( )* 1 0,A A f u z uα µ− −− − − + + =                         (3.15) 

where ( ) 1*A A
−−∗ = . By setting ( )1y A f u−= −  and ( ):p A y z−∗= − − , (3.15) becomes 0p uα µ+ + = . 

We summarize the previous considerations into the following theorem.  
Theorem 3.3. (Linear optimality conditions) The optimal solution ( ) ( ) ( )1 2

0,y u H L∈ Ω × Ω  to (3.2) in the 
linear control case is characterized by the existence of the dual pair ( ) ( ) ( )1 2

0,p H Lµ ∈ Ω × Ω  such that  
0Ay u f+ − =                                    (3.16) 

* 0A p y z+ − =                                    (3.17) 

0p uα µ+ + =                                    (3.18) 

( ), 0.B u µ =                                     (3.19) 

Furthermore, the reduced gradient and the reduced Hessian of ( )2Ĵ u  are given by  

( ) ( ) * 1
2 2

ˆ ˆ, and .J u u p J u I A Aα α − −′′∇ = + = +                      (3.20) 

Notice that with an abuse of notation, we denote the reduced Hessian with ( )2Ĵ u′′ , which is also used to 
denote the second derivative operator. 
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For the bilinear-control system, we have ( )( ) ( ) ( )1 1
1 1S u A u A u fφ φ− − ′ = − + +   and therefore  

( ) ( ) ( ) ( )* 1
1 1S u A u f A uφ φ− −∗′ = − + +  such that (3.13) becomes the following  

( ) ( ) ( )( )1 1 0.A u f A u A u f z uα µ− −∗ −− + + + − + + =                     (3.21) 

By setting ( ) 1y A u f−= +  and ( ) ( ):p A u y z−∗= − + −  this can be written as follows, 0yp uα µ+ + = . 
We summarize the previous considerations into the following theorem.  
Theorem 3.4. (Bilinear optimality system) The optimal solution ( ) ( ) ( )1 2

0,y u H L∈ Ω × Ω  to (3.2) in the 
bilinear control case is characterized by the existence of the dual pair ( ) ( ) ( )1 2

0,p H Lµ ∈ Ω × Ω  such that  

( )

*

0
0

0
, 0.

Ay uy f
A p y up z
yp u
B u

α µ
µ

+ − =
+ + − =

+ + =
=

                                 (3.22) 

Furthermore, the explicit reduced gradient and the reduced Hessian of ( )2Ĵ u  are given by  

( )2
ˆ ,J u u pyα∇ = +                                  (3.23) 

and  

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

* 1 *
2 1 2 1 2 2

1
1 2 2

ˆ , ,

, .

J u v v v y A u A u yv y A u pv

v p A u yv vα

− − −

−

′′ = + + − +

− + +
 

4. Proximal Methods for Elliptic Control Problems  
In this section, we discuss first-order proximal methods to solve our linear and bilinear optimal control problems. 
The starting point to discuss proximal methods consists of identifying a smooth and a nonsmooth part in the 
reduced objective ( )Ĵ u . That is, we consider the following optimization problem  

( ) ( ) ( )1 2
ˆ ˆ ˆmin : ,

adu U
J u J u J u

∈
= +                              (4.1) 

where, we assume  

( )1̂ is continuous, convex and nondifferentiableJ u                      (4.2) 

( )2
ˆ is Q-differentiable with respect to , convex,

and has Lipschitz-continuous gradient:
adJ u U                    (4.3) 

( ) ( ) ( )2 2 2
ˆ ˆ ˆ , , ,adJ u J v L J u v u v U∇ −∇ ≤ − ∀ ∈                      (4.4) 

where ( )2
ˆ 0L J > . Notice that our optimal control problem (3.2) has this additive structure where (4.2) holds for  

( ) 11̂ LJ u uβ=  and ( ) ( ) 2 2
2

1ˆ
2 2

J u S u z uα
= − +  is at least two times Q-differentiable, it is convex under  

appropriate conditions discussed in the previous section, and it has Lipschitz-continuous gradient that we prove 
in the following lemma.  

Lemma 4.1. The functional ( ) ( ) 2 2
2

1ˆ
2 2

J u S u z uα
= − +  has a Lipschitz-continuous gradient for  

( ) ( )1S u A f u−= −  (linear-control case) and for ( ) ( ) 1S u A u f−= +  (bilinear-control case).  
Proof. For the linear-control case, we have  

( ) ( ) ( ) ( )

( )2 2

1
2 2

1 1

,

ˆ ˆ

,
L L

J u J v u v A A u v

u v A A u v A A u v

α

α α

−∗ −

−∗ − −∗ −

∇ −∇ = − + −

≤ − + − = + −
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such that we have the Lipschitz-constant ( ) ( )2 2
1

2 ,
ˆ

L L
L J A Aα −∗ −= + . 

For the bilinear-control case, we use the mean value theorem. There exists a adUξ ∈  such that  

( ) ( )
( )

( )( ) ( )( )
( )

( )( )

( )
( )( ) ( )( ) ( )( ) ( )

( )

2 2

2

2 2 2 2 2
, 1 , 1

, 1

2 22
2 1 3 3

ˆ ˆ ˆ ˆ ˆsup sup ,

sup , , , ,

,

h L h h L h

b b b b
h L h

J u J v J u h J v h J h u v

S u v S h S u v h S z u v h

C f C C f C f z u v

ξ

ξ ξ ξ ξ α

α

∈ Ω ≤ ∈ Ω ≤

∈ Ω ≤

′ ′ ′′∇ −∇ ≤ − = −

′ ′ ′′= − + − − + −

≤ + − + −

 

for the last inequality, we use (2.7), (2.13), (2.14), which completes the proof.                          □ 
The following lemma is essential in the formulation of proximal methods.  
Lemma 4.2. Let 2J  be Q-differentiable with respect to adU , and it has a Lipschitz continuous gradient 

with Lipschitz constant ( )2L J . Then for all ( )2 0L L J≥ > , the following holds  

( ) ( ) ( ) 2
2 2 2

ˆ ˆ ˆ , , , .
2 ad
LJ u J v J v u v u v u v U≤ + ∇ − + − ∀ ∈                  (4.5) 

Proof.  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )

1
2 2 2 2 20

1
2 2 2 20

1 2
2 2 0

2
2 2

ˆ ˆ ˆ ˆ ˆ, , d

ˆ ˆ ˆ ˆ, d

ˆ ˆ , d

ˆ ˆ , .
2

J u J v J v u v J v t u v J v u v t

J v J v u v J v t u v J v u v t

J v J v u v Lt u v t

LJ v J v u v u v

= + ∇ − + ∇ + − −∇ −

≤ + ∇ − + ∇ + − −∇ −

≤ + ∇ − + −

≤ + ∇ − + −

∫

∫

∫
 

□ 
Notice that ( )2

ˆ:L L J=  represents the smallest value of L such that (4.5) is satisfied. We remark that the 
discussion that follows is valid for ( )2

ˆL L J≥  as in Lemma 4.5. However, as we discuss below, the efficiency 
of our proximal schemes depends on how close is the chosen L to the minimal and optimal value ( )2

ˆL J . Now, 
since this value is usually not available analytically, we discuss and implement below some numerical strategies 
for determining a sufficiently accurate approximation of ( )2

ˆL J . In particular, we consider a power iteration 
[21], and the backtracking approach discussed in Remark 5.1. 

