
Journal of Software Engineering and Applications, 2016, 9, 182-198
Published Online May 2016 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.95015

How to cite this paper: Mittermayr, R. and Blieberger, J. (2016) A Generic Graph Model for WCET Analysis of Multi-Core
Concurrent Applications. Journal of Software Engineering and Applications, 9, 182-198.
http://dx.doi.org/10.4236/jsea.2016.95015

A Generic Graph Model for WCET Analysis
of Multi-Core Concurrent Applications
Robert Mittermayr, Johann Blieberger
Institute of Computer Aided Automation, TU Vienna, Vienna, Austria

Received 29 March 2016; accepted 20 May 2016; published 23 May 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution-NonCommercial International License (CC
BY-NC).
http://creativecommons.org/licenses/by-nc/4.0/

Abstract
Worst-case execution time (WCET) analysis of multi-threaded software is still a challenge. This
comes mainly from the fact that synchronization has to be taken into account. In this paper, we
focus on this issue and on automatically calculating and incorporating stalling times (e.g. caused
by lock contention) in a generic graph model. The idea that thread interleavings can be studied
with a matrix calculus is novel in this research area. Our sparse matrix representations of the
program are manipulated using an extended Kronecker algebra. The resulting graph represents
multi-threaded programs similar as CFGs do for sequential programs. With this graph model, we
are able to calculate the WCET of multi-threaded concurrent programs including stalling times
which are due to synchronization. We employ a generating function-based approach for setting up
data flow equations which are solved by well-known elimination-based dataflow analysis methods
or an off-the-shelf equation solver. The WCET of multi-threaded programs can finally be calculated
with a non-linear function solver.

Keywords
Worst-Case Execution Time Analysis, Program Analysis; Concurrency, Multi-Threaded Programs,
Kronecker Algebra

1. Introduction
It is widely agreed that the problem of determining upper bounds on execution times for sequential programs has
been more or less solved [1]. With the advent of multi-core processors scientific and industrial interest focuses
on analysis and verification of multi-threaded applications. The scientific challenge comes from the fact that
synchronization has to be taken into account. In this paper, we focus on how to incorporate stalling times in a

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.95015
http://dx.doi.org/10.4236/jsea.2016.95015
http://www.scirp.org
http://creativecommons.org/licenses/by-nc/4.0/

R. Mittermayr, J. Blieberger

183

WCET analysis of shared memory concurrent programs running on a multi-core architecture. The stress is on a
formal definition and description of both, our graph model and the dataflow equations for timing analysis.

We allow communication between threads in multiple ways e.g. via shared memory accesses protected by
critical sections. Anyway, we use a rather abstract view on synchronization primitives. Modeling thread interac-
tions on the hardware-level is out of the scope of this paper. A lot of research projects have been launched to
make time predictable multi-core hardware architectures available. Our approach may benefit from this research.

Previous work done in the field of timing analysis for multi-core (e.g. [2]) assumes that the threads are more
or less executed in parallel and the threads do not heavily synchronize with each other, except when forking and
joining. Our approach supports critical sections and the corresponding stalling times (e.g. caused by lock con-
tention) in the heart of its matrix operations. Forking and joining of threads can also easily be modeled. Thus,
our model is suitable for systems from a concurrent to a (fork and join) parallel execution model. Anyway, the
focus in this paper is on a concurrent execution model.

The idea that thread interleavings and synchronization between threads can be studied with a matrix calculus
is novel in this research area. Our sparse matrix representations of the program are manipulated using a lazy im-
plementation of our extended Kronecker algebra. In [3] the Kronecker product is used in order to model syn-
chronization. Similar to [4] [5], we describe synchronization by our selective Kronecker products and thread in-
terleavings by Kronecker sums. The first goal is the generation of a data structure called concurrent program
graph (CPG) which describes all possible interleavings and incorporates synchronization while preserving com-
pleteness. In general, our model can be represented by sparse adjacency matrices. The number of entries in the
matrices is linear in their number of lines. In the worst case, the number of lines increases exponentially in the
number of threads. The CPG, however, contains many nodes and edges unreachable from the entry node. If the
program contains a lot of synchronization, only a very small part of the CPG is reachable. Our lazy implementa-
tion computes only this part which we call reachable CPG (RCPG). The implementation is very memo-
ry-efficient and has been parallelized to exploit modern many-core hardware architectures. These optimizations
speed up processing significantly.

RCPGs represent concurrent and parallel programs similar as control flow graphs (CFGs) do for sequential
programs. In this paper, we use RCPGs to calculate the WCET of the underlying concurrent system. In contrast
to [4], we (1) adopt the generating functions based approach of [6] for timing analysis and (2) are able to handle
loops. For timing analysis, we set up a data flow equation for each RCPG node. It turns out that at certain syn-
chronizing nodes, stalling times (e.g. caused by lock contention) can be formulated within dataflow equations as
simple maximum operations. Choosing this approach, the calculated WCET includes stalling time. This is in
contrast to most of the work done in this field (e.g. [2]), which usually adopts a partial approach, where stalling
times are calculated in a second step. We successively apply the following steps:

1. Generate CFGs out of binary or program code (cf. Subsection 2.1).
2. Generate RCPG out of the CFGs (cf. Section 3).
3. Apply hardware-level analysis based on the RCPG. Such an analysis may take into account e.g. shared re-

sources like memory, data caches, and buses, and other hardware components like instruction caches and pipe-
lining. Annotate this information at the corresponding RCPG edges. As mentioned above, this step is out of
scope of this paper. Anyway, in order to get tight bounds this step is necessary (cf. [7]). Some of these analyses
(e.g. cache analysis) may be performed together with the next step.

4. Establish and solve dataflow equations based on the RCPG (cf. Section 4). Stalling times are incorporated
via the equations.

Similar to [6] and [8], which provide exact WCET for sequential programs, our approach calculates an exact
worst-case execution time for concurrent programs running on a multi-core CPU (not only an upper bound) pro-
vided that the number of how often each loop is executed, the execution frequencies and execution times of the
basic blocks (also of the semaphore operations p and v)1 on RCFG level are known, and hardware impact is
given. We assume timing predictability on the hardware level as discussed e.g. in [8].

The outline of our paper is as follows. In Section 2, refined CFGs and Kronecker algebra are introduced. Our
model of concurrency, some properties, and our lazy approach are presented in Section 3. Section 4 is devoted to
WCET analysis of multi-threaded programs. An example is presented in Section 5. In Section 6, we survey re-
lated work. Finally, we draw our conclusion in Section 7.

1These execution times do not include stalling time which we calculate automatically.

R. Mittermayr, J. Blieberger

184

2. Preliminaries
In this paper, we refer to both, a processor and a core, as a processor. Our computational model can be described
as follows. We model concurrent programs by threads which use semaphores for synchronization. We assume
that on each processor exactly one thread is running and each thread immediately executes its next statement, if
the thread is not stalled. Stalling may occur only in succession of semaphore calls.

Threads and semaphores are represented by slightly adapted CFGs. Each CFG is represented by an adjacency
matrix. We assume that the edges of CFGs are labeled by elements of a semiring. A prominent example for such
semirings are regular expressions [9] describing the behavior of finite state automata.

