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Abstract 
Precise recognition of a time series path is important to policy makers, statisticians, economists, 
traders, hedgers and speculators alike. The correct time series path is also a key ingredient in 
pricing models. This study uses daily futures prices of crude oil and other distillate fuels. This pa-
per considers the statistical properties of energy futures and spot prices and investigates the 
trends that underlie the price dynamics in order to gain further insights into possible nuances of 
price discovery and energy market dynamics. The family of ARMA-GARCH models was explored. 
The trends depict time varying variability and persistence of oil price shocks. The return series 
conform to a constant mean model with GARCH variance. 
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1. Introduction 
Energy use is behind virtually everything a person comes into contact with. The energy industry has rapidly 
expanded and become increasingly interdependent. In developed economies, the increase in energy consumption 
indicates a reliance on energy and its related products for continued and sustainable economic growth and 
development. Developing economies also rely on the development of energy resources to drive their growth. 
Energy was once viewed just as a utility, and an enabler with limited consumer interest, but now, it is key in the 
struggle for sustainable future economic growth [1] [2]. 

Energy prices, which are largely linked to oil prices, are a major concern for most economies. The recent 
financial crises and their ripple effects and after shocks have been largely unprecedented in terms of timing, 
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speed and magnitude of impact on the world economies. Forecasting of crude oil prices is important for better 
investment and risk management and policy development, and econometric models are the most commonly used. 
Various authors have employed time series [3] [4], financial [5] and structural models [6] in forecasting crude 
oil prices. Financial studies involve asset returns [7]-[9], instead of prices, since, firstly, returns give a complete 
and scale-free summary of the investment opportunities and secondly, return series have nice statistical pro- 
perties known as stylised facts. These properties have important implications in model selection. Some of these 
interesting phenomena include volatility clusters which relate to the observation that the magnitudes of volatili- 
ties of financial returns tend to cluster together [9] [10], the leverage effect which relates to the asymmetry of 
news impact [11], leptokurticity, calendar effects and non-linear dependence. 

In this paper, we regard an observed price series, 1 2, , , ,Tp p p  as a particular realisation of a stochastic 
process { }tp . Standard time series analysis rests on important concepts such as stationarity, ergodicity, auto-  
correlation, white noise, innovation, and on a central family of models, the autoregressive moving average (ARMA) 
models [12] [13]. A stationary time series can be usefully described by it’s mean, variance and autocorrelation 
or spectral density function [12] [14], and the joint probability distribution of any two observations, say, tp , 
and t kp +  is the same for any two time periods t and t k+  separated by the same lag k [15]. For an ergodic 
process, we need not observe separate independent replications of the entire process in order to estimate its 
mean value or other moments [16]. 

In addition to the ARMA models, for the analysis of financial time series, we introduce the concept of 
volatility, which is pivotal in finance. Along side volatility we also consider the main stylised facts concerning 
financial time series [8] [13] [17]. In order to capture these stylised facts, we fit the autoregressive conditional 
heteroscedastic (ARCH) model first developed by Engle [18] and later generalized by Bollerslev [19] to 
generalised autoregressive conditional heteroscedastic (GARCH) model. A GARCH model is a parametric error 
distribution, which does not only capture volatility clustering but also accommodates some of the thick tails 
commonly found in financial time series. 

This paper details the empirical analysis of financial time series data. We consider the official daily prices 
from the trading floor of the New York Mercantile Exchange (NYMEX) for a specific delivery month for 
Cushing Oklahoma West Texas Intermediate (OK WTI), Reformulated Blendstock for Oxygenate Blending 
(RBOB), and the number 1 heating oil futures contracts at close of business at 2:30 p.m. We begin the analysis 
from model identification, selection, estimation, diagnostic checking and finally forecasting. The analysis is 
done using MATLAB [20]. The rest of the paper is organized as follows: Section 2 discuses the methods used in 
empirical analysis, Section 3 gives a brief discussion of the data used, and the empirical analysis and the results 
obtained and finally Section 4 gives a summary of the work and the findings. 

2. Methodology 
2.1. Models 
The full model under consideration falls under the general class of the combined ( ) ( ), ,ARMA p q GARCH P Q−  
models which include an ARMA specification in the conditional mean and a GARCH specification in the 
conditional variance. The application of ( ) ( ), ,ARMA p q GARCH P Q−  model is a common approach in time 
series analysis that considers autocorrelation, volatility clustering, and heteroscedasticity. This class caters for  
models with constant variance under the ( ),ARMA p q , and heteroscedastic models under the ( ),GARCH P Q . 