Further, notice that also in the case of choosing ( )2
ˆL L J , our proximal scheme still converges with rate 

1 k  (resp. 21 k ) times a convergence constant. However, this convergence constant grows considerably as L 
becomes larger and therefore the convergence of the proximal method appears recognizably slower. On the 
other hand, if L is chosen smaller than the Lipschitz constant, then convergence cannot be guaranteed. 

The strategy of the proximal scheme is to minimize an upper bound of the objective functional at each 
iteration, instead of minimizing the functional directly. Lemma 4.2 gives us the following upper bound for all 

adv U∈ . We have  

( ) ( ){ } ( ) ( ) ( ) 2
1 2 1 2 2

ˆ ˆ ˆ ˆ ˆmin min , ,
2ad adu U u U

LJ u J u J u J v J y u v u v
∈ ∈

 + ≤ + + ∇ − + − 
 

 

where, we have equality if u v= . Furthermore, we have the following equation  

( ) ( ) ( )

( ) ( )

2
1 2 2

2

1 2

ˆ ˆ ˆargmin ,
2

1ˆ ˆargmin .
2

ad

ad

u U

u U

LJ u J v J v u v u v

LJ u u v J v
L

∈

∈

 + + ∇ − + − 
 
   = + − − ∇  

   

                  (4.6) 

Now, consider (4.6) and recall that ( ) 11̂ LJ u uβ= . We have the following lemma. 
Lemma 4.3. The following equation holds  
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( ) ( )1
2 21argmin for any ,

2
ad

ad

U
u U Lu u v v v Lττ∈

 + − = ∈ Ω 
 

  

where the projected soft thresholding function is defined as follows  

( )
{ } ( ){ }

( ){ }
{ } ( ){ }

min , on :

: 0 on :

max , on :

ad

b

U

a

v u x v x

v x v x

v u x v x
τ

τ τ

τ

τ τ

 − ∈Ω >
= ∈Ω ≤


+ ∈Ω < −

  

Proof. There exists a ( ) 1Lu uγ ∈∂ , the subdifferential of 
1L⋅  such that the solution 

1
21: argmin

2adu U Lu u u vτ∈
 = + − 
 

 fulfills the following variational inequality; see, e.g., ([20], Remark 3.2);  

( ) , 0, .adu v u u u u Uτγ− + − ≥ ∀ ∈                          (4.7) 

Now, we show that ( )ˆ : adUu vτ=   fulfills (4.7). The following investigation of the different cases is meant to 
be pointwise. We have  
• 0bv uτ− > ≥ :  

It follows that ˆ bu u=  and therefore ( )ˆ 1uγ =  such that  

( )( ) 0,b b adu v u u u Uτ− + − ≥ ∀ ∈ . 

• 0 bv uτ< − < :  
It follows that ˆ 0u v τ= − >  and ( )ˆ 1uγ =  such that 

( )( )ˆ 0,b adu v u u u Uτ− + − = ∀ ∈ . 

• v τ≤ :  

It follows that ˆ 0u =  and ( ) ( )1ˆ 0vu Bγ
τ

= ∈  such that  

( )ˆ ˆ 0, ad
vu v u u u Uτ
τ

  − + − = ∀ ∈  
  

. 

• 0au v τ< + < :  
It follows that ˆ 0u v τ= + <  and therefore ( )ˆ 1uγ = −  such that 

( )( )ˆ ˆ 0, adu v u u u Uτ− − − = ∀ ∈  

• 0av uτ+ < ≤ :  
It follows that ˆ au u=  and therefore ( )ˆ 1uγ = −  such that 

( )( ) 0,a a adu v u u u Uτ− − − ≥ ∀ ∈ .   

□ 
Based on this lemma, we conclude that the solution to (4.6) is given by  

( ) ( ) ( )
2

1 2 2
1 1ˆ ˆ ˆargmin ,

2
ad

ad

U
u U

L

LJ u u v J v v J v
L Lβ∈

     + − − ∇ = − ∇    
     

  

thus obtaining an approximation to the optimal u sought. Therefore we can use this result to define an iterative 
scheme as follows  

( )1 2 1
1 ˆ ,adU

k k k
L

u u J u
Lβ − −

 ← − ∇ 
 

  

starting from a given 0u . The resulting algorithm implements a proximal scheme as follows  
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Algorithm 1 (Proximal (P) method) 
Require: β , 2Ĵ , 0u , adU , TOL  

Initialize: ( )2
ˆL L J= ; 0 0v u= ; 0 1t = ; 0 1B = , 1k = ; 

while 1kB TOL− >  do 

1. ( )1 2 1
1 ˆadU

k k k
L

u u J u
Lβ − −

 = − ∇ 
 

  

2. ( ) ( )( )*
k k k ku S u S u zµ α ′= − − −  (3.13) 

3. ( ),k k kB B u µ=  
4. 1k k= +  

end while 
 

This scheme is discussed in [9] [12] for the case of finite-dimensional optimization problems. Notice that the 
iterated thresholding scheme discussed in [9] coincides with Algorithm 1 for the special case 1L = . The con- 
vergence results for Algorithm 1 presented in [12] can be extended to our elliptic control problems, using the 
theoretical results presented above. Therefore we can state the following theorem.  

Theorem 4.4. Let { }ku  be a sequence generated by Algorithm 1 and *u  be the solution to (3.2) with 
linear- or bilinear-control elliptic equality constraints. Then, for every 1k ≥  the following holds  

( ) ( ) ( ) 2*
2 0*

ˆ
ˆ ˆ .

2k

L J u u
J u J u

k

−
− ≤  

In [22], an acceleration strategy for proximal methods applied to convex optimization problems fulfilling (4.4) 
is formulated, which improves the rate of convergence of these schemes from ( )1 k  to ( )21 k . Speci- 
fically, one defines the sequence { },k kt v  with  

2
0 11, : 1 1 4 2,k kt t t −= = + +                             (4.8) 

and  

( ) ( )1
0 0 1

1
: , : .k

k k k k
k

t
v u v u u u

t
−

−

−
= = + −                        (4.9) 

Correspondingly, the optimization variable ku  is updated by the following  

( )1 2 1
1 ˆ .adU

k k k
L

u v J v
Lβ − −

 ← − ∇ 
 

  

This procedures is summarized in the following algorithm 
 

Algorithm 2 (Fast proximal (FP) method) 
Require: β , 2Ĵ , 0u , adU , TOL  

Initialize: ( )2
ˆL L J= ; 0 0v u= ; 0 1t = ; 0 1B = , 1k = ; 

while 1kB TOL− >  do 

1. ( )1 2 1
1 ˆadU

k k k
L

u v J v
Lβ − −

 = − ∇ 
 

  

2. ( ) ( )( )*
k k k ku S u S u zµ α ′= − − −  (3.13) 

3. ( ),k k kB B u µ=  

4. 
2

11 1 4
2

k
k

t
t −+ +
=

 

5. ( )1
1

1k
k k k k

k

t
v u u u

t
−

−

 −
= + − 

   
6. 1k k= +  

end while 
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The following convergence result represents an extension of ([12], Theorem 4.4). We have 
Theorem 4.5. Let { }ku  be a sequence generated by Algorithm 2 and *u  be the solution of (3.2) with 

linear- or bilinear-control elliptic equality constraints. Then, for every 1k ≥  the following holds  

( ) ( ) ( )
( )

2*
2 0*

2

ˆ2
ˆ ˆ .