The set of labels  is defined by V S= ∪   , where V is the set of ordinary (non-synchronization) la-
bels and S is the set of labels representing semaphore calls (V and S are disjoint). In order to model
e.g. a critical section usually two or more distinct thread CFGs refer to the same semaphore [10]. The operations
on the basic blocks are , ⋅ + , and ∗ from a semiring [9]. Intuitively, these operations model consecutive pro-
gram parts, conditionals, and loops, respectively.

2.1. Refined Control Flow Graphs
CFG nodes usually represent basic blocks [11]. Because our matrix calculus manipulates the edges, we need to
have basic blocks on the (incoming) edges. A basic block consists of multiple consecutive statements without
jumps. For our purpose, we need a finer granularity which we achieve by splitting edges. We apply it to basic
blocks containing semaphore calls (e.g. ip and iv) and require that a semaphore call Sis ∈ has to be the
only statement on the corresponding edge. Roughly speaking, edge splitting maps a CFG edge e whose corres-
ponding basic block contains k semaphore calls to a subgraph

11 1 2 2 k k ke s ee s e s +→ → → → → → →        , such that each is represents a single sema-
phore call, and ie and 1ie + represent the consecutive parts before and after is , respectively (1 i k≤ ≤). Ap-
plying edge splitting to a CFG results in a refined control flow graph (RCFG). Note that a shared memory
access aware analysis requires additional edge splitting for e.g. shared variables as done in [12].

In the following, we use the labels as defined above as representatives for the basic blocks of RCFGs. To keep
things simple, we refer to edges, their labels, the corresponding basic blocks and the corresponding entries of the
adjacency matrices synonymously. In a similar fashion, we refer to nodes, their row and column numbers in the
corresponding adjacency matrix synonymously. A matrix entry a in row i and column j is interpreted as a di-
rected edge from node i to node j labeled by a.

In Figure 1(a) a binary semaphore is depicted. In a similar way it is possible to model counting semaphores
allowing n non-blocking p-calls. Entry nodes have an incoming edge with no source node. A double circled
node indicates that it is a final node. In the remainder, we use the RCFGs of the threads A and B presented in the
Figure 1(b) and Figure 1(c), respectively, as a running example.

2.2. Modeling Synchronization and Interleavings
Kronecker product and Kronecker sum form Kronecker algebra. In the following, we define both operations.
Proofs, additional properties, and examples can be found in [13] [14]. From now on, we use matrices out of

(){ }, ,|i j i jM m m= = ∈  only.

(a) (b) (c)

Figure 1. RCFGs of a binary semaphore and the threads A and B. (a) Binary semaphore; (b) RCFG of thread A; (c) RCFG of
thread B.

R. Mittermayr, J. Blieberger

185

Definition 1 (Kronecker Product) Given a m-by-n matrix A and a p-by-q matrix B, their Kronecker product
A B⊗ is a mp-by-nq block matrix defined by

1,1 1,

,1 ,

.
n

m m n

a B a B
A B

a B a B

 ⋅ ⋅
 

⊗ =  
 ⋅ ⋅ 



  



Kronecker product allows to model synchronization [3]. Properties concerning connectedness when applied to
directed graphs can be found in [15].

Definition 2 (Kronecker Sum) Given a matrix A of order2 m and a matrix B of order n, their Kronecker sum

A B⊕ is a matrix of order mn defined by n mA B A I I B⊕ = ⊗ + ⊗ , where mI and nI denote identity ma-
trices of order m and n, respectively.

The Kronecker sum calculates all possible interleavings of two concurrently executing automata (see [16] for

a proof) even for general CFGs including conditionals and loops. In Figure 2 the Kronecker sum of the threads
A and B depicted in Figure 1 is shown. It can be seen that the Kronecker sum calculates all possible interleav-
ings of the two threads. In particular, note that thread A’s loop is copied five times (B’s number of nodes). We
write il to refer to the i-th copy of label l. If it is not clear in the context to which thread a label l belongs, we
write Xl to denote that l belongs to thread X. In particular, this is necessary for semaphore operations which
are usually called by at least two threads. Otherwise the executing thread would be unknown.

3. Concurrent Program Graphs
Our system model consists of a finite number of threads and semaphores which are both represented by RCFGs.
Threads call semaphores in order to implement synchronization or locks i.e. mutual exclusion for access to
shared resources like shared variables or shared buses. The RCFGs are stored in form of adjacency matrices.
The matrices have entries which are referred to as labels l∈ as defined in Section 2.

Formally, the system model consists of the tuple , ,   , where  is the set of RCFG adjacency matric-
es describing threads,  refers to the set of RCFG adjacency matrices describing semaphores, and 
denotes the set of labels out of the semiring defined in the previous section. The labels (or matrix entries) of the
i-th thread's adjacency matrix ()iT ∈ are elements of  , whereas the labels (or matrix entries) of the j-th

Figure 2. Kronecker sum A B⊕ of threads A and B.

2A k-by-k matrix is known as square matrix of order k.

R. Mittermayr, J. Blieberger

186

synchronization primitive's adjacency matrix ()jS ∈ are elements of S . The matrices are manipulated by
using conventional Kronecker algebra operations together with extensions which we define in the course of this
section.

A concurrent program graph (CPG) is a graph , , ,e fC V E n V= with a set of nodes V, a set of directed
edges E V V⊆ × , a so-called entry node en V∈ and a set of final nodes fV V⊆ . The sets V and E are con-
structed out of the elements of , ,   . Details on how we generate the sets V and E follow below. Similar to
RCFGs the edges of CPGs are labeled by l∈ .

In general, a thread’s CPG may have several final nodes. We refer to a node without outgoing edges as a sink
node. A sink node appears as zero line in the corresponding adjacency matrix. A CPG’s final node may also be a
sink node (if the program terminates). However, sink nodes and final nodes can be distinguished as follows. We

use a vector determining the final nodes of thread i, namely ()iF . In addition, vector ()jG determines the final
node of synchronization primitive j. Both have ones at places q, when node q is a final node, zeros elsewhere.
Then the vector () ()

1 1
k ri j
i jF G= =⊗⊗ ⊗ determines the final nodes of the CPG.

In the remainder of this paper, we assume that all threads do have only one single final node. Our results,
however, can be generalized easily to an arbitrary number of final nodes.

3.1. Generating a Concurrent Program’s Matrix

Let ()iT ∈ and ()jS ∈ refer to the matrices representing thread i and synchronization primitive (e.g. se-
maphore) i, respectively. According to Figure 1(a) we have for binary semaphore i the adjacency matrix

() 0
0

i i

i

p
S

v
 

=  
 

 of order two. We obtain the matrix T representing k interleaved threads and the matrix S repre-

senting r interleaved synchronization primitives by

() () () ()

1 1
, where and , where .

k r
i i i i

i i
T T T S S S

= =
= ∈ = ∈⊕ ⊕ 

Because the operations ⊗ and ⊕ are associative [4], the corresponding n-fold versions are well defined.
Hence, we can apply the operations on multiple matrices (representing threads and synchronization primitives).