If { }tp  denotes the price series at time t, let tr  be the log-return, and tR , the relative or simple return so 
that  
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an ( ) ( ), ,ARMA p q GARCH P Q−  model for the log-return series tr , is specified as follows:  
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When 0P Q= = , the model reduces to an ( ),ARMA p q . Other sub-models can be deduced depending on 
the respective values of the parameters , , ,p q P Q .  

2.2. Model Identification, Parameter Estimation and Model Selection  
We start with an exploratory analysis of the price data to establish if the set of properties, common across many 
stocks, in many markets over time periods, that have been observed by many studies [7] [8] [17] are present. We 
examine spot and futures prices for these stylised facts and other statistical properties such as stationarity. We 
analyse the descriptive statistics and test for normality using the Jarque-Bera (JB) test [21]. 

To test for stationarity, the Dickey-Fuller (DF) test [22] is employed. If the data is non-stationary, dif- 
ferencing is performed until stationarity is achieved. Once stationarity is established, we study the autocorre- 
lation function (ACF) and partial autocorrelation function (PACF) in order to determine the form of the  

( ),ARMA p q  model for each series. A set of candidate models, around this initial model are then identified for 
further comparison. 

Once the models for the conditional mean and variance have been identified from the differenced series, we 
employ the maximum likelihood estimation (MLE) method to fit parameters for the specified model of the dif- 
ferenced series. 

The final model for each series is then selected based on Akaike’s Information Criterion (AIC) which 
measures of goodness of fit or uncertainty for the range of values of the data. It measures the difference between 
a given model and the “true” underlying model. AIC is a function of the squared sum of errors (SSE), number of  
observations n, and the number of independent variables 1k p≤ +  where k includes the intercept, and is 

calculated as ln 2SSEAIC n k
n

 = ⋅ + 
 

. The best model is the one with the smallest AIC.  

2.3. Forecasting  
Model selection does not depend only on the goodness-of-fit of a model to the data, but also on the objective of 
the analysis. A model that is best in the in-sample fitting will not necessarily provide more accurate forecasts [8]. 
For this reason, it is common to use the performance of out-of-sample forecasts to aid in the selection of an 
adequate statistical model. 

The forecasting ability of the model can only be determined by considering how well a model performs on 
data not used in estimating the model. It is common practice to partition the data into two sets, use the larger 
portion for estimating the model and the smaller one for testing the model. The test data can be used to measure 
model accuracy on new data. The size of the test data set should typically be about 20% of the total sample, 
although this depends on the sample size and the forecast horizon. In an ideal sense, the size of the test sample 
should be at least as large as the maximum forecast horizon required [23]. 

The sample standard deviation, σ  of return is used as a simple forecast of volatility of returns, tr , over the 

future period [ ],t t k+ . The k-days period historical variance is calculated as ( ) ( )
1
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= ∑ , is the estimate of the mean return µ . In most cases, the mean is usually 

set to zero in order to get a better forecast. Multiplying the variance by N, the number of trading days in a year 

and taking the square root gives the annualised volatility 2ˆ Nσ σ= ⋅ . The number of trading days in a year is 
taken to be 250N = . σ̂  is the best estimator for the volatility from the available price data and the volatility 
of any period of length, k, can be estimated from it. 

The k-day volatility forecast can also be found by using the GARCH model. Under the condition that returns 
are uncorrelated across days, the k-day variance as of 1t −  is given by  

2 2 2 2
, 1 1 1 1 1| | | |t t k t t t t t T tE r E r E r E r+ − − + − −       = + + +                                (3) 

The volatility forecast over the future period from 1t +  to t k+ , denoted by Ftσ , is an average of the 



J. Aduda et al. 
 

 
327 

expected volatility on each day from t to t k+  i.e.  
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which is the unconditional variance. 
In-sample and out-of-sample forecasting ability of models can be measured using the mean absolute error 

(MAE) and root mean squared forecasting errors (RMSFE) which measures the out-of-sample losses. The 
RMSFE assigns greater weight to large forecast errors. This fact is handled using the MAE which on the 
contrary assigns equal weights to both over and under predictions of volatility. 