1
k

L J u u
J u J u

k

−
− ≤

+
 

Algorithm 1 and Algorithm 2 require the calculation of  

( ) ( )( ) ( )* 1
2

ˆ linearJ u A A f u z uα− −∇ = − − − +  

( ) ( ) ( )( )( ) ( )1 1
2

ˆresp. bilinear .J u A u A u f z A u f uα−∗ − −∇ = − + + − + +  

However, the exact inversion of a discretized elliptic differential operator A may become too expensive. 
Therefore one has to use iterative methods; e.g., the conjugate gradient method [23]. For this reason, we discuss 
an inexact version of the proximal scheme, where the equality constraints and the corresponding adjoint equa- 
tions are solved up to a given tolerance quantified by 0ε > . In the following, we denote with ( )2Ĵ uε∇  the 
inexact gradient that corresponds to an inexact inversion of the equation Ay f u= − , resp. ( )A u y f+ = , that 
results in an approximated state variable yε , resp. pε , in the following sense  

( ), resp. .Ay f u A u y fε εε ε− + ≤ + − ≤  

Hence, there exists an ( )2e L∈ Ω  with e ε<  such that  

( ) ( ) ( )11 , resp. .y A f u e y A u f eε ε −−= − + = + +                    (4.10) 

We denote the inexact inversion method for the problem y g= , with an error y gε ε− ≤ , with 
( ), ,inv g ε . With this notation, the inexact gradient computation is illustrated in Algorithm 3. 

 
Algorithm 3 (Calculation of the inexact gradient ( )2Ĵ uε∇ ) 
Require: β , 2Ĵ , 0u , adU , TOL  
1. ( ) ( ), , , resp. , ,y inv A f u y inv A u fε εε ε= − = +  

2. ( ) ( )* *, , , resp. , ,p inv A z y p inv A u z yε ε ε εε ε= − = + −   

3. ( ) ( )2 2
ˆ ˆ, resp.J u p u J u p y uε ε ε

ε εα α∇ = + ∇ = +  
 
With this preparation, we formulate our inexact proximal (IP) scheme with Algorithm 4. 
 

Algorithm 4 (Inexact proximal (IP) method) 
Require: β , 2Ĵ , 0u , adU , TOL , 0ε  

Initialize: ( )2
ˆL L J= ; 0 0v u= ; 0 1t = ; 0 1B = ; 1k =  

while 1kB TOL− >  do 

1. 0:k k
ε

ε =  

2. ( )1 2 1
1 ˆad

k

U
k k k

L

u u J u
L εβ − −

 = − ∇ 
 

  

3. ( ) ( )( )*
k k k ku S u S u zµ α ′= − − −  (3.13) 

4. ( ),k k kB B u µ=
 5. 1k k= +

 end while 
 
We also formulate the accelerated (fast) version of our IP scheme in Algorithm 5. We refer to it as the FIP 
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method. 
 

Algorithm 5 (Fast inexact proximal (FIP) method) 

Require: β , 2Ĵ , 0u , adU , TOL , 0ε  
Initialize: ( )2

ˆL L J= ; 0 0v u= ; 0 1t = ; 0 1B = , 1k = ; 
while 1kB TOL− >  do 

1. 
( )

0
3:

1
k

k
ε

ε =
+

 

2. ( )1 2 1
1 ˆad

k

U
k k k

L

u v J v
L εβ − −

 = − ∇ 
 

  

3. ( ) ( )( )*
k k k ku S u S u zµ α ′= − − −  (3.13) 

4. ( ),k k kB B u µ=  

5. 
2

11 1 4
2

k
k

t
t −+ +
=

 

6. ( )1
1

1k
k k k k

k

t
v u u u

t
−

−

 −
= + − 

   
7. 1k k= +

 end while 

5. Convergence Analysis of Inexact Proximal Methods  
In this section, we investigate the convergence of our IP and FIP schemes. Notice that our analysis differs from 
that presented in [12] where finite-dimensional problems and exact inversion are considered. We start investigat- 
ing the error of the inexact gradient ( )2Ĵ uε′ .  

Lemma 5.1. The following estimate holds  

( ) ( )2 2
ˆ ˆ ,J u J u cε ε∇ −∇ ≤  

for some c > 0.  
Proof. In the linear case, we have ( ) ( )( )* 1

2Ĵ u A A f u z uα− −∇ = − − − + . Using (4.10) there exist the errors  

( )2
1 2,e e L∈ Ω   with 1 2,e e ε<   such that  

( ) ( ) ( )( ) ( )( )* 1 * 1
2 2 1 2

* 1 *
1 2

ˆ ˆ

,

J u J u A A f u e z e A A f u z

A A e A e c

ε

ε

− − − −

− − −

∇ −∇ = − − + − + + − −

= − + <

 

 

         (5.1) 

where  
1 .c A A A−∗ − −∗= +                                  (5.2) 

In the bilinear case, we have ( ) ( ) ( )( )( )1 1
2Ĵ u A u A u f z A u f uα−∗ − −∇ = − + + − + + . Furthermore, Theorem  

2.1 implies that the solution ( ) 1:y A u g−= +  of the equation Ay uy g+ =   has the following property  

( ) ( )1 2
1 , for all .A u g C g g L−+ ≤ ∈ Ω                        (5.3) 

We also have ( ) ( ) 1*
1A u g A u g C g

−−∗+ = + ≤ . 