In the following, we define the selective Kronecker product which we denote by L . This operator synchro-
nizes only labels identical in the two input matrices.

Definition 3 (Selective Kronecker Product) Given an m-by-n matrix A and a p-by-q matrix B, we call

LA B their selective Kronecker product. For all l L∈ ⊆  let () () (), , ,L i j L r s t uA B a b c= =  , where

() ()
, ,

1 , 1

if , ,
0 otherwise.

i j r s
i p r j q s

l a b l l L
c − ⋅ + − ⋅ +

= = ∈
= 


The ordinary Kronecker product on the automata-level calculates the product automaton. In contrast, the se-

lective Kronecker product is defined for only one active component. One thread executes the synchronization
primitives’ operations. The synchronization primitive itself is a passive component. In contrast to the ordinary
Kronecker product, the selective Kronecker product is defined such that a label l in the left operand is paired
with the same label in the right operand and not with any other label in the right operand and for , , ,i j r sa b l l L= = ∈
the resulting entry is l and not l l⋅ . Definition 3 is defined for a set of labels L. In the following, we use it ex-
clusively for SL =  . Thus, we use this operation only for labels referring to synchronization primitive calls.
Used that way, the selective Kronecker product ensures that, e.g., a p-call to semaphore i, i.e. a ip -call, in the
left operand is paired with the corresponding ip -operation in the right operand and not with any other label (e.g.

jp of a semaphore j i≠) in the right operand.

Definition 4 (Filtered Matrix) We call LM a filtered matrix and define it as a matrix of order ()o M
containing entries of L ⊆  of (),i jM m= and zeros elsewhere:

R. Mittermayr, J. Blieberger

187

() , ,
; , ; ,

if ,
, where

0 otherwise.
i j i j

L L i j L i j

m m L
M m m

∈
= = 



The adjacency matrix representing a program is referred to as P. As stated in [4] [17], P can be computed ef-
ficiently by

()S V
.o SP T S T I= + ⊗ 

Intuitively, the selective Kronecker product term on the left allows for synchronization between the threads
represented by T and the synchronization primitives S. Both T and S are Kronecker sums of the involved threads
and synchronization primitives, respectively, in order to represent all possible interleavings of the concurrently
executing threads. The right term allows the threads to perform steps that are not involved in synchronization.
Summarizing, the threads (represented by T) may perform their steps concurrently, where all interleavings are
allowed, except when they call synchronization primitives. In the latter case the synchronization primitives
(represented by S) together with Kronecker product ensure that these calls are executed in the order prescribed
by the finite automata (FA) of the synchronization primitives. So, for example, a thread cannot do semaphore
calls in the order v followed by p when the semaphore FA only allows a p-call before a v-call. The CPG of such
an erroneous program will contain a node from which the final node of the CPG cannot be reached. This node is
the one preceding the v-call. Such nodes can easily be found by traversing CPGs. Thus, deadlocks of concurrent
systems can be detected with little effort [12] [17].

Until now the following synchronization primitives have been successfully applied. In [4] [12] semaphores
are the only synchronization primitives. In [17] the approach is extended in order to model Ada’s protected ob-
jects, too. Finally, in [5] it is shown that barriers can be used as synchronization primitives. In the latter paper it
is also presented that initially locked and unlocked semaphores can be incorporated to our Kronecker alge-
bra-based approach.

It can easily be shown that CPGs have at most kn nodes and at most 2 kkn edges, if k is the number of
threads and each thread has n nodes in its RCFG. Hence, each CPG has a sparse adjacency matrix ()()E O V= .
Thus, memory saving data structures and efficient algorithms suggest themselves. In the worst-case, however,
the number of CPG nodes increases exponentially in k.

3.2. Lazy Implementation of Kronecker Algebra
In general, a CPG contains unreachable parts if a concurrent program contains synchronization. This can be
summarized as follows: The way we adopt the Kronecker product limits the number of possible paths such that
the p- and v-operations are present in correct p-v-pairs in the RCPG. In contrast ()

1
k i
iT T==⊕ contains all

possible paths even those containing semantically wrong uses of the synchronization primitive (e.g. semaphore)
operations. This contrast can be seen in our running example in Figure 2 and Figure 3. The Kronecker sum of
thread A and B in Figure 2 contains five copies of thread A’s loop, whereas the RCPG in Figure 3 contains this
loop only three times. It can be easily seen that the latter reflects the correct use of the semaphore operations.

Choosing a lazy implementation for the matrix operations ensures that, when extracting the reachable parts of
the underlying graph, the overall effort is reduced to exactly these parts. By starting from the RCPG’s entry
node and calculating all reachable successor nodes, our lazy implementation exactly does this [4]. Thus, for
example, if the resulting RCPG’s size is linear in terms of the involved threads, only linear effort will be neces-
sary to generate the RCPG.

4. WCET Analysis on RCPGs
In order to calculate the WCET of a concurrent program, we adopt the generating functions based approach in-
troduced in [6]. We generalize this approach such that we are able to analyze multi-threaded programs. Each
node of the RCPG is assigned a dataflow variable and a dataflow equation is set up based on the predecessors of
the RCPG node. A dataflow variable is represented by a vector. Each component of the vector reflects a proces-
sor and is used to calculate the WCET of the corresponding thread. Recall that only one single thread is allo-
cated to a processor. Even though RCPGs support multiple concurrent threads on one CPU also, we restrict

R. Mittermayr, J. Blieberger

188

Figure 3. RCPG.

the WCET analysis to one thread per processor. This assumption eases the definition of the dataflow equations
and it is not a restriction from our approach itself.

4.1. Execution Frequencies
In the remaining part of the paper, we will use execution frequencies [6]. The execution frequency ()e k n→
is a measure of how often the edge k n→ is taken compared to the other outgoing edges of node k. Thus, each
execution frequency is a rational number. Its values range from 0 (which models a dead path) to 1, i.e.,

()0 1e k n≤ → ≤ . For each node k, it is required that the execution frequencies of all outgoing edges sum to 1. If
node k has at least two outgoing edges, then we have a so-called node constraint () ()Succs 1n k e k n

∈
→ =∑ . We

assign a variable to each ()e k n→ . A concrete value is assigned to each of these variables during the maximi-
zation process which is described below in Section 4.6. If a node m has only one outgoing edge to node n, then
the execution frequency () 1e m n→ = is statically known and neither a node constraint nor an additional va-
riable for the execution frequency is needed.

4.2. Loops
Let 0 refer to the set of natural numbers including zero, i.e., { }0 0,1, 2,=  . From now on, we use the va-
riable 0i ∈  to refer to the number of loop iterations of loop i at CFG level. For each loop, we require that
this number is constant3 and statically known. As we have seen in Figure 2, RCPGs contain several copies of
basic blocks (in our case edges) and loops in different places.

Since RCPGs model all interleavings of the involved threads, a certain execution of the underlying concurrent
program (a certain path in the RCPG) may divide the code of a loop in the CFG among all its copies in the
RCPG. In particular, we do not know a priori how a loop will be split among its copies in the RCPG for the path
producing the WCET. For this reason, we assign variables (with unknown values) to the number of loop itera-
tions of the loop copies in the RCPG. Later on (during the maximization process), concrete values for this loop
iteration variables are chosen such that the execution time is maximized. Note that assigning variables to loop

3For simplicity, we chose constant; our approach supports upper bounds too.