The realised volatility at each forecast date is calculated from the expression 2
,

1
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R t t i
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= ∑ , so that, if the 

forecast volatility is Ftσ , the RMSFE for a model is given by ( )2
,

1
Ft R t

t s
RMSFE

n
σ σ

∈

= −∑  and the MAE is 

given by ,
1

1 n

Ft R t
t

MAE
n

σ σ
=

= −∑  where n and s denote the number of forecasts and the set of times at which 

ex-ante forecasts are produced respectively in the above expression. 
Forecasting using GARCH models is obtained recursively [24]. If we left t be the forecast origin, then, the k- 

step ahead forecast for 2
t kσ +  is 

( ) ( ) ( )2 2
0 1 1̂ˆ ˆ 1 for 1.t tk k kσ α α β σ= + + − >                          (7) 

An alternative way of writing Equation (7) is as shown in Equation (8)  
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From Equation (8), we can see that 2 2ˆtσ σ→  as k →∞   

3. Data and Results  
This paper investigates the trends and patterns of return series for spot and futures prices of Cushing OK WTI, 
RBOB and the number 1 heating oil traded in the NYMEX, for the period running from 2nd January 2006 to 
22nd May 2015. The data was obtained from the US Energy Information Administration (EIA) website 
http://www.eia.gov/petroleum/data.cfm, accessed on June 25, 2015. The US EIA is the statistical and analytical 
agency within the US Department of Energy. It is the principal agency of the US Federal Statistical System 
responsible for collecting, analysing, and disseminating energy information to promote sound policy-making, 
efficient markets, and public understanding of energy and its interaction with the economy and the environment. 
EIA is the premier source of energy information in the US and, by law, its data, analyses, and forecasts are 
independent of approval by any other officer or employee of the US government. [25]. 

Figure 1 shows various series plots for daily spot and futures prices for Cushing OK WTI, RBOB gasoline  

http://www.eia.gov/petroleum/data.cfm
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Figure 1. Time series plots for spot, futures prices and crack spreads in energy markets. CF = 
crude futures, CS = crude spot, GF = gasoline futures, GS = gasoline spot, HF = heating futures 
and HS = heating spot.                                                                 

 
and No. 1 heating oil traded at the NYMEX. The data appears non-stationary, with occasional jumps and spikes 
indicating heteroscedasticity. Testing the price series for stationarity using DF test shows that they all contain 
unit roots. 

Table 1 gives a summary of the descriptive statistics and results for the JB test for the differenced price series. 
From the measure of skewness, all the series except the crude spot are skewed to the left. These series exhibit 
positive excess kurtosis, and these are some of the stylised facts observed in financial time series data. Based on 
the p-values of the JB test, we reject the null hypothesis of normality for all the differenced series.  

Figure 2 shows plots of the differenced crude futures and spot prices. The series appear mean stationary but 
are not variance stationary. Volatility clustering, jumps and spikes are also observed. 

We employ the DF test for stationarity on the differenced series. This is a one-sided left tail test and Table 2 
gives the summary report of the DF test on the six series. Stationarity is confirmed for all these series, and hence 
they can be subjected to further time series analysis 

Figure 3 and Figure 4, show the ACF and PACF plots of crude futures and spot price series. From these plots, 
it is not easy to tell the form of ( ),ARMA p q , significant lags are noticed up to lag 39 of the 40 plotted. The 
same behaviour is exhibited by the other four series. The ACF and PACF fail to identify the form of the model. 
We proceed to fit several ( ),ARMA p q  models for 0 40p≤ ≤  and 0 40q≤ ≤ , and the one with the smallest 
AIC is picked. Figure 5 shows a plot of AICs for various models fit for CF∆ , from which we see that the best 
model is an ( )6,11ARMA  with an AIC of −4684.1. This model has the parameters estimated via the maximum  
likelihood, summarized in Table 3. For the crude spot data, the best model is an ( )7,11ARMA . A similar 
analysis was also carried out on the differenced gasoline futures and prices and the results were similar with 
high orders of autoregressive and moving averages. 

From Table 3, we can use the values of the t-statistic to check the significance of the parameters. The greater 
the absolute value of t, the greater the evidence against the null hypothesis that there is no significance dif- 
ference between the parameter estimate and 0. We can use the general rule of thumb that we reject the null  
hypothesis whenever 2t ≥ . 