Using (4.10) there exist the errors ( )2
1 2 3, ,e e e L∈ Ω    with 1 2 3, ,e e e ε<    such that  
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( ) ( )

( ) ( ) ( )( )( ) ( )

( ) ( )( )( )

( ) ( )( )( ) ( )

( ) ( )( )( )

( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )
( )

2 2

1 1
1 2 3

1 1

1 1
1 2 3

1 1
3

11
1 2 3

1 1
3

1
1 1 2 1 1 3

1 1

ˆ ˆ

( )

J u J u

A u A u f e z e A u f e

A u A u f z A u f

A u A u e e A u f e

A u A u f z A u e

A u A u e e y A u e

A u A u f z A u e

C A u e e C f C e

C y z C

ε

−∗ − −

−∗ − −

−∗ − −

−∗ − −

−∗ −−

−∗ − −

−

∇ −∇

= − + + + − + + +

+ + + − +

= − + + + + +

− + + − +

≤ + + + + +

+ + + − +

≤ + + +

+ +

  

  



  



  

( )( ) ( )
3

2
1 1 1 ,

e

C C f C f z cε ε ε ε ε ≤ + + + + ≤ 



 

where  
2

1 1 12 1 .c C C f f C z=  + + + +                               (5.4) 

For the three last inequalities, we use (5.3), (2.7), and 1ε < .                                     □ 
We refer to the estimation error of the inexact gradient in step k as follows  

( ) ( )2 2
ˆ ˆ: , where .k k k k ke J u J u e cε ε= ∇ −∇ ≤  

Now, we define  

( ) ( ) ( )1
2

2 2
ˆ ˆ, : , ,

2L L

LQ u v u J v J v u v u vβ= + + ∇ − + −  

( ) ( ) ( )1
2

2 2
ˆ ˆ, : , , ,

2
e
L L

LQ u v u J v J v u v u v e u vβ= + + ∇ − + − + −  

and  

( ) ( ){ }: argmin , ,
ad

e e
L u U LP v Q u v∈=                             (5.5) 

such that one step of Algorithm 4, resp. Algorithm 5, can be written as follows  

( ) ( )1 1
1 1, resp. .k ke e

k L k k L ku P u u P v− −
− −= =  

In order to prove the convergence of the IP method, we need the following two lemmas.  
Lemma 5.2. For any adv U∈ , one has ( )e

Lw P v=  iff there exists ( ) 1Lv wγ ∈∂ , the subdifferential of 
1L⋅ , such that  

( ) ( ) ( )2
ˆ , 0, .adJ v L w v v e u w u Uβγ∇ + − + + − ≥ ∀ ∈                   (5.6) 

Proof. This is immediate from the variational inequality of (5.5). For a proof see, e.g., [20].             □ 
Lemma 5.3. Let adv U∈  and ( )2

ˆL L J> , then for any adu U∈ , we have  

( ) ( )( ) ( ) ( ) ( )
2ˆ ˆ , , .

2
e e e e

L L L L
LJ u J P v P v v L v u P v v P v u e− ≥ − + − − + −  

Proof. From (4.5), we have  

( )( ) ( )( )ˆ , ,e e
L L LJ P v Q P v v≤  
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and therefore  

( ) ( )( ) ( ) ( )( )ˆ ˆ ˆ , .e e
L L LJ u J P v J u Q P v v− ≥ −                         (5.7) 

Now since 1Lβ ⋅  and 2Ĵ  are convex, we have  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2
ˆ ˆ ˆ, and , .e e

L LL L
u P v u P v v J u J v u v J vβ β βγ≥ + − ≥ + − ∇  

Summing the above inequalities gives  

( ) ( ) ( ) ( ) ( ) ( )1 2 2
ˆ ˆ ˆ, , ,e e

L LL
J u P v u P v v J v u v J vβ βγ≥ + − + + − ∇               (5.8) 

so using (5.6), (5.8), and the definition of LQ  in (5.7) gives the following  

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2

2

ˆ ˆ ˆ,
2

, ,
2

, , .
2

e e e
L L L

e e e e
L L L L

e e e
L L L

LJ u J P v P v v u P v J v v

L P v v L u P v v P v P v u e

L P v v L v u P v v P v u e

βγ− ≥ − − + − ∇ +

≥ − − + − − + −

= − + − − + −

 

□ 
Now, we prove a   convergence rate for Algorithm 4 (IP scheme). 
Theorem 5.4. Let ( )ku  be the sequence generated by Algorithm 4 and *u  be the solution of (3.2) with 

linear or bilinear elliptic equality constraints; let c be determined by (5.2) resp. (5.4). Then for any 1k ≥ , we 
have  

( ) ( ) ( ) 2*
2 0 0*

ˆ 2
ˆ ˆ .

2
b a

k

L J u u c u u
J u J u

k

ε− + −
− ≤                       (5.9) 

Proof. Using Lemma 5.3 with *u u= , nv u=  and ( )2
ˆL L J=  we obtain  

( ) ( )( ) 2* * *
1 1 1 1

2 2* * *
1 1

2 22 , ,

2 , .

n n n n n n n k

n n n k

J u J u u u u u u u u u e
L L

u u u u u u e
L

+ + + +

+ +

− ≥ − + − − + −

= − − − + −
 

Summing this inequality over 0, , 1n k= −  gives  

( ) ( )
1 12 2* * * *

1 0 1
0 0

2 2 2, , .
k k

n k n k k
n n

kJ u J u u u u u u e k u e
L L L

− −

+ +
= =

 − ≥ − + − + − 
 

∑ ∑         (5.10) 

Using again Lemma 5.3 with nu v u= = , we obtain  

( ) ( )( ) 2
1 1 1

2 2 , .n n n n n n kJ u J u u u u u e
L L+ + +− ≥ − + −  

Multiplying this inequality by n and summing again over 0, , 1n k= −  gives  

( ) ( ) ( ) ( )( )

( )( )

1

1 1
0
1 12

1 1 1
0 0

2 1

2 , 1 , , ,

k

n n n
n
k k

n n n k n k n k
n n

nJ u n J u J u
L

n u u n u e n u e u e
L

−

+ +
=

− −

+ + +
= =

− + +

≥ − + − + + −

∑

∑ ∑
 

which simplifies to the following  

( ) ( )
1 1 12

1 1 1
0 0 0

2 2 2, , .
k k k

k n n n k k n k
n n n

kJ u J u n u u k u e u e
L L L

− − −

+ + +
= = =

 − + ≥ − + − 
 

∑ ∑ ∑           (5.11) 

Adding (5.10) and (5.11) together, we get  
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( ) ( )( )
12 22* * * *

1 0
0

2 2 , ,
k

k k n n k k
n

k J u J u u u n u u u u k u u e
L L

−

+
=

− ≥ − + − − − + −∑  

and hence with 0
k k

ε
ε =  and *,a k bu u u u≤ ≤ , it follows that  

( ) ( )

( ) ( )

2 2* *
0 0* * *

2 2* * *
2 0 0 2 0 0

,
2 2

ˆ ˆ2 2
.

2 2

k k k k

k b a

L u u L u u
J u J u L u u e c u u

k k

L J u u c u u L J u u c u u

k k

ε

ε ε

− −
− ≤ + − ≤ + −

− + − − + −
≤ ≤

 

□ 
Next, we present a convergence result for the FIP method. For this purpose, we need the following lemma.  
Lemma 5.5. Let ( )ku , ( )kv  and ( )kt  be the sequences generated by Algorithm 5, let ke  be the error of 

the inexact gradient, and let *u  be the solution to (3.2), then for any 1k ≥ , we have  

2 22
1 1 1 1

2 2 2 , ,k k k k k k k k kt w t w r r t r e
L L L− + + +− ≥ − +  

with ( ) ( )*:k kw J u J u= − , ( ) *
1 1 1: 1k k k k kr t u t u u− − −= − − − .  

