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Abstract 
This paper proposes and estimates a statistical model of nonlinear cointegration, with applica-
tions to the stock markets of Japan and the United States. We define nonlinear cointegration as a 
long-run stable relationship between two time series variables even in the presence of temporary 
nonlinear divergence from this long-run relationship. More concretely, extending the bubble 
model of Asako and Liu (2013) [1] to stock price ratio variables, both upward and downward di-
vergent bubble processes are estimated at a time. We conclude that, although two stock price in-
dexes are not linearly cointegrated, they are considered to be cointegrated nonlinearly. 
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1. Introduction 
In this paper we propose and develop the recursive estimation method of a nonlinear statistical model of specul-
ative bubbles and utilize this model in establishing an idea of nonlinear cointegration. We then apply this idea to 
the stock market indexes of Japan and the United States, and we detect how these indexes commove in the long 
run although they deviate from the long-run relationship nonlinearly in the short run. 

So far, whether stock markets of different countries commove together has mainly been tested by utilizing the 
linear cointegration relationship à la Engle and Granger (1987) [2]. We owe the main idea of cointegration to 
this line of research. However, what we propose in this paper is a statistical model that incorporates latent coin-
tegration relationship not linearly but nonlinearly. The nonlinearity here stems from the consideration of booms 
and busts in stock price indexes (and thereby the ratio of indexes of different markets). When bubbles are born 
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and boom for certain periods only to crash in due course, time series of these events are hardly captured by li-
near models. 

As empirical investigation of comovement of stock markets, there have been a number of research and the 
results vary depending on the countries and sample periods. Asako, Zhang and Liu (2014) [3] conduct linear 
cointegration test among any pair of Japan, the United States and China and reach the conclusion that the linear 
cointegration is rejected. This is the origin of our analysis here because our daily observation suggests that the 
worldwide stock markets commove at any rate. 

The construction of the present paper is as follows. In Section 2, we propose a time series model of the boom 
and bust and develop its recursive estimation method. Section 3 modifies this basic model to apply for a ratio 
variable, which has more restrictive feature within the model of booms and busts. In Section 4, we apply the 
modified model to detect the nonlinear cointegration relationship between the stock price indexes of Japan and 
the United States. Section 5 conclude the paper. 

2. Model of Nonlinear Cointegration 
In this section, we develop a model of nonlinear cointegration and explain how to estimate the relevant parame-
ters. 

2.1. The Basic Model 
As an extended model to Asako and Liu (2013) [1], which in turn has its origin in Asako, Kanoh and Sano (1990) 
and Liu, Asako and Kanoh (2011) [4] [5], we propose a model of bubble booms and busts by, for  > 0, 

                        (1) 

where  denotes a sequence of variables measured as the ratio of stock prices in different countries and 
denotes a probability that  follows model (A) depending on . A newly arisen bubble  is a serially 
independent and normally distributed random variable with mean 0 and constant variance  which is un-
known to us. The coefficient  is a time dependent parameter whose variation is given by the following ran-
dom walk process: 

                               (2) 

Like , the constant variance of innovations  is unknown to us. Since we assume  > 0, the proba-
bility that  and  happen to bring about  ≤ 0 is assumed virtually nil. 

Let us consider briefly the implication of this model. Our basic model consists of two regimes or models (A) 
and (B). At period t, xt is expressed by a divergent time series model when a speculative bubble continues. We 
describe this phenomenon by the autoregressive model (A) with parameter  exceeding unity. As implied by 
a speculative bubble, the divergent sequence will suddenly crash at a certain unknown time. We formulate this 
event by a systematic and probabilistic switch from model (A) to model (B). In model (B), irrespective of the 
position  at the previous period,  on average returns at period t to the fundamental value θt. 