R. Mittermayr, J. Blieberger

189

iteration numbers implies that some execution frequencies have also to be considered variable. These execution
frequencies also get concrete values during the maximization process.

We refer to the number of loop iterations of the j-th copy of loop i as 0
j
i ∈  . This variable denotes the

number of how often the loop entry edge of the j-th copy of loop i is executed. The loop entry of the j-th copy

(out of n) of loop i gets assigned the execution frequency variable
1

j
j i

i j
i

e =
+




, where
1

n j
i ij= =∑   . Note that

the variables j
i get numerical values during the maximization process. Thus, the execution frequency of each

loop entry edge is calculated automatically.
If node m has multiple outgoing loop entry edges for the loops 1, 2, , n and there exists exactly one out-

going non loop entry edge, then the execution frequency for the loop entry edge of loop i is
()1 1

i
n

jj= +∑




.

Loop Iteration Constraints. Assume CFG loop i is executed i times and n copies (as mentioned above due
to the Kronecker sum) of that loop are in the RCPG, then we have the constraint

1
n j

i ij= =∑   . We assume that
the value of variable i , i.e., the number of loop iterations on thread (CFG) level is known a priori. The va-
riables j

i are used as variables during the maximization process. During the generation of the RCPG it is
possible to remember each copy of a CFG loop entry edge. In order to establish the loop iteration constraints, we
go through this information.

Loop Exit Constraints. For loop i’s j-th copy we have j
i iterations. Then we have the loop exit constraint

1
1

j
i j

i

x =
+

, where j
ix is the sum of execution frequencies of all loop exiting edges of the j-th copy of loop i.

In general, such loop exiting edges do also include edges from other threads which do not execute any part of
loop i. Note that we can calculate the loop exit constraints automatically. Our approach does support nested
loops [18] which result in non-linear constraints. This is one reason which prohibits applying an ILP-based ap-
proach like [8] for solving the concurrent WCET problem.

4.3. Synchronizing Nodes
A thread calling a semaphore’s p-operation potentially blocks [10]. On the other hand, a thread calling a sema-
phore’s v-operation may unblock a waiting thread [10]. In RCPGs, blocking occurs at what we call synchroniz-
ing nodes. We distinguish two types of synchronizing nodes, namely vp- and pp-synchronizing nodes.

Each vp-synchronizing node has an incoming edge labeled by a semaphore v-operation, an outgoing edge la-
beled by a p-operation of the same semaphore, and these two edges are part of different threads. In this case, the
thread calling the p-operation (potentially) has to wait until the other thread’s v-operation is finished.

Definition 5. A vp-synchronizing node is a RCPG node s such that
• there exists an edge (),ine i s= with label kv and
• there exists an edge (),oute s j= with label kp ,

where k denotes the same semaphore and the edges ine and oute are mapped to different processors, i.e.,
() ()in oute e≠  .
For vp-synchronizing nodes, we establish specific data flow equations as described in the following subsec-

tion.

Definition 6. A pp-synchronizing node is a RCPG node s such that
• there exists an edge ()1 ,oute s i= with label kp and
• there exists an edge ()2 ,oute s j= with label kp ,

where k denotes the same semaphore and the edges 1oute and 2oute are mapped to different processors, i.e.,
() ()1 2out oute e≠  .

For pp-synchronizing nodes, we establish fairness constraints ensuring a deterministic choice when e.g. the

time of both involved CPUs at node s is exactly the same.

R. Mittermayr, J. Blieberger

190

4.4. Setting Up and Solving Dataflow Equations
In this section, we extend the generating function based approach of Section 4 of [6] such that we are able to
calculate the WCET of concurrent programs modeled by RCPGs. Each RCPG node’s dataflow equation is set up
according to its predecessors and the incoming edges (including execution frequency, execution time and in case
of vp-synchronizing nodes stalling time).

Let the vector () () () ()()1 , , , ,i nz P z P z P z=P  

 . We write ()i zP to denote the i-th component ()iP z
of vector ()zP . In addition, ()x zP refers to the vector of node x.

Let a be a scalar and let ()zP and ()zQ be two n-dimensional vectors. The addition and multiplication of
vectors and the multiplication of a scalar with a vector are defined as follows:

() () () () () ()()1 1 , , ,n nz z P z Q z P z Q z+ = + +P Q 



() () () () () ()()1 1 , , ,n nz z P z Q z P z Q z=P Q 



() () () ()()1 2, , , .na z aP z aP z aP z=P 



Definition 7 (Setting up Dataflow Equations) Let ()m n→time refer to the time assigned to edge
m n→ . In addition, the set of predecessor nodes of node n is referred to as ()Preds n .

If n is a non-vp-synchronizing node and edge m n→ is mapped to processor k, then

() () () ()
()Preds

,n m
m n

z e m n m n z
∈

= → →∑P Pt

where the kth component of vector ()m n→t is ()m nz →time and the other components are equal to 1.
Let s be a vp-synchronizing node. In addition, let vπ and pπ be the processors which the edges i s→

and s j→ are mapped to, i.e., ()v i sπ = → and ()p s jπ = → .4 Then for pk π≠

() () () () andkk k
j z e s j s j z= → → sP Pt

() () () () ()()
() () ()

(), Preds

max ,

,

pp pv

p p

j

m
m s m j

z e s j s j z z

e m j m j z

ππ ππ

π π

≠ ∈

= → →

+ → →∑
s sP P P

P

t

t

where the first term considers the incoming p-edge and the second term takes into account all other incoming
edges of the blocking thread running on processor pπ .

The max-operator in Def. 7 is not an ordinary maximum operation for numbers. During the maximization
process, we actually do the whole calculation twice. One time, we replace () ()()max , pv

s sz zππP P by ()v
s zπP

and then, we do this calculation using the second solution ()p
s zπP . In the end, the solution with the highest

WCET value will be taken.
The entry node’s equation ()entry zP follows the rules above and, in addition, for n threads adds an

n-dimensional vector ()T1,1,1, ,1 .
The dataflow equations can intuitively be explained as follows. We cumulate the execution times in an inter-

leavings semantics fashion. One can think of taking one edge after the other. Nevertheless, edges may be ex-
ecuted in parallel and the execution and stalling times are added to the corresponding vector components. In the
overall process, we get the WCET of the concurrent program.

The system of dataflow equations can be solved efficiently by applying an algorithm presented in [15]. As a
result, we get explicit formulas for the final node. In order to double-check that we calculate a correct solution,
we used Mathematica to solve the node equations, too. Both of the two approaches for solving the node equa-
tions calculate the same and correct results.

4According to the definition of vp-synchronizing nodes v pπ π≠ .