Proof. We apply Lemma 4.2 at the points ( ): , :k ku u v v= =  and likewise at the points ( )*: , : ku u v v= = . We 
obtain the following  

( ) 21 1
1 1 1 1

21 * 1 *
1 1 1 1

2 2 , 2 , ,

2 2 , 2 , ,

k k k k k k k k k k k

k k k k k k k k

L w w u v u v v u L u u e

L w u v u v v u L u u e

− −
− + + +

− −
− + + +

− ≥ − + − − + −

− ≥ − + − − + −
 

where we used the fact that ( )1
e

k L ku P v+ = . Now, we multiply the first inequality above by ( )1kt −  and add it 
to the second inequality to obtain the following  

( )( ) ( )2 *
1 1 1

*
1

2 1 2 , 1

2 2, , .

k k k k k k k k k k k k k

k k k k k k

t w t w t u v u v t v t u u
L

t u u e u u e
L L

+ + +

+

− − ≥ − + − − − −

+ − + −
 

Multiplying this inequality by kt  and using 2 2
1k k kt t t− = − , which holds due to (4.8), we obtain  

( ) ( ) ( )

( )

22 2 *
1 1 1 1

*
1

2 2 , 1

2 1 , .

k k k k k k k k k k k k k k

k k k k k k

t w t w t u v t u v t v t u u
L

t t u t u u e
L

− + + +

+

− ≥ − + − − − −

+ − − −
 

Applying the Pythagoras relation 2 2 22 ,a b b a a c b c a c− + − − = − − − , to the right-hand side of the 
last inequality with ( ) *

1: , : , : 1k k k k k ka t v b t u c t u u+= = = − + , we obtain  

( ) ( ) ( )

( )

2 22 2 * *
1 1 1

*
1

2 1 1

2 1 , .

k k k k k k k k k k k k

k k k k k k

t w t w t u t u u t v t u u
L

t t u t u u e
L

− + +

+

− ≥ − − − − − − −

+ − − −
 

Therefore, with kv  (see (4.9)) and kr  defined as  

( )( ) ( ) *
1 1 1 1 11 , : 1 ,k k k k k k k k k k k kt v t u t u u r t u t u u− − − − −= + − − = − − −  

it follows that  

2 22
1 1 1 1

2 2 2 , .k k k k k k k k kt w t w r r t r e
L L L− + + +− ≥ − +  

□ 
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We also have the following lemmas.  
Lemma 5.6. The positive sequence ( )kt  generated by the FIP scheme via (4.8) with 0 1t =  satisfies 

( )2 2 1kk t k+ ≤ ≤ +  for all 0k ≥ .  
Proof. The proof is immediate by mathematical induction.                                       □ 
Lemma 5.7. Let ( )ka  and ( )kb  be positive sequences of reals and ( )kc  be a sequence of reals satisfying  

1 1 1 1 1 11 and , 0.k k k k ka b a b c k a b c d d+ + ++ ≥ + + ∀ ≥ + + ≤ >  

Then, 
1

k
k nna d c

=
≤ −∑ .  

Proof. The proof is immediate by mathematical induction.                                       □ 
Now, we can prove a convergence rate of ( )21 k  for Algorithm 5 (FIP scheme).  
Theorem 5.8. Let ( )ku  be the sequence generated by Algorithm 5, let *u  be the solution to (3.2) with 

linear or bilinear elliptic equality constraints; let c be determined by (5.2) resp. (5.4). Then for any 0k ≥ , the 
following holds  

( ) ( ) ( )
( )

2*
2 0 0*

2

ˆ2 2 2
.

1
b a

k

L J u u c u u
J u J u

k

ε− + −
− ≤

+
                  (5.12) 

Proof. Let us define the quantities  
222 *

1 1 0
2 2: , : , : , , : .k k k k k k k k ka t w b r c t r e d u u
L L− −= = = = −  

As in Lemma 5.5, we define ( ) ( )*:k kw J u J u= − . Then, by Lemma 5.5, the following holds for every 1k ≥   

1 1 1 1 1 1,k k k k k k k k k ka a b b c a b a b c+ + + + + +− ≥ − + ⇔ + ≥ + +  

and hence assuming that 1 1 1a b c d+ + ≤  holds true, invoking Lemma 5.7, we obtain  

( )22 *
1 0 1 1, ,

2 2 max ,k k k n nn k
t w x x t k r e

L L− − =
≤ − +



 

which combined with ( )1 1 2kt k− ≥ +  (Lemma 5.6) gives the following  

( )
( )

2*
0

2 1, ,

2
2 max .

1
k n kn k

L u u
w c r

k
ε

=

−
≤ +

+ 

                         (5.13) 

Furthermore with Lemma 5.6 and * ,a k bu u u u≤ ≤ , we have that  

( ) *
1 1 1

11 2 ,
2n n n n n b a a b a

nr t u t u u nu u u n u u− − −
− = − − − ≤ − + ≤ − 

 
 

which combined with (5.13) and 
( )

0
31

k
k
ε

ε =
+

 gives the following  

( )
( )

2*
2 0 0

2

ˆ2 2 2
.

1
b a

k

L J u u c u u
w

k

ε− + −
≤

+
 

What remains to be proved is the validity of the relation 1 1 1a b c d+ + ≤ . Since 0 1t = , we have  
222 * *

1 0 1 1 1 1 1 1 1 1
2 2 , , 2 , .a t w w b r u u c u u e
L L

= = = = − = −  

Applying Lemma 4.2 to the points *:u u=  and 0 0v v u= = , we get  

( ) ( )( ) 2* * *
1 1 0 0 1 0 1 1

2 2* * *
1 0 1 1

2 22 , ,

2 , ,

J u J u u v v u u v u u e
L L

u u v u u u e
L

− ≥ − + − − + −

= − − − + −
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that is 1 1 1 1 1 1a b d c a b c d− ≥ − + ⇔ + + ≤  holds true.                                             □ 
Remark 5.1. The IP and FIP methods converge also replacing L with an upper bound of it. In particular, we 

can prove ( )21 k  convergence of the FIP method using a backtracking stepsize rule for the Lipschitz 
constant (Step 1 in Algorithm 5) as in [12].  

We complete this section formulating a fast inexact proximal scheme where the Lipschitz constant L is 
obtained by forward tracking, (nevertheless we call it backtracking as in [12]), thus avoiding any need to 
compute the reduced Hessian. Our fast inexact proximal backtracking (FIPB) method is presented in Algorithm 
6. 

 

Algorithm 6 (Fast inexact proximal backtracking (FIPB) method) 

Require: β , 2Ĵ , 0u , adU , TOL , 0ε , 1η > , 0 0L >  
Initialize: 0 0v u= ; 0 1t = ; 0 1B = , 1k = ; 
while 1kB TOL− >  do 

1. Backtracking: Find the smallest nonnegative integer i such that with 

1
i

kL Lη −=  

( ) ( ) ( ) 2
2 2 1 2 1 1 1

ˆ ˆ ˆ ,
2k k k k
LJ v J v J v v v v v− − − −≤ + ∇ − + −


    

where ( )1 2 1
1 ˆadU

k k
L

v v J v
L εβ − −

 = − ∇ 
 







  

2. Set kL L=   

3. 
( )

0
3:

1
k

k
ε

ε =
+

 

4. ( )1 2 1
1 ˆad

k

U
k k k

kL

u v J v
L εβ − −

 
= − ∇ 

 
  

5. ( ) ( )( )*
k k k ku S u S u zµ α ′= − − −  (3.13)

 
6. ( ),k k kB B u µ=  

7.
 