More concretely, we assume that the probability of bubble continuation  can be expressed as 

                                      (3) 
                                       (4) 

where α and γ are positive unknown parameters. This formulation implies that πt decreases as the deviation be-
tween xt and θt becomes grater in its absolute value. To put it another way, the probability of a bubble crash, 1-

, is an increasing function of how distant the observed bubble deviates from market fundamentals. When α = 
0,  is independent of  and therefore the probability of crash is constant, which corresponds to the 
formulation given by Blanchard and Watson (1982) [6]. When α = γ = 0, the whole process is described by the 
autoregressive process (A) and when γ is large or  = 0, the process reduces to a simple white noise process 
and there is no speculative bubble. Thus, by investigating the parameter estimates, we may statistically test the 
properties of the process. 

In principle, we can generalize our formulation by considering a broader class of stochastic models for ut such 
as ARMA process or by introducing the fundamental values into the functional form of the transition probability 
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(3). However, we have tried to keep our model as simple as possible because this paper is only meant to be a 
first step in this research direction. The specification, (3), of the probability turns out to be one of the few ana-
lytically tractable formulations in the following analyses. 

When the probability structure of crashes is taken into consideration, we see that the bubble cannot continue 
forever. As it grows, the probability of a crash approaches unity and xt will sooner or later be pulled back to the 
fundamental value θt. In this way, the time series of xt never diverges, but exhibits more or less stable behavior 
in the longer run. 

Note that letting θt = 0 and assuming away the constraint xt > 0 leads us to the models of Asako, Kanoh and 
Sano (1990) [4], Liu, Asako and Kanoh (2011) [5] and Asako and Liu (2013) [1]. In those models, xt is not a ra-
tio variable but is a stock price bubble measured as deviations from their fundamental values. The model of non-
linear cointegration, which is developed in Section 4, adds to this basic model the property that ratio bubbles are 
symmetric between upwards and downwards. 

2.2. On Recursive Estimation 
In Liu, Asako and Kanoh (2011) [5] and Asako and Liu (2013) [1], the entire Bayesian recursive estimation 
process is described for the periods from 0 to 1 and from period t-1 to period t, thus establishing by way of ma-
thematical induction the validity of the recursive estimation method. We develop here only the recursive way of 
estimating parameters at period t conditioned on the available data up to period t-1. For more in detail of the en-
tire estimation, refer to Liu, Asako and Kanoh (2011) [5] or Asako and Liu (2013) [1]. 

One notable difference between the present model (1)-(4) and the earlier ones is that Liu, Asako and Kanoh 
(2011) [5] and Asako and Liu (2013) [1] assume θt = 0. Once we allow for θt > 0, whether θt is known or un-
known causes a big difference in the Bayesian recursive estimation. If it is unknown and to be estimated in the 
same way as the other parameters of the model, the estimation process becomes too complicated for us to mani-
pulate the model explicitly. On the other hand, if θt is known and treated as a predetermined parameter even 
though we have to somehow “estimate” it eventually, this estimation can be separated from the estimation of the 
entire model and its recursive estimation process remains, in terms of hardness, almost at the same level as Asa-
ko and Liu (2013) [1]. In fact, we let θt be known and propose its two candidates in Section 3. 

2.3. Recursive Estimation at Period t 
In this section, we describe a Bayesian recursive technic to estimate the parameters of our model. Before pro-
ceeding to this task, we put  the set of data observations up to period t, 
and by , we denote the set of ordered integer indices where each is (s = 1; 2; : : : ; t) is ei-
ther 1, 2, or 3. 

With these new notations, we write down the joint density for ,  conditional on : 
          (5) 

where  and  are certain deterministic functions of  that are to be determined in the sequel so as 
to satisfy the recursive pattern, whereas P(.) and N(.) denote density functions;  is the joint prior 
density function for constant  and 1 over time conditioned on Xt and  is the density 
function of the normal distribution with mean  and variance . Their detailed functional forms as 
well as the definition of the other factors on the right-hand-side of (4) are given immediately below. Note that 
the summation is over the entire combination of indices which amount to 3t-1 terms at stage t. Then, in view of 
(2), the joint prior density function for , , and  conditioned on  is 

       (6)
 

Now our main task is to calculate the updated posterior density (6) by utilizing the Bayes’ theorem: 