R. Mittermayr, J. Blieberger

191

4.5. Partial Loop Unrolling
For vp-synchronizing nodes having at least one outgoing loop entry edge5, we have to partly unroll the corres-
ponding loop such that one iteration is statically present in the RCPG’s equations. Partial loop unrolling ensures
that synchronization is modelled correctly. Only the unrolled part contains a synchronizing node. Some execu-
tion frequencies and equations have to be added or adapted. Edges have to be added to ensure that the original
and the unrolled loop behave semantically equivalent. For example, if the original loop was able to iterate

0n ≥ times, then the new construct must also allow the same number of iterations. In order to define some ex-
ecution frequencies correctly, we are using the Kronecker delta function. We do such partial loop unrolling for
our example in the appendix in Subsection 5.2. In our example, we e.g. have to add edge 5b′ to allow a zero
number of iterations (compare Figure 3 and Figure 4). Note that partial loop unrolling can be fully automated.

4.6. Maximization Process
In order to determine the WCET, we have to differentiate the solution for the final node fn with respect to z
and after that set 1z = .

Let functionk refer to the function representing the solution of the kth component of the final node fn .
According to well-known facts of generating functions [6] it is defined as

()
1

dfunction .
d

k k
f

z

z
z =

= P

Figure 4. Adapted RCPG.

5Note that we can detect these nodes when generating the RCPG.

R. Mittermayr, J. Blieberger

192

In order to calculate the loop iteration count for all loop copies and to calculate the undefined execution fre-
quencies within the given constraints, we maximize this function. This goes beyond the approaches given in [4]
[6]. During this maximization step, for which we used NMaximize of Mathematica, e.g. all j

i are treated as
variables. For each of these variables, Mathematica finds values within the given constraints. Thus, Mathematica
assigns valid values for all j

i and all the unknown execution frequencies. Of course, instead of Mathematica,
any non-linear function solver capable of handling constraints can be used. The WCET of the kth CPU core is
given by

{ }()WCET Maximize function , constraints .k k=

In the following, the variable configuration found during this maximization is used. The WCET of a concur-
rent program consisting of n threads is defined as

()1max WCET , , WCET ,n


where the max is the ordinary maximum operator for numbers.
If the RCPG contains s vp-synchronizing nodes, then the maximization process has to be done 2s times.

One time for each possible value of ()max ,  originating from the vp-synchronizing nodes. At last the
largest value of those 2s results represents the WCET of the concurrent program. Hence, the computational
complexity may increase exponentially in s. Anyhow, s is usually small. For n threads and r semaphores, the
number of vp-synchronizing nodes in the CPG is bounded above by

1 1 0,
r n ni k

j jj i k k iv p
= = = ≠∑ ∑ ∑ , where i

jv is the
number of v-operations of semaphore j in thread i and k

jp is the number of p-operations of semaphore j in
thread k. Depending on how the semaphores are used not all vp-synchronizing nodes may be part of the RCPG.
In addition, information may be available which allows to conclude that even some of the present cases cannot
result in the final WCET value. Then, these cases need not be considered in the maximization process. In [19] an
example with CPG matrix size of 298721280 has been analyzed within 400 ms. It contained 13 semaphores and
only 15 synchronization nodes. Even though the CPGs for travel time analysis do not contain loops, the number
of synchronizing nodes is comparable.

5. Example
This small example includes synchronization and one single loop. We use two threads, namely A and B, sharing
one single semaphore with the operations p and v. The CFGs of the two threads are depicted in Figure 1(b) and
Figure 1(c). Each edge is labeled by a basic block l. Together with a RCFG of a binary semaphore, we calculate
the adjacency matrix P of the corresponding RCPG in the following steps: The interleaved threads are given by

.T A B= ⊕ Because we have only one semaphore, the interleaved semaphores are trivially defined as
0

0
p

S
v
 

=  
 

.

The program’s matrix P is given by
S V 2 ,P T S T I= + ⊗  where { }S ,p v= and { }V , , ,a b c d= . The

RCPG of the A-B-system is depicted in Figure 3. The edges for the RCPG are labeled by their execution fre-
quencies on RCPG level. Anyway, we indicate for each execution frequency xl that it is the execution fre-
quency for the x-th copy of basic block l.6

We assume that both threads access shared variables in the basic blocks a and d. Thus, the basic blocks a and
d are only allowed to be executed in a mutually exclusive fashion. This is ensured by using a semaphore. The
basic blocks a and d are protected by p-calls. After the corresponding thread finishes the execution of a or d, the
semaphore is released by a v-call. We assume that all the other basic blocks do not access shared variables. Note
that the threads are mapped to distinct processors and that these mappings are immutable.

Each variable x in this example (except  , 1
 , 2

 and 3
) is a rational number such that 0 1x≤ ≤ . We

assume that thread A's loop is executed  times and the three copies of the loop are executed 1
 , 2

 and 3


times, respectively. Hence, we have the loop iteration constraint 1 2 3+ + =    , where 0
i ∈  .

5.1. Equations Not Affected by Partial Loop Unrolling
Following the rules of Section 3, we obtain the following equations.

6A hardware analysis may detect that the copies of a basic block have different execution times due to e.g. shared data caches or instruction
pipelining.

R. Mittermayr, J. Blieberger

193

() ()

() ()

() ()

() ()

() () ()

() () ()

() () ()

1 1 3

8

2 1 1

3 1 2

4 1 1

5 2 7 3 1

6 2 5 2 2

7 2 6 1 3

1
2

11

1

1

1

1
1

1
1

1
1

v

p

a

b

v

c

p

c

a

c

A

A

A

A

zz v

zz p z

zz a z

zz b z

zz v z c z
z

zz p z c z
z

zz a z c z
z

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

   
= +   

  
 

=   
 
 

=  
 
 

=  
 
   

= +   
  

   
= +       

   
= +   

  

P P
P

P P

P P

P P

P P P

P P P

P P P

() () ()

()
()
() ()()

() () ()

() ()

() () ()

() ()

2 5 4 4

1
5

9 1 1 2
5 5

10 3 9 2 8

11 1 9

12 4 11 2 10

15 3 14

1
1

max ,

1

1

1

1
1

1

b

c

p

b

p

d

b

d

a

B

B

zz b z c z
z

z
z p

z z z

zz b z p z
z

z d z
z

zz b z d z
z

zz a z

τ

τ

τ

τ

τ

τ

τ

τ

τ

   
= +   

  
 
 =
 
 

  
= +        

 
=  

 
   

= +   
  

 
=  

 

P P

P
P

P P

P P P

P P

P P P

P P

Note again that the max-operators in ()9 zP and ()14 z′P (stated in Subsection 5.2) originate because the
original nodes 9 and 14, respectively, are vp-synchronizing nodes and that max is not the ordinary maximum
operation using numbers as input. During the maximization process, for each max -operator we do the whole
calculation twice, once for each possible solution.

5.2. Partial Loop Unrolling
Node 13 is a vp-synchronizing node and edge 13 14→ constitutes a loop entry edge. Thus, we have to apply
partial loop unrolling.