2
11 1 4

2
k

k

t
t −+ +
=

 

8. ( )1
1

1k
k k k k

k

t
v u u u

t
−

−

 −
= + − 

   
7. 1k k= +

 end while 

6. The Inexact Semismooth Newton Method  
We consider the semismooth Newton method as a benchmark scheme for solving elliptic non-smooth optimal 
control problems; see, e.g., [4]-[6]. This method is proven to be equivalent to the primal-dual active set method 
in [24]. The inexact semismooth Newton (ISSN) method is presented in [25] for finite-dimensional problems. In 
this section, we discuss the ISSN method for infinite-dimensional optimization problems and use it for compari- 
son with our inexact proximal schemes. To support our use of the ISSN scheme to solve bilinear control pro- 
blems, we extend two theoretical results in [3] [4]. For the analysis that follows, we need the following defini- 
tion.  

Definition 6.1. Let X and Y be Banach spaces, D X⊂  be open and : D Y→  be a nonlinear mapping. 
We say that   is generalized differentiable in an open subset U D⊂  if there exists a set-valued mapping 

( )* : ,D X Y∂    with ( )* x∂ ≠ ∅  for all x D∈  such that  
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( ) ( ) ( )
0

1lim 0,
Yh

X

x h x x h h
h→

+ − − + =                            (6.1) 

for every *∈∂   and for every x U∈ . We call *∂   the generalized differential and every *∈∂   a 
generalized derivative.  

This definition is similar to the semismoothness stated in [3] and also known under the name “slant 
differentiability”; see, e.g., [24]. Now, we discuss the solution of the following nonlinear equation ( ) 0x = . 
We have the following theorem. 

Theorem 6.1. ([24], Theorem 1.1) Suppose that *x  is a solution to ( ) 0x =  and that   is generalized 
differentiable in an open neighborhood U containing *x  with a generalized derivative  . If ( )x  is  

invertible for all x U∈  and ( ){ }1

,
:

Y X
x x U− ∈  is bounded, then the semismooth Newton (SSN) iteration  

( ) ( )11 ,k k k kx x x x
−+ = −   

converges superlinearly to *x , provided that 0 *x x−  is sufficiently small.  

An inexact version of the SSN scheme discussed in this theorem is formulated in ([3], Algorithm 3.19), where 
the update kd  to kx  is obtained as follows. Choose a boundedly invertible operator ( ),kB X Y∈  and com- 
pute ( )1

k k kd B x−= −  . For this scheme, superlinear convergence is proven in ([3], Theorem 3.20), provided 
that there exists a ( )*

k kx∈∂   such that  

( )
0

lim 0.
k X

k k k Y

d
k X

B d

d→

−
=


 

However, this procedure is difficult to realize in practice. For this reason, in our ISSN scheme, the “exact”  

update step 1k k
kx x d+ = +  with ( ) ( )1k k

kd x x
−

= −  , as discussed in [24], is replaced by 1k k
kx x d+ = +   

with kd  satisfying the following inequality  

( ) ( ) ( ) .k k k k kY Y
x d x xη+ ≤                            (6.2) 

Our ISSN scheme is given in Algorithm 7. 
 

Algorithm 7 (Inexact semismooth Newton (ISSN) method) 

Require:  , 0x D∈  
Initialize: 0k =  
while ( ) 0kx =  do 

1. Calculate the direction kd  such that 
( ) ( ) ( )k k k k kY Y
x d x xη+ ≤    (6.3) 

with 1kη <  and 0kη →  
2. 1k k kx x d+ = +  
3. 1k k= +

 end while 

 
On the basis of the proof of Theorem 3.20 in [3], we prove the following theorem that states convergence of 

Algorithm 7. We have 
Theorem 6.2. Suppose that *x  is a solution to ( ) 0x =  and that   is generalized differentiable and 

Lipschitz continuous in an open neighborhood U containing *x  with a generalized derivative  . If ( )x  is  

invertible for all x U∈  and ( ){ }1

,
:

Y X
x x U− ∈  is bounded, then Algorithm 7 converges superlinearly to 



A. Schindele, A. Borzì 
 

 
985 

*x , provided that *
0 X

x x−  is sufficiently small.  

Proof. Let ( ) ( ):k k k kr x d x= +   and *:k kv x x= − . Furthermore, let 0δ >  be so small that  
*

0 X
x x δ− <  and   is Lipschitz continuous in *

Xx B Uδ+ ⊂  with 0L > . Now, we show inductively 
that *

1kx x δ+ − <  for all k. So we assume that *
kx x δ− <  for some 0k ≥ . Then there holds  

( )k k XY
x L v≤ . We estimate the Y-norm of kr  as  

( ) .k k k k kY XY
r x L vη η≤ ≤                              (6.4) 

Next, using ( )* 0x = , we obtain  

( ) ( )( ) ( ) ( )
( ) ( ) ( )

1

* * * .

k k k k k k k k k

k k k k

x v x d v r x x v

r x v x x v v

+ = + = − +

 = − + − − + 

   

  
                     (6.5) 

This result, the generalized differentiability of   at *x , and (6.4) give the following  

( ) ( )1 as 0.k k k kX YY
x v o v v+ = →                           (6.6) 

Hence, for sufficiently small 0δ > , we have ( )
1

1
1

2k k k XY
x v v

C −
+ ≤



 , with  

( ){ }1
1

,
sup :

Y X
C x x U−

−= ∈


 , and thus  

( ) ( )1
1 1

,

1 .
2k k k k kX XYY X

v x x v v−
+ +≤ ≤   

This gives * *
1 2 2

k X
k X X

v
x x B x B Uδ

+ ∈ + ⊂ + ⊂ , which inductively proves that *
kx x→  in Y. We con-  

clude from (6.6) the following ( ) ( )11 1k k k kX XY
v C x v o v−+ +≤ =


 , which completes the proof.        □ 

Our purpose is to solve the nonlinear and nonsmooth equation system (3.13)-(3.14) by the semismooth 
Newton iteration. We introduce the operator  

( ) ( ) ( ) ( ) ( )( )( )*2: , : ,sL L u S u z S u′Ω → Ω = −    

where   is the Sobolev embedding (see [4] and [19], Theorem 5.4]) of ( )1
0H Ω  into ( )sL Ω  with 2s > . 