                         (7) 

 

1Even if we instead allow for time dependent α and γ, the computational burden remains the same as α and γ are at any rate estimated diffe-
rently over time. 
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Introducing a new parameter 

                                         (8) 
for the sake of later convenience in notation, from (1) and the normality of ut, we have 

      (9) 

Therefore, in view of (7), the multiplication of (6) and (9) yields the updated formula of (6) for period t if and 
only if we have, to begin with 

                  (10) 

where the first and second terms within the large brackets represent, respectively, the probability density func-
tion of exponentially and mutually independently distributed  and 2. The integer function  

 

is introduced to simplify the mathematical expression. 
Moreover, for the unspecified coefficient functions, we must have 

              (11) 

and 

                (12) 

Also for means and variances of the normal distributions, it must be 

                           (13) 

and 

                               (14) 

Finally, it must be recalled, that by making use of the relationship that applies for conditional density func-
tions 

 

2We assume that α and γ are exponentially distributed in accordance with the exponential probability of the bubble continuation (3). 
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               (15) 
and knowing that  are mutually independent in (6), we immediately obtain 

            (16) 

which appears in the denominators of (7) and (11). This establishes all requirement that enable Bayesian recur-
sive estimation to update consistently. 

2.3.1. Parameter Estimates 
The estimates of  at period t are the conditional expectations on . Thus, referring to period t by suf-
fix t, we have 

                 (17) 

                             (18) 

and 

                  (19) 

We also obtain the probability estimate of bubble continuation from period t-1 to t as 

                                   (20) 

or we can directly obtain the conditional expectation as 

                     (21) 

Finally, the estimate of the variance of  is given by 
                             (22) 

2.3.2. Maximum Likelihood Estimates of Variances 
In carrying out the recursive procedure explained above, two variance parameters are to be specified. These are 
the dispersions of the random terms in (1) and (2), i.e.,  and . The likelihood function for these parame-
ters can be obtained in the following way. 

Let us put  for simplicity. The likelihood function for  with T periods of data is defined as 

 

On the other hand, since 

        (24) 
and 

                (25) 

we have, like (16) 
                               (26) 

Therefore, the log likelihood function of  can be expressed by 
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                            (27) 

and the resulting set of variances  which maximize (27) are the desired estimates. 

2.3.3. Condensation of Recursive Estimation 
So far is the complete and mathematically rigorous description of the Bayesian recursive estimation and we can 
estimate parameters for any length of sample periods. However, the number of terms we need to compute in eq-
uations from (11) to (14) and others increases at a rate of 3t to exceed a standard capacity of computer as the 
number of time series data increases. For this reason and to reduce the computational burden, we introduce the 
so-called condensation procedure first proposed by Harrison and Stevens (1981) [7] and applied for the estima-
tion of the basic model by Liu, Asako and Kanoh (2011) [5] and Asako and Liu (2013) [1]. By condensation, we 
update the parameters of the next period’s prior distribution by utilizing the first and second moments of the ap-
proximated marginal posterior distribution. This enables the computational burden to remain at a constant level 
over time. 

What we have to do in practice is to approximate the posterior density (5) at period t or the left hand side of 
(7) by a joint density of the following form 

              (28) 

where we utilize the fact that , , and  are mutually independent. Then the first and second moments of 
the marginal densities for each parameter are equated. That is, (5) at period t is approximated by 

                                    (29) 

so that the joint prior density at period t + 1 can be written as 

                      (30) 

where  and  are equated, respectively, to the reciprocal of the mean estimates (17) and (19) 

                                             (31) 

                                             (32) 

whereas  and  are estimates given by (18) and (22). This procedure can be repeated at each stage. 

2.4. Nonliner Cointegration 
The basic bubble model (1)-(4) formulates the feature that a ratio variable returns to its fundamental value in the 
long run as the probability that a bubble crashes reaches 100% insofar as the divergent bubble continues. In oth-
er words, although short-run bubbles generate explosive discrepancies between  and θt, divergent booms 
would bust eventually and in this sense there is a stable relationship in the long run. This phenomenon is what 
we call the nonlinear cointegration. 