() ()

() () ()()
()

() ()

() () ()

() ()

() () ()

13 1 11 13 3 15 15

1 2
13 13

14 3 14 3 132
13

16 5 13 2 12 515 14

1

1 1

max ,

1

1
1 11

v v

v

p p

b ba

v

B A

A A

B

z zz v z z v z zz

z z z zz p z p z
z

z zz z b z v z bz P z z

τ τ

τ

τ τ

τ ττ

τ

′

     ′ = ′= +     
     
 ′ ′  
 ′ = =    ′   

      ′= + +′ ′   =   
    

P P P P P

P P
P P P

P

P P PP ()13 z′


P

The changes in the equations can be interpreted on RCPG-level as depicted in Figure 4 (compare to Figure
3). For edges whose execution frequency is 1 we write 1(a) in order to state that the edge refers to the basic
block a. For these edges, the execution time would otherwise be unclear. In the following, we use the Kronecker
delta function. Kronecker delta ,i jδ is defined as

,

1 if ,
0 otherwise.i j

i j
δ

=
= 


By partially unrolling the loop, we get the execution frequencies:

35 ,0
b δ′ =



, 3 51Ap b′ ′= − ,

3
3

3
3

1 if 1,

0 otherwise.

Ap
 −

>= 








Note that the non-linear function solver employed for the maximization process must be able to handle ,i jδ
and case functions (like that used in the right hand side of 3

Ap) correctly.

R. Mittermayr, J. Blieberger

194

5.3. Execution Frequencies and Constraints
The following execution frequencies and constraints are extracted out of the RCPG. The execution frequencies
of the loop entry edges 1

Ap and 2
Ap are established as follows:

1

1 1 1
Ap =

+




,
2

2 2 1
Ap =

+




.

From the node constraints, we get 2a , 3a , 4c , 2d , 2
Av , 3

Av , 2
Bp and 2

Bv statically set to 1. The remain-
ing node constraints contribute execution frequency variables and the corresponding constraints for the final
maximization process.

1 21a c= − , 1 3 1 1Ab c p+ + = , 2 1 2 1B Ab p p+ + = , 3 11b d= − , 4 11 Bb v= − , 5 31 Ab p= − , 1 11 Ac v= − .

The loop exit constraints are as follows:

2 1 2
1

1
Bb p+ =

+
, 1 1 2 3 1

1
1

b c c c+ + + =
+

.

The time needed for executing basic block b is referred to as bτ . We assume that all copies of a certain basic
block lead to the same execution time. Thus, e.g., each one out of 1b , 2b and 3b has an execution time of

bτ . Finally, for node 5, which is a pp-synchronizing node, we have the following constraints. These conditions
follow from our computational model described in Section 2 and the fairness constraints from Subsection 4.3:

• () ()1 2 1 p a v cτ τ τ τ+ − + + <  ,

• () () ()1 2
p a v c p a v cτ τ τ τ τ τ τ τ+ + + ≥ ∨ + + <   ,

• () 3 0p a v cτ τ τ+ + < ⇒ ≡  .

5.4. Solving the Equations
For a concise presentation, we use the notation ,a b a bτ τ τ+ = . We used two approaches to solve the equations.
At first, we applied [20]. To double-check the solution, we used Mathematica, too.

The resulting equations for the final node 16 are:

() ()

() ()
() ()

, , ,2 ,2

, ,

, ,

5 1 1 3 1 51
16

3 3 3
1 1

4 1 1 2 5 3 2 1 2 5

1 1
2 2 2 2 5 5 1 1 1 5

1 4 2 2 2
1 1 1

1

1
1

a b d p v

a p v

b b

b b

b
a p v

B A B

A A

B B B B

B B B B

B B
A A

b d p p v z z
z

a p v z

b d p v z z b d p v z z

b d p v z z b d p v z z

b c d p v z
a p v z

τ

τ

τ τ

τ τ

τ
τ

′

=
−

+ +

′+ +

+
−

mP
P

P P

P P

() ()

()
()

()

()

, ,

, ,

, ,

, ,

, , ,

, ,

5 1 1 3 1 52
16

3 3 3

4 1 1 2 5

3 2 1 2 5

2
2 2 2 2 5

1 4 2 2 2
1 1 1

5 1 1 1 5

1

1
1

,

d p v

d p v

d p v

d p v

c d p v

d p v

B A B

A A

B B

B B

B B

B B
A A

B B

b d p p v z z
z

a p v

b d p v z z

b d p v z z

b d p v z z

b c d p v z
a p v

b d p v z z

τ

τ

τ

τ

τ

τ

′

=
−

+

+

+

+
−

′+

mP
P

mP

mP

P

mP

where

()
() ()

()
() ()

() () ()()

, ,

, , , ,

1 1 2 2 1 2 3

1 1 1 2 2 2 1 2
5 5 5 5

1 1 2 2 1 2 3

1 1 1 2 2 2

1 1
() and max , .

1 1

a p v

a p v a p v

c c

A A

A A A A

A A

A A A A

a c a c p v z c

a p v z a p v z
P z z z z

a c a c p v z c z
a p v a p v

τ

τ τ

τ τ

 + +
 
 − −
 = =
 + +
 
 − − 

mP P P

5.5. Maximization Process
Finally, we have to differentiate ()16

n zP with respect to z and then set 1z = .

R. Mittermayr, J. Blieberger

195

()16
1

dfunction
d

k k

z

z
z =

= P

{ }()WCET Maximize function , constraints ,k k=

where the set constraints consists of the constraints set up in Section 5.3. The WCET of the concurrent program
consisting of two threads is defined by

()1 2max WCET , WCET .

In Table 1 some WCET values of the program and its components, namely the threads A and B, are depicted.
The time needed for executing basic block b is referred to as bτ . We assume that all copies of a certain basic
block lead to the same execution time. Further we set 1a b d p vτ τ τ τ τ= = = = = , 2= , and let cτ range from
1 to 10. As described above, during the maximization process, we let Mathematica choose the values of the va-
riables 1 2 3, ,   and all the unknown execution frequencies. We used the execution time cτ as an input pa-
rameter to see how it affects the WCET of the program. Note that the calculated values are exact WCET values.
In the rightmost column of Table 1, we present the average time needed by Mathematica to calculate the time of
the component leading to the WCET. Note that the maximization dominates the overall CPU time. Generating
the RCPG and solving the data flow equations takes only a few milli seconds. Mathematica 10 was executed on
a CentOS 6.0, Intel Core i7 870 CPU, 2.96 GHz, 8 MB cache and 4GB RAM. Until now, our focus was not on
using specialized non-linear solvers which would probably lead to much better maximization times. Finding the
best non-linear function solver is ongoing research.

6. Related Work
Our approach is the first one capable of handling parallel and concurrent software. There exist several ap-
proaches for parallel systems which we will discuss in the following (see e.g. [21] for an overview).

In [7] an IPET based approach is presented. Communication between code regions in form of message pass-
ing is detected via source code annotations specifying the recipient and the latency of the communication. For
each communication between code regions, the corresponding CFGs are connected via an additional edge.
Hence, the data structure are CFGs connected via communication edges. This is not enough for programs con-
taining recurring communication between threads. In contrast to that, our approach generates a new data struc-
ture (RCPG) out of the input CFGs in a fully automated way. The RCPG incorporates thread synchronization of

Table 1. WCET for 2= and multiple values of cτ .