This embedding is necessary to show that the function   defined in (6.7) is generalized differentiable. Now, 
by using ( )u uµ α= − +   from (3.13) and choosing 1:c α−= , Equation (3.14) becomes ( ) 0u = , where  

( ) ( ){ } ( ){ }
( ){ } ( ){ }

1 1

1 1

: max 0, min 0,

max 0, min 0, .b a

u u u u

u u u u

α β α β

α β α α β α

− −

− −

= − − − +

+ − − + + −

  

 
            (6.7) 

The function   is generalized differentiable (see [4], Theorem 4.2 for the linear case, analogue for the 
bilinear case) and a generalized derivative is given by  

( )( ) ( ) ( )( )( )1 ,u v v u vα χ
− +

−
∪ ′= −                              (6.8) 

where ( ){ }: : 0 a.e. inax u uα β− = ∈Ω ≤ + ≤ Ω   and ( ){ }: : 0 a.e. inbx u uβ α+ = ∈Ω ≤ − ≤ Ω  . 

Using Theorem 6.2, the following theorem guarantees the superlinear convergence of the semismooth Newton 
method applied to our problems. To prove this we extend the proof of Theorem 4.3 in [4].  

Theorem 6.3. If (3.4) is fulfilled, then ( )u  is invertible for all adu U∈  and ( ){ }2 2

1

,
: ad

L L
x u U− ∈  is  

bounded.  
Proof. The linear-control case is investigated in [4], so we focus on the bilinear case. Define :J − += ∪  , 

and for ⊂ Ω  and ( )2v L∈ Ω  the restriction operator ( ) ( )2 2:E L LΩ →   by ( ) :E v v= 
. The corre- 

sponding adjoint operator is the extension-by-zero operator ( ) ( )* 2 2:E L L→ Ω  . We assume that ( )( )u v w= . 
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From (6.8) we obtain that \ \J JE v E wΩ Ω= . Thus, ( )2:J Jv E v L J= ∈  satisfies  

( )( ) ( )( )1 * 1 *
\ \ .J J J J J J J Jv E u E v E w E u E E wα α− −

Ω Ω′ ′− = +                    (6.9) 

Now, we define ( ) ( )( )
( )2

1 *
\ \: ,J J J J L J

g E w E u E E wϕ α ϕ−
Ω Ω′= +   and  

( ) ( ) ( ) ( )( )
( )

( )( ) ( )( )
( )

2 2 2
1 * * * *

1 2 1 2 1 2 1 2, := , , , , ,J J J JL J L L
a v v v v S u z S u E v E v S u E v S u E vα−

Ω Ω

 ′′ ′ ′+ − +  
 

for ( )2
1 2, ,v v L Jϕ ∈ . We use  

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )2 2 21 2 1 2 1 2, , , ,
L L L

u w w z S u S u w w S u w S u w
Ω Ω Ω

′ ′′ ′ ′= − −  

to see that (6.9) is equivalent to ( ) ( ) ( )2, , for allJa v g L Jϕ ϕ ϕ= ∈ . 

Using ( ) ( )2 2
* *

1 2 1 2, ,J JL J L
v v E v E v

Ω
=  and (3.4) we have coercivity of a for adu U∈  and therefore the  

Lax-Milgram-Lemma can be applied to show that (6.9) admits a unique solution ( )2
Jv L J∈ . Moreover, this  

solution satisfies ( ) ( ) ( )2 22J L J LL Jv C g C w
Ω

≤ ≤ , with a constant C independent of u. For the last inequality,  

we use the fact that ( )u′  is bounded due to the boundedness of ( )S u , ( )S u′  and ( )S u′′  as shown in 
(2.7), (2.13), and (2.14).                                                                     □ 

7. Numerical Experiments  
In this section, we present results of numerical experiments to validate the computational performance of our 
inexact proximal methods and to demonstrate the convergence rate of ( )21 k  proved in Theorem 5.8. In the 
following procedures, for validation purposes, we formulate control problems for which we know the exact 
solution. We have 

Procedure 1. (Linear case)  
1) Choose ( )1

0ŷ H∈ Ω  and ( )1
0p̂ H∈ Ω  arbitrary.  

2) Set 

( ){ }

( ){ }

ˆ ˆmax , on :

ˆˆ ˆ: min , on :

0 elsewhere

a

b

p u x p x

pu u x p x

β β
α
β β

α

 − +  ∈Ω >   
 − − = ∈Ω < −  

 




 

3) Set ˆ ˆ: p uµ α= − − , ˆ ˆ:f Ay u= + , and * ˆ ˆ:z A p y= + .  
Lemma 7.1. Procedure 1 provides a solution ( )ˆ ˆ,y u  of the optimal control problem (3.2) with linear-control 

elliptic equality constraints.  
Proof. We show that the optimality conditions (3.16)-(3.19) in Theorem 3.3 are fulfilled. (3.16)-(3.18) are 

obviously fulfilled because of 3) in Procedure 1. Now, we consider different cases to show (3.19):  
• p̂ β≤ : From 2) we have ˆ 0u =  and from 3) p̂µ = −  and therefore  

( ) ( ){ } ( ){ }
( ){ } ( ){ }

ˆ ˆ ˆ, 0 max 0, min 0,

ˆ ˆmax 0, min 0, 0.b a

B u c p c p

u c p u c p

µ β β

β β

= − − − − − +

+ − + − − + − + − + =
 

• p̂ β> : 

* 
ˆ

a b
pu uβ
α

− +
≤ ≤ : From 2) we have 

ˆˆ 0pu β
α

− +
= <  and from 3) we have ˆ ˆp uµ α β= − − = − , therefore  

( ) ( ){ } ( ){ }
( ){ } { }

ˆ ˆ ˆ ˆ, max 0, 2 min 0,

ˆ ˆ ˆ ˆmax 0, 2 min 0, 0 0 0 0.b a

B u u u c u

u u c u u u u

µ β

β

= − − −

+ − − + − = − − + + =
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* 
ˆ

a
p uβ
α

− +
≤ : From 2) we have ˆ au u=  and from 3) we have ˆ ap uµ α= − − , therefore  

( ) ( ){ } ( ){ }
( ){ } ( ){ }

( )( ) ( )

ˆ ˆ ˆ, max 0, min 0,

ˆ ˆmax 0, min 0,

ˆ ˆ0 0 0.

a a a a a

a b a a a a

a a a b

B u u u c p u u c p u

u u c p u u u c p u

u u c p u c p u

µ α β α β

α β α β

α β α β

= − + − − − − + − − +

+ − + − − − + − + − − +

= − − + − − + + + − − + =

 

• p̂ β< −   

* 
ˆ

a b
pu uβ
α

− −
≤ ≤ : From 2) we have 

ˆˆ 0pu β
α

− −
= >  and from 3) we have ˆ ˆp uµ α β= − − = . So  

( ) { } ( ){ }
{ } ( ){ }

ˆ ˆ ˆ ˆ, max 0, min 0, 2

ˆ ˆmax 0, min 0, 2
ˆ ˆ 0 0 0 0.

b a

B u u u u c

u u u u c

u u

µ β

β

= − − +

+ − + − +

= − − + + =

 

* 
ˆ

b
p uβ
α

− −
≥ : From 2) we have ˆ bu u=  and from 3) we have ˆ bp uµ α= − − , therefore  

( ) ( ){ } ( ){ }
( ){ } ( ){ }

( )( ) ( )

ˆ ˆ ˆ, max 0, min 0,

ˆ ˆmax 0, min 0,

ˆ ˆ0 0 0.

b b b b b

b b b b a b

b b b b

B u u u c p u u c p u

u u c p u u u c p u

u u c p u c p u

µ α β α β

α β α β

α β α β

= − + − − − − + − − +

+ − + − − − + − + − − +

= − + − − − − + − − − + =

 

□ 
Procedure 2. (Bilinear case)  
1) Choose ( )1

0ŷ H∈ Ω  and ( )1
0p̂ H∈ Ω  arbitrary.  