Unlike the definition of linear cointegration, the definition of nonlinear relationship is model-specific. There 
may be other models of nonlinear cointegration and our nonlinear cointegration should more restrictively be 
named speculative bubble nonlinear cointegration or boom and bust nonlinear cointegration. 

Such being the case, there is no established method to test the nonlinear cointegration relationship. Instead, 
we are obliged to accept the existence of the nonlinear relationship only passively. We especially put emphasis 
on the bubble process in (2) and thereby we detect whether  and how often switches occur between two 
models or how high is the probability of bubble continuation .  

In the empirical analysis in Section 4, we compute the pseudo-t statistics: 

                                        (33) 
in order to sense the “significance“ regarding the validity of βt > 1. Since the present estimation technic is Baye- 
sian in the sense that we utilize prior information besides the information extracted from the data, statistics like 
(33) may not obey Student’s t-distribution. Nonetheless, we would presume that t = 1.65, which is one sided 5% 



K. Asako, Z. T. Liu   
 

 
68 

significant for a standard t test, is a critical level to rely on. 
In detecting the validity of the nonlinear cointegration, we may as well examine into the probability of bubble 

continuation . We check in Section 4 the probability of bubble crash, 1- , and see its movement over time.  

3. Nonlinear Cointegration: Modification of the Basic Model 
The basic model we developed in Section 2 is applicable to any series of xt. In this section, we modify the basic 
model to deal with a ratio variable xt > 0．A ratio variable may exhibit both upwards and downwards bubble 
processes with θt > 0, which necessitates certain nontrivial revision in recursive estimation. 

3.1. Modification of the Basic Model 
We alter the basic model into a double regime switching model. One regime switching is that the basic model is 
of the boom-and-bust type. The other regime switching is that a ratio variable has both upwards (or positive) and 
downwards (or negative) bubble processes. On the other hand, we maintain (2) or the transition equation of 
as it is.  

Then, we can naturally regard it a bubble by βt > 1 once  keeps increasing over time. But even when  
keeps decreasing by a downwards bubble, estimates may end up with βt < 1 for certain periods of time. In such a 
case, we may misunderstand what is really happening because βt < 1 is usually a case for a stationary autore-
gressive process. This is quite embarrassing and we may as well be advised to treat the upwards and downwards 
bubbles asymmetrically. For this aim, we take the reciprocal of the original ratio when the ratio itself is smaller 
than θt as in (3), thus resulting in a drastic regime switch for negative downwards bubbles. 

Let  represent an original ratio variable of two stock prices, and let us redefine xt by 

                        (34) 

With this new xt,, we assume that every aspect of the basic model (1)-(4) is valid, i.e., 

                          (35) 

except that 

                        (36) 

replaces (8). 
Note that integrating artificially two regimes most likely causes heteroscedasticity in innovation term ut in (1) 

or (35). In fact, we will introduce proportional variance of ut to  squared in our empirical analysis in Sec-
tion 4: 

                                      (37) 
Lastly, we need to revise the probability of bubble continuation. That is, in (3), we have 

                            (38) 

or 

                            (39) 

that replaces (4). In (38) or (39), the greater deviation is  for the positive upwards bubble and 
 = 1/yt − 1/θt for the negative downwards bubble. 

3.2. Known θt 
As we have already noted, the fundamental stock prices ratio θt is assumed known and given to us exogenously 
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at period t. There may be several candidates for θt. Here we propose two alternative ones3. 

3.2.1. Past Average 
The first candidate is the simple arithmetic average of all the past data: 

                                       (40) 

Although we put equal weight on each data, the informational role of the current data decreases over time as 
(40) by definition is rewritten as θt = {(t-1) θt-1

+yt}/t, which in turn is rewritten as 

                                (41) 

Equation (41) implies that θt follows a random-walk type sticky movement except that the drift term is not 
stochastic but is given deterministically. As t increases, the contribution of the second term on the right hand 
side of (41) decreases over time. 