After fitting the ( )6,11ARMA  model, we standardized the inferred residuals and checked for normality.  
Figure 6 shows two plots. The first one is the residual series which shows a lot of clustering, suggesting non- 
normality and non-constant variance. The second plot of Figure 6 is a histogram of the residuals also showing 
evidence of non-normality. Figure 7 shows a quantile-quantile plot and a box plot of the residuals and from 
these, we can also deduce non-normality of the residuals largely because of the extreme values. 

The Kolmogorov-Smirnov (KS) test was employed to check normality of the residuals and the p-value was  



J. Aduda et al. 
 

 
329 

 
Figure 2. Differenced series for crude futures and spot prices.                                                      

 

 
Figure 3. ACF plots for the differenced crude futures and spot price series.                                          

 
Table 1. Descriptive statistics for energy spot and futures prices.                                                   

 CF∆  CS∆  GF∆  GS∆  HF∆  HS∆  

Mean −0.001 −0.002 0.005 0.003 0.003 0.001 

Median 0.035 0.040 0.042 0.042 0.000 0.000 

Maximum 16.370 18.560 13.020 21.336 12.306 11.508 

Minimum −14.310 −14.760 −17.724 −21.756 −17.304 −10.668 

Skewness −0.051 0.042 −0.456 −0.173 −0.467 −0.090 

Kurtosis 10.252 12.046 8.008 8.312 8.699 5.837 

JB p-value 0.001 0.001 0.001 0.001 0.001 0.001 

∆ denotes differenced series. 
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Figure 4. PACF plots for the differenced crude futures and spot price series.                                          

 

 
Figure 5. Plot for the AICs for the various ARMA models fitted for the differenced crude futures price data.                 

 
Table 2. Results from the Dickey-fuller test on the six series.                                                        

Series p-value Test statistic Critical value 

CF∆  0.001 −51.2762 −1.9416 

CS∆  0.001 −50.9918 −1.9416 

GF∆  0.001 −49.5626 −1.9416 

GS∆  0.001 −50.9792 −1.9416 

HF∆  0.001 −50.0207 −1.9416 

HS∆  0.001 −50.6481 −1.9416 
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Figure 6. Normality plots for residual checks.                                                                   

 

 
Figure 7. QQ-plot and Box plot for residuals from the ARMA(6, 11) model.                                          

 
Table 3. Results from the ( )6,11ARMA  Model fitted to the differenced crude futures price series.                       

Parameter Estimate Std Error t-Statistic 
Constant −0.0003 0.0055 −0.0494 

AR(1) 0.1064 0.2303 0.4622 
AR(2) 0.5423 0.2234 2.4273 
AR(3) 0.0277 0.0757 0.366 
AR(4) −0.7031 0.0729 −9.652 
AR(5) 0.0806 0.2265 0.3558 
AR(6) 0.8426 0.2163 3.896 
MA(1) −0.1625 0.2304 −0.7054 
MA(2) −0.5671 0.2374 −2.3886 
MA(3) 0.0127 0.0852 0.1488 
MA(4) 0.7652 0.0712 10.7484 
MA(5) −0.1797 0.2365 −0.7597 
MA(6) −0.8514 0.2529 −3.3666 
MA(7) 0.0874 0.0380 2.2975 
MA(8) 0.0383 0.0189 2.0253 
MA(9) −0.0402 0.0185 −2.1675 
MA(10) <0.001 0.0257 −0.001 
MA(11) 0.0432 0.0242 1.7835 
Variance 3.069 0.0503 61.0522 
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found to be <0.001 implying the residuals are not normally distributed. In this case the ( )6,11ARMA  does not 
conform to the assumption normality in the innovations. 

The Ljung-Box (LB) test on the residual series resulted in a p-value of 0.9781 indicating the residuals are not 
autocorrelated. Based on these results, we test for ARCH effects in the squared residuals using the LB test and 
obtained a p- value <0.001, indicating significant ARCH effects in the residuals. 

Figure 8 also shows evidence of serial autocorrelation on the squared residuals. The PACF plot shows 
autoregression of order one so ( )1ARCH  should capture the ARCH effects in the residuals. 