2) Set 

( ) ( ){ }

( ) ( ){ }

ˆ ˆ ˆ ˆmax , on :

ˆ ˆˆ ˆ ˆ: min , on :

0 elsewhere

a

b

py u x p x y x

pyu u x p x y x

β β
α

β β
α

 − +  ∈Ω >   
 − − = ∈Ω < −  

 




.  

3) Set ˆ ˆ ˆ: py uµ α= − − , ˆ ˆˆ:f Ay uy= + , and * ˆ ˆ ˆˆ:z A p y up= + + .  
Lemma 7.2. Procedure 2 provides a solution ( )ˆ ˆ,y u  to the optimal control problem (3.2) with bilinear- 

control elliptic equality constraints.  
Proof. The proof is similar to the one of the linear case.                                          □ 
Next, we specify the elliptic operator, the domain of computation, the choice of ŷ  and p̂ , and the optimi- 

zation and numerical parameters. We consider the following examples. 
Case 1. (1 dimensional) ( )0,1Ω = , A = −∆ , 1au ≡ − , ( )ˆ sin πy x=  and ( )ˆ 2 sin 2πp xβ= . We discretize  

Ω  with gridsize 1 1024h =  A  is discretized by second-order finite differences. Then we have 1
2

cΩ = ,  

0 0a =  and 1θ =  such that (2.6) holds. The results are shown in Table 1.  
Case 2. (2 dimensional) ( )20,1Ω = , A = −∆ , 1au ≡ − , ( ) ( )1 1ˆ sin π sin πy x x=  and  

( ) ( )1 2ˆ 4 sin 2π sin πp x xβ= . We discretize Ω  with gridsize 1 256h = . A is discretized by second-order finite  

differences. Then we have 1
4

cΩ = , 0 0a =  and 1θ =  such that (2.6) holds. The results are shown in Table 2.  

We compare the FIP, FIPB and ISSN schemes in terms of computational time. In the FIP method, we estimate 
an approximation to the Lipschitz constant ( ) 2 22 2 ,

ˆ : L LL J J ′′=  with a power iteration. This power iteration is 
stopped if the difference between two iterates of the norm 2 22 ,L LJ ′′  is less or equal than a tolerance of 510− . 
For the FIPB method, we use backtracking with 1.5η =  and 0 0.001L = . All algorithms are stopped if 

( ) 8, 10k kB u µ −< . We can see in Table 1 and Table 2 that the computational performance of the FIP and FIPB 
methods is comparable to that of the ISSN method. 
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Table 1. Example 1: Comparison of the FIP, FIPB and ISSN methods.                                                       

  linear case ( 15bu β≡ ) bilinear case ( 7bu β≡ ) 

α  β  FIP FIPB ISSN FIP FIPB ISSN 

0.5 0.1 0.441s 3.86s 0.591s 2.89s 8.62s 4.11s 

 0.01 0.333s 8.26s 0.587s 2.07s 9.57s 2.75s 

0.05 0.1 2.33s 8.74 2.56s 6.94s 17.8 6.62s 

 0.01 1.82s 7.78s 1.26s 3.11s 19.42s 4.37s 

0.005 0.1 6.48s 51.7 2.49s 15.0s 7.2s 7.9s 

 0.01 6.48s 5.50s 2.68s 8.04s 7.15s 6.61s 

 
Table 2. Example 2: Comparison of the FIP, FIPB, and ISSN methods.                                                     

  linear case ( 15bu β≡ ) bilinear case ( 7bu β≡ ) 

α  β  FIP FIPB ISSN FIP FIPB ISSN 

0.5 0.1 6.55s 34.0s 6.83s 58.3s 156s 123s 

 0.01 5.27s 28.6s 6.46s 44.9s 105s 75.3s 

0.05 0.1 21.8s 42.3s 39.3s 77.7s 118s 117s 

 0.01 15.4s 38.9s 14.6s 55.8s 95.8s 112s 

0.005 0.1 34.1s 47.8s 38.9s 268s 90.5s 172s 

 0.01 40.8s 59.5s 45.0s 104s 63.6s 139s 

 
In order to validate the convergence rate of ( )21 k , the theoretical upper bound of Theorem 5.20 and the 

actual error of the functional in correspondence to Example 1 and Example 2 with 0.1β =  and 0.005α = , are 
plotted in Figure 1. We see that the observed convergence may be faster than the theoretical prediction. 

We conclude this section considering challenging linear- and a bilinear-control cases. However, the exact 
solutions are not known. In these cases, the target function is not attainable. We have 

Case 3. (Linear case) ( )20,1Ω = , A = −∆ , 20au ≡ − , 20bu ≡ , ( ) ( ) ( )1
01 sin 2π sin 2πz x y H= + ∉ Ω  and 

1f ≡ . We discretize Ω  with gridsize 1 256h = . A is discretized by second-order finite differences.  
Case 4. (Bilinear case) ( )20,1Ω = , A = −∆ , 10au ≡ − , 10bu ≡ , ( ) ( ) ( )1

01 sin 2π sin 2πz x y H= + ∉ Ω  and 
1f ≡ . We discretize Ω  with gridsize 1 256h = . A is discretized by second-order finite differences.  

In Figure 2, we present the optimal controls obtained for the Examples 3 and 4, respectively. Notice that the 
controls obtained with the FIP, FIPB, and ISSN schemes are indistinguishable. We observe that in the case of a 
small α  there is an abrupt change between 0u =  and bu u= , whereas for bigger α  the change is con- 
tinuous. We also see that by increasing β  the support of u decreases, as expected. The different computational 
times of the FIP, FIPB, and ISSN schemes are also given in the figure. We see that the FIPB scheme may 
outperform the ISSN scheme and vice versa. We also have a case where the ISSN scheme has difficulty to 
converge; see Figure 2, test case (d). Notice that very similar results are also obtained using a globalized version 
[7] of the ISSN scheme. These results and further results of numerical experiments demonstrate that fast inexact 
proximal scheme represent an effective alternative to semi-smooth Newton methods. 

8. Conclusion  
Inexact proximal schemes for solving linear- and bilinear elliptic optimal control problems were discussed. A 
complete analysis of these methods was presented and a convergence rate of ( )21 k  was proven. For bench- 
marking purposes, the proposed inexact proximal schemes were compared to an inexact semismooth Newton 
method. Results of numerical experiments demonstrated the computational effectiveness of inexact proximal 
schemes and successfully validated the theoretical estimates. 
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Figure 1. Validation of the theoretical upper bound (Theorem 58).                

 

 
Figure 2. Optimal controls u for the Case 3 (top) and Case 4 (bottom).                                                    
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