3.2.2. Fixed Period Moving Average 
The second candidate approximates the fundamental value by the fixed period (say 12 months) moving average 
up to the current one. Thus in place of (40) we have 

                                       (42) 

And thereby in place of (41), we have 

                                 (43) 

for t > 12. As for the first 12 months, we use the simple average (40). 

3.3. Estimation Procedure at Period t 
At period t, we compute θt once we get a new data yt and we determine which regime we are in, i.e., whether a 
positive bubble (yt ≥ θt) or a negative bubble (yt < θt). If we are rigorously interested in whether the stock price 
ratio is in positive upwards phase or in negative downwards phase, we may watch where we have been in the 
past. For example, we would recognize regime shifts only if the opposite new regime continues at least a few 
consecutive periods. This will exclude a fake regime shift that occurs unsystematically. The idea of this rule of 
thumb stems from the Bry-Boschan method in the judgment of the business cycle phase.  

Once θt and thereby the data xt of (34) is obtained, we are ready to utilize the recursive estimation technic de-
veloped in Section 2. We estimate the basic model as applied to the stock market prices of Japan and the United 
States. 

4. Stock Prices of Japan and the United States 
Asako, Zhang and Liu (2014) attempted to apply the nonlinear cointegration to the stock markets of Japan, the 
United States and China. They first checked whether there is a linear cointegration relationship between these 
countries and concluded negatively for any pair of countries. Then they estimated the basic model of (1)-(4) and 
of three ways of the known fundamental stock prices ratio including (40) and (42). Among these, in what follow, 
we develop the most representative case of the nonlinear cointegration; namely the one between the stock price 
indexes of Japan and the United State. 

4.1. Preparatory Steps 
The monthly time series data we have chosen are the Nikkei225 index (hereinafter Nikkei225) for Japan and the 

 

3We may find some variables Zt that are to be reflected in the fundamentals θt. Then the fitted value of an OLS regression equation of xt on Zt 
appears to be another candidate. However, the estimate of θt thus constructed is neither consistent nor efficient, if not unbiased. 
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Dow-Jones Industrial Average Stock Price Index (hereinafter DJ) for the United States. Figure 1 plots these 
stock prices and their ratio (DJ/Nikkei225) from January 1970 to December 2012. 

4.1.1. Derivation of Known θt 
Figure 2 exhibits the fundamental stock prices ratio given by (40) and (42). Not surprisingly, (i) the past average 

 shows a random-walk type sluggish swing whereas (ii) the fixed period moving average  traces short 
lived ups and downs around the historical actual path of the ratio yt. 

4.1.2. Artificial Dependent Variable 
Next, we construct from the time series yt that of the artificial variable xt by (34). Referring to the realized yt and 
two fundamental stock prices ratio θt, the time series of xt consists of negative bubble (yt < θt) up to the mid 
1990s and thereby, by definition, xt equals the reciprocal of yt. On the contrary, during the latter half of the sam-
ple period, xt consists of positive bubble (yt > θt) and xt is yt itself. In the case of , however, yt > θt and yt < θt 
interchange with small intervals, as does xt. 

4.1.3. Maximum Likelihood Estimates of Variances 
We need to obtain the maximum likelihood estimates for the variances of  in (1) and  in (2). We also 
have to set initial values in beginning the recursive estimation. The effect of the initial conditions turns out to be 
minimal as we tried several combinations to result in little difference in the main feature of estimation except for 
several initial periods. The final choice was  = 1, , and  =  = 0.01 and denoting by 

 the pair of standard deviations, the maximum likelihood estimates were (0.0536, 0.0000) for  
and (0.0456, 0.0000) for . The resultant log likelihoods were 377.9 and 600.7, respectively. 

Judging on the log likelihood, between the two fundamental stock prices ratio,  fits the data better than 
 does. Knowing this consequence, we yet report those alternative fundamental values as these yield really 

comparable estimation results as we explain in the sequel4. 
 