Thread 1 2 3 4 5 6 7 8 9 10 11 12 13 Parameter cτ WCET PROG. x
 Time [s]

A p a a v p a a v b 1, 2, 3 12 48.45

B c ⋅ c p d v 1 3 21, 0= = =  

A p a a v p a a v b 4 12 53.21

B c c c c p d v 1 3 21, 0= = =  

A p a a v p a a v b 5, 6, 7, 8 11 9.11

B c c c c c ⋅ ⋅ c p d v 1 2 31, 0= = =  

A p a a v p a a v b 9 12 8.59

B c c c c c c c c c p d v 1 2 31, 0= = =  

A p a a v p a a v b 10 13 8.77

B c c c c c c c c c c p d v 1 2 31, 0= = =  

R. Mittermayr, J. Blieberger

196

the multi-threaded program and thus contains only the reachable interleavings. Our approach is not limited to
one single synchronization mechanism, it can be used to model e.g. semaphores or locks. In addition, RCPGs
play a similar role for multi-threaded programs as CFGs do for sequential programs and can be used for further
analysis purposes. The hardware analysis on basic block level of [7] can be applied to our approach too.

As our approach for loops, the work presented in [2] also relies on annotations. The worst case stalling time is
estimated for each synchronization operation. This time is added to the time of the corresponding basic block.
Our approach exactly detects the points where stalling will occur, i.e., at the vp-synchronizing nodes, and estab-
lishes dataflow equations to handle that problem in an explicit and natural way. It calculates the stalling times
which need not be given by the user. At these points (e.g. critical section protected via a semaphore), we can al-
so incorporate hardware penalties for all kinds of external communication and optimizations for e.g. shared data
caches. Our approach allows synchronization within loops in a concurrent program whereas [2] does not support
that. This is the main reason why [2] can use an ILP approach. Similar to [2], we use a rather abstract view of
synchronization primitives and assume timing predictability on the hardware level as discussed e.g. in [22].

Current steps towards multi-core analysis including hardware modelling try to restrict interleavings and use a
rigorous bus protocol (e.g. TDMA) that increases the predictability [23]. A worst-case resource usage bound to
compute the WCET overlap is used. Hence, it finds a WCET upper bound only, while our approach determines
the exact WCET that includes stalling times.

Since the model-checking attempt in [24] has scalability problems the authors switched to the abstract execu-
tion approach of [25]. It allows to calculate safe approximations of the WCET of programs using threads, shared
memory and locks. Locks are modeled in a spinlock-like fashion. The problem of nontermination is inherent in
abstract execution. Thus, it is not guaranteed in [25] that the algorithm will terminate. This issue is only partly
solved by setting timeouts.

7. Conclusion and Future Work
In this paper, we focused on calculating stalling times automatically in an exact WCET analysis of shared mem-
ory concurrent programs running on a multi-core architecture. The stress was on a formal definition of both, our
graph model and the dataflow equations for timing analysis. This is the first approach suited for parallel and
concurrent systems.

We established a generic graph model for multi-threaded programs. Thread synchronization is modeled by
semaphores. Our graph representation of multi-threaded programs plays a similar role for concurrent programs
as control flow graphs do for sequential programs. Thus, a suitable graph model for timing analysis of multi-
threaded software has been set up. The graph model serves as a framework for WCET analysis of multi-threaded
concurrent programs. The usefulness of our approach has been proved by a lazy implementation of our extended
Kronecker algebra. The implementation is very memory-efficient and has been parallelized to exploit modern
many-core hardware architectures. Currently there is work in progress for a GPGPU implementation generating
RCPGs. The first results are very promising.

We applied a generating functions approach. Dataflow equations are set up. The WCET is calculated by a
non-linear function solver. Non-linearity is inherent to the multi-threaded WCET problem. The reasons are that
(1) several copies of loops show up in the RCPG and (2) partial loop unrolling has to be done in certain cases. (1)
implies that loop iteration numbers for loop copies have to be considered variable until the maximization
process takes place. Thus, nested loops cause non-linear constraints to be handed to the function solver. (2) ge-
nerates additional non-linear constraints.

In terms of WCET analysis a lot of work remains to be done. The focus of this paper is on how to model
concurrent programs. One future work may be modelling hardware features. In general, without taking into ac-
count e.g. pipelining, shared cache, shared bus, branch prediction and prefetching, we might overestimate the
WCET. Our approach could benefit from e.g. [26]-[28] which support shared L2 instruction caches.

Finding the best non-linear function solver is ongoing research. Mathematica was just the first attempt. This
will probably lead to better maximization times. A direction of future work is to generalize for multiple threads
running on one CPU core. We will investigate how an implicit path enumeration technique (IPET) approach [8]
together with non-linear solvers can produce similar results to our approach. Finally, a possible direction for fu-
ture work could be a WCET analysis of semaphore-based barrier implementations [5].

R. Mittermayr, J. Blieberger

197

References
[1] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R.,

Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J. and Stenström, P. (2008) The Worst-Case Execution-Time
Problem—Overview of Methods and Survey of Tools. ACM Transactions on Embedded Computing Systems, 7, Article
No. 36. http://dx.doi.org/10.1145/1347375.1347389

[2] Ozaktas, H., Rochange, C. and Sainrat, P. (2013) Automatic WCET Analysis of Real-Time Parallel Applications.
WCET 2013, 30, 11-20.

[3] Buchholz, P. and Kemper, P. (2002) Efficient Computation and Representation of Large Reachability Sets for Com-
posed Automata. Discrete Event Dynamic Systems, 12, 265-286. http://dx.doi.org/10.1023/A:1015669415634

[4] Mittermayr, R. and Blieberger, J. (2012) Timing Analysis of Concurrent Programs. WCET 2012, 23, 59-68.
[5] Mittermayr, R. and Blieberger, J. (2016) Kronecker Algebra for Static Analysis of Barriers in Ada (to Appear). In:

Bertogna, M., Pinho, L.M. and Quinones, E., Eds., 21st International Conference on Reliable Software Technologies,
LNCS, Springer Press.

[6] Blieberger, J. (2002) Data-Flow Frameworks for Worst-Case Execution Time Analysis. Real-Time Systems, 22, 183-
227. http://dx.doi.org/10.1023/A:1014535317056

[7] Potop-Butucaru, D. and Puaut, I. (2013) Integrated Worst-Case Execution Time Estimation of Multicore Applications.
WCET 2013, 30, 21-31.

[8] Puschner, P. and Schedl, A. (1997) Computing Maximum Task Execution Times—A Graph-Based Approach. Journal
of Real-Time Systems, 13, 67-91. http://dx.doi.org/10.1023/A:1007905003094

[9] Tarjan, R.E. (1981) A Unified Approach to Path Problems. Journal of the ACM, 28, 577-593.
http://dx.doi.org/10.1145/322261.322272

[10] Stallings, W. (2011) Operating Systems—Internals and Design Principles. 7th Edition, Prentice Hall, Upper Saddle
River.

[11] Aho, A., Sethi, R. and Ullman, J. (1986) Compilers: Principles, Techniques, and Tools. Addison Wesley, Massachu-
setts.