We then specify a combined ARMA-GARCH model to capture the ARCH effects. Fitting a ARMA(6,11)- 
GARCH(1,1) had an AIC of 8810.9. However, a search for the best combined model revealed that an  

( ) ( )0,0 1,1ARMA GARCH−  model gave the best fit with an AIC of −4.4037. From this analysis, we see that a 
more appropriate model to use would be one with a constant conditional mean and a conditional variance. 

The analysis shows the differenced series exhibit “stylised facts” typically seen in high frequency financial 
data. volatility clustering manifests itself as autocorrelation in squared and absolute returns, or in the residuals of 
the estimated conditional mean equation. Examining the ACF and PACF plots for the squared differenced series 
shown in Figure 9 and Figure 10, reveal serial correlation of the squared differenced series. Gasoline and 
heating oil series exhibit the same behaviour. 

The significance of these autocorrelations at various lags was tested using the LB test and the Lagrange 
multiplier (LM) test at lags 1, 5 and 10, and the results are summarized in Table 4. As is evident, there is 
enough evidence to reject the null hypothesis of no ARCH effects as per the LB test since the test indicates that 
there are significant ARCH effects in the all squared series. However, based on Engle’s ARCH test, which is the 
LM test, we do not have sufficient evidence to reject the hypothesis of no ARCH effects for the gasoline futures 
and the heating oil futures series. For all the other series we reject that hypothesis of no ARCH effects. 

Serial correlation in squared returns, or conditional heteroscedasticity can be modelled using GARCH models. 
GARCH models allow for the volatility to evolve with time. A GARCH model can be expressed as an ARMA 
model of squared residuals and hence many of it’s properties follow easily from those of the corresponding 
ARMA process. If the fourth order moment of a GARCH (1,1) exists, the kurtosis implied by a GARCH (1,1) 
process with normal errors is greater than that of the normal distribution which is 3 [19]. For this reason, a 
GARCH model with normal errors can replicate some of the fat tailed behaviour observed in financial time 
series, though, most often, a GARCH model with a non-normal error distribution is required in order to fully 
capture the observed fat tail behaviour in financial time series. 

 

 
Figure 8. ACF and PACF for squared residuals from the ARMA(6,11) model.            
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Figure 9. ACF plots for the squared differenced crude futures and spot price series. 

 

 
Figure 10. PACF plots for the squared differenced crude futures and spot price series. 

 
We fit several ( ),GARCH p q  model to the differenced crude futures series for 20, 20p q= = . We estimate 

the parameters 0α , iα  and jβ  of the ( ),GARCH p q  model and the in-sample estimates of the volatility. 
The Matlab command garch, models the return series as ( ),GARCH p q  and estimates the parameters 0α , iα  
and jβ  via maximum likelihood. 

For the differenced crude futures series, the model with the smallest AIC was GARCH (19, 16) with an AIC 
of 8776.4 as shown in Figure 11 which shows the AICs of all the models fitted. The best model according to 
these fits have the parameters summarized in Table 5. 
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Figure 11. A plot for the AICs for various GARCH models fitted.                                                  

 
Table 4. Results from the Ljung-Box test and LM test for ARCH effects on the squared differenced series.                   

Lag 
( )Q p  LM -test 

1 5 10 1 5 10 

( )2CF∆  348.786 677.980 821.867 431.691 564.068 608.241 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

( )2CS∆  383.810 696.811 800.000 287.646 346.920 358.553 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

( )2GF∆  39.142 101.436 157.990 3.614 4.324 5.329 

 (<0.001) (<0.001) (<0.001) (0.0573) (0.5038) (0.8681) 

( )2GS∆  317.298 858.416 962.298 311.786 792.509 866.792 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

( )2HF∆  45.923 180.863 271.397 1.344 5.341 5.720 

 (<0.001) (<0.001) (<0.001) (0.2463) (0.3758) (0.8382) 

( )2HS∆  79.112 251.739 379.028 23.281 38.898 46.177 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

p-values are indicated in the parenthesis. 
 

From these results, it can be seen that most of the in-between lags are not significant, the most important lags 
at 16 and 19. An analysis on the residuals of this model show that this model gives a fairly good fit. As per the 
AIC values, most these models do not seem to be significantly different and so the lags may be reduced to gain 
parsimony. An examination of the plots of the standardised residuals after fitting the GARCH(1,1) model for the 
return series indicates that the residuals are, on the overall, stable with some clustering. The standardised 
residuals exhibit no residual autocorrelation. It therefore makes more sense just to fit a ( )1,1GARCH  for this 
data. 