 
Figure 1. Stock Price Indexes: Japan and the US. Note) The Nikkei225 for Japan and 
DJ for the United States. 
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Figure 2. Fundamental value θt. 

4.2. Necessary Condition for the Bubble 
With the above preparation, Figure 3 exhibits the estimate of the key parameter βt. The percentage of samples 
that satisfies the necessary requirement for bubbles βt > 1 amounts to 82.9% for  and 100% for  among 
the entire 43 years’ sample periods (516 months from 1970; 1 to 2012;12). Namely with both  and , 
samples with βt > 1 exceed more than 80%. These observations may as well support the view that the model 
(1)-(4) with reasonable modification fits the data and the stock markets of Japan and the United States are coin-
tegrated nonlinearly in the long run. But how reliable is this result? 

To answer to this question, we checked the pseudo t t-statistic (33) and found, as summarized in Table 1, that 
βt > 1 is one sided 5% “pseudo-significant” is nil for  and 93.0% for  (similarly the nonstationarity con-
dition βt < 1 is not significant). These suggest that the standard deviation of βt is relatively large, and the reliabil-
ity of the estimates is limited. Note, on the contrary, that βt > 1 is 93.3% pseudo-significant for . 

A clue to this is that the maximum likelihood variance estimate  is extremely small and is virtually the 
corner solution at zero. In this case, the key parameter βt is theoretically regarded constant in (2). But, like the 
parameters  and , the estimate of βt does not have to stay unchanged over time. Even if the variance of  
is 0 in (2), we have 

βt = βt-1 + constant, 
and βt can be different from βt-1. Moreover, even if the constant term is 0 and βt = βt-1, in theory, because βt is es-
timated as the expected value of the posterior distribution à la Bayesian, it can differ from βt-1 once the data in-
creases information in the posterior distribution in (18). 

4.3. Probability of Bubble Crash 
In Figure 4, we plot the probability of bubble crash, 1-πt. As πt, the conditional expectation (21), rather than the 
point estimate (20), is chosen5. With  the crash probability remains small except for the early 1970’s, which 
seems to be a transitional feature incorporating specific initial conditions, whereas with  the probability re-
peatedly rises and falls depending on the state of bubbles. 

4.4. Other Cases 
Asako, Zhang and Liu (2014) [3] estimate several other cases including exchange rate adjusted stock prices, the  
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5Two estimates are very close and are the same to three or four decimal places. 
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Figure 3. Estimate of βt. 

 

 
Figure 4. Probability of bubble crash. 
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Table 1. Number of months of the estimated βt. 

 1970 
-72 

1973 
-76 

1977 
-80 

1981 
-84 

1985 
-88 

1989 
-92 

1993 
-96 

1997 
-2000 

2001 
-04 

2005 
-08 

2009 
-12 

 βt ≥ 1 35 48 48 48 48 21 0 40 48 44 48 

 significant at 5% 0 0 0 0 0 0 0 0 0 0 0 

 βt < 1 0 0 0 0 0 27 48 8 0 4 0 

 significant at 5% 0 0 0 0 0 0 0 0 0 0 0 

 βt ≥ 1 35 48 48 48 48 48 48 48 48 48 48 

 significant at 5% 9 48 47 40 48 48 48 48 48 48 48 

 βt < 1 0 0 0 0 0 0 0 0 0 0 0 

 significant at 5% 0 0 0 0 0 0 0 0 0 0 0 

 
case of Var ( ) =  instead of (37), stock prices ratio of Japan and China, and that of China and the 
United States. The estimation results vary case by case but reaches the conclusion that the basic model (1)-(4) 
and its modification with βt > 1 fits the data reasonably well, thus establishing the latent nonlinear boom and 
bust relationship between relevant stock prices. 

5. Concluding Remarks 
In this paper we proposed and developed the recursive estimation method of the nonlinear cointegration. The 
purpose of this attempt has been to show the usefulness of introducing the idea of nonlinear cointegration. By 
applying this idea to the stock market indexes of Japan and the United States, we have seen that these indexes 
commove in the long run although they deviate from this relationship in the short run. 
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