[12] Mittermayr, R. and Blieberger, J. (2011) Shared Memory Concurrent System Verification Using Kronecker Algebra.
Technical Report 183/1-155, Automation Systems Group, TU Vienna. http://arxiv.org/abs/1109.5522

[13] Davio, M. (1981) Kronecker Products and Shuffle Algebra. IEEE Transactions on Computers, 30, 116-125.
http://dx.doi.org/10.1109/TC.1981.6312174

[14] Graham, A. (1981) Kronecker Products and Matrix Calculus with Applications. Ellis Horwood Ltd., New York.
[15] Harary, F. and Trauth Jr., C.A. (1966) Connectedness of Products of Two Directed Graphs. SIAM Journal on Applied

Mathematics, 14, 250-254. http://dx.doi.org/10.1137/0114024
[16] Küster, G. (1991) On the Hurwitz Product of Formal Power Series and Automata. Theoretical Computer Science, 83,

261-273. http://dx.doi.org/10.1016/0304-3975(91)90278-A
[17] Burgstaller, B. and Blieberger, J. (2014) Kronecker Algebra for Static Analysis of Ada Programs with Protected Ob-

jects. In: George, L. and Vardanega, T., Eds., Reliable Software Technologies—Ada-Europe 2014, Springer Interna-
tional Publishing, New York, 27-42. http://dx.doi.org/10.1007/978-3-319-08311-7_4

[18] Kirner, R., Knoop, J., Prantl, A., Schordan, M. and Kadlec, A. (2011) Beyond Loop Bounds: Comparing Annotation
Languages for Worst-Case Execution Time Analysis. Software & Systems Modeling, 10, 411-437.
http://dx.doi.org/10.1007/s10270-010-0161-0

[19] Volcic, M., Blieberger, J. and Schöbel, A. (2012) Kronecker Algebra Based Travel Time Analysis for Railway Sys-
tems. 9th Symposium on Formal Methods for Automation and Safety in Railway and Automotive Systems, Braun-
schweig, 12-13 December 2012, 273-281.

[20] Sreedhar, V.C., Gao, G.R. and Lee, Y.-F. (1998) A New Framework for Elimination-Based Data Flow Analysis Using
DJ Graphs. ACM Transactions on Programming Languages and Systems, 20, 388-435.
http://dx.doi.org/10.1145/276393.278523

[21] Axer, P., Ernst, R., Falk, H., Girault, A., Grund, D., Guan, N., Jonsson, B., Marwedel, P., Reineke, J., Rochange, C.,
Sebastian, M., Von Hanxleden, R., Wilhelm, R. and Wang, Y. (2014) Building Timing Predictable Embedded Systems.
ACM Transactions on Embedded Computing Systems, 13, Article No. 82. http://dx.doi.org/10.1145/2560033

[22] Gerdes, M., Kluge, F., Ungerer, T. and Rochange, C. (2012) The Split-Phase Synchronisation Technique: Reducing the
Pessimism in the WCET Analysis of Parallelised Hard Real-Time Programs. IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications, Seoul, 19-22 August 2012, 88-97.
http://dx.doi.org/10.1109/rtcsa.2012.11

http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1023/A:1015669415634
http://dx.doi.org/10.1023/A:1014535317056
http://dx.doi.org/10.1023/A:1007905003094
http://dx.doi.org/10.1145/322261.322272
http://arxiv.org/abs/1109.5522
http://dx.doi.org/10.1109/TC.1981.6312174
http://dx.doi.org/10.1137/0114024
http://dx.doi.org/10.1016/0304-3975(91)90278-A
http://dx.doi.org/10.1007/978-3-319-08311-7_4
http://dx.doi.org/10.1007/s10270-010-0161-0
http://dx.doi.org/10.1145/276393.278523
http://dx.doi.org/10.1145/2560033
http://dx.doi.org/10.1109/rtcsa.2012.11

R. Mittermayr, J. Blieberger

198

[23] Nowotsch, J., Paulitsch, M., Buhler, D., Theiling, H., Wegener, S. and Schmidt, M. (2014) Multi-Core Interference-
Sensitive WCET Analysis Leveraging Runtime Resource Capacity Enforcement. 26th Euromicro Conference on
Real-Time Systems, Madrid, 8-11 July 2014, 109-118. http://dx.doi.org/10.1109/ecrts.2014.20

[24] Gustavsson, A., Ermedahl, A., Lisper, B. and Pettersson, P. (2010) Towards WCET Analysis of Multicore Architec-
tures Using UPPAAL. 10th International Workshop on Worst-Case Execution Time Analysis, Brussels, 6 July 2010,
101-112.

[25] Gustavsson, A., Gustafsson, J. and Lisper, B. (2014) Timing Analysis of Parallel Software Using Abstract Execution.
In: McMillan, K.L. and Rival, X., Eds., Lecture Notes in Computer Science, Springer, Berlin, 59-77.
http://dx.doi.org/10.1007/978-3-642-54013-4_4

[26] Chattopadhyay, S., Chong, L.K., Roychoudhury, A., Kelter, T., Marwedel, P. and Falk, H. (2012) A Unified WCET
Analysis Framework for Multi-Core Platforms. IEEE 18th Real Time and Embedded Technology and Applications
Symposium, Beijing, 16-19 April 2012, 99-108. http://dx.doi.org/10.1109/rtas.2012.26

[27] Liang, Y., Ding, H.P., Mitra, T., Roychoudhury, A., Li, Y. and Suhendra, V. (2012) Timing Analysis of Concurrent
Programs Running on Shared Cache Multi-Cores. Real-Time Systems, 48, 638-680.
http://dx.doi.org/10.1007/s11241-012-9160-2

[28] Yan, J. and Zhang, W. (2008) WCET Analysis for Multi-Core Processors with Shared L2 Instruction Caches. IEEE
Real-Time and Embedded Technology and Applications Symposium, St. Louis, 22-24 April 2008, 80-89.
http://dx.doi.org/10.1109/rtas.2008.6

http://dx.doi.org/10.1109/ecrts.2014.20
http://dx.doi.org/10.1007/978-3-642-54013-4_4
http://dx.doi.org/10.1109/rtas.2012.26
http://dx.doi.org/10.1007/s11241-012-9160-2
http://dx.doi.org/10.1109/rtas.2008.6

	A Generic Graph Model for WCET Analysis of Multi-Core Concurrent Applications
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Refined Control Flow Graphs
	2.2. Modeling Synchronization and Interleavings

	3. Concurrent Program Graphs
	3.1. Generating a Concurrent Program’s Matrix
	3.2. Lazy Implementation of Kronecker Algebra

	4. WCET Analysis on RCPGs
	4.1. Execution Frequencies
	4.2. Loops
	4.3. Synchronizing Nodes
	4.4. Setting Up and Solving Dataflow Equations
	4.5. Partial Loop Unrolling
	4.6. Maximization Process

	5. Example
	5.1. Equations Not Affected by Partial Loop Unrolling
	5.2. Partial Loop Unrolling
	5.3. Execution Frequencies and Constraints
	5.4. Solving the Equations
	5.5. Maximization Process

	6. Related Work
	7. Conclusion and Future Work
	References