The other series also behave in much the same way as the crude futures. Fitting a ( )1,1GARCH  model on 
all the six series gives the results in Table 6. From the measure of persistence, we see the highest persistence of 
0.9938 in the CF∆  series, although, all other return series are quite persistent. This indicates that the volatility  
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Table 5. Results from the ( )19,16GARCH  model fitted to the differenced crude futures price series.                        

Parameter Estimate Std Error t-Statistic 

Constant 0.175 0.103 1.701 

GARCH (16) 0.090 0.169 0.530 

GARCH (19) 0.348 0.200 1.743 

ARCH (1) 0.121 0.022 5.475 

ARCH (2) 0.071 0.053 1.340 

ARCH (5) 0.038 0.052 0.729 

ARCH (6) 0.037 0.046 0.811 

ARCH (8) 0.026 0.033 0.780 

ARCH (9) 0.007 0.037 0.188 

ARCH (10) 0.050 0.037 1.346 

ARCH (13) 0.022 0.037 0.585 

ARCH (14) 0.036 0.038 0.955 

ARCH (15) 0.013 0.036 0.348 

ARCH (16) 0.083 0.036 2.288 

 
Table 6. Results from the ( )1,1GARCH  model fitted to all the differenced price series.                               

Parameter CF∆  CS∆  GF∆  GS∆  HF∆  HS∆  

0α  0.0191 0.0265 0.3354 0.5388 0.0743 0.0428 

1α  0.9464 0.9388 0.8236 0.8318 0.915 0.9429 

1β  0.0475 0.058 0.1072 0.1036 0.0642 0.0451 

( 1 1α β+ ) 0.9938 0.9916 0.9308 0.9354 0.9792 0.9878 

( 1 1α β+ ) measures the persistence. 

 
processes return to their means after some time. The implication of this high persistence is that these shocks 
have a significant effect on the prices in these markets.  

Forecasting  
The total length of the data under consideration is 2363 data points. This data set was divided into two sets, the 
first sub-sample, used for training the model contained 2063 points and the second one, used for testing, con- 
tained 300 points. 

In order to regain a forecast of the price series, the differencing on the forecast series obtained from the 
forecasts of the inferred conditional variances is undone. However because the inferred variances are con- 
ditioned on a standard normal error, there are several possibilities and, having many different forecasts and 
averaging would give a stable forecast for the crude futures prices, which can then be used to predict future 
crude oil futures prices. In Figure 12, we see one of the possibilities of the forecast prices. The RMSFE for this 
model is 0.2072, an indication that the forecasts are generally good.  
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Figure 12. Crude futures price series showing foretasted prices.                                                     

4. Discussion  
This paper employs statistical and econometric techniques to investigate and model financial time series trends 
in energy markets. To do this, daily closing prices for a period of about 10 years for Cushing OK WTI, RBOB 
and number 1 heating oil spot and futures contracts traded in the NYMEX are considered. The paper also 
investigates the existence of stylised facts in these series, in order to fit an appropriate model that adequately 
describes the market dynamics. 

Price data are tested for stationarity using the DF test and results show the existence of unit roots. Normality 
is tested for using the JB test and non-normality is established. Return series are then generated from the price 
series through differencing, and then tested for stationarity using the DF test. The results reveal that return series 
are indeed mean stationary, but are definitely not variance stationary. Several ARMA models are fit to the return 
series and the standardised residuals analysed. For the crude futures return series, the best model turns out to be  
an ( )6,11ARMA  an for the crude spot it is an ( )7,11ARMA  among others, based on their AICs. These 
resultant models however contravene the Gaussian innovation assumption. 

We then propose a combined ( ) ( ), ,ARMA p q GARCH P Q−  model to capture the ARCH effects in the 
variance, then find that the best model under these circumstances is the ( ) ( )0,0 1,1ARMA GARCH− , implying 
a constant mean conditional variance equation. We finally find that for example, for the crude futures return 
series, the ( )16,19GARCH  is the best model based on the AIC, although a ( )1,1GARCH  does quite well for  
this and all the other six series with the residual analysis conforming to the assumption of Gaussian Innovations. 
GARCH models can therefore adequately model the trends and patterns in the energy markets. The trends also 
depict time varying variability and high persistence of oil price shocks. These shocks therefore have a significant 
impact on the prices of these energy prices. 
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