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Abstract 
This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using 
Geographical Information System (GIS), interpolation techniques and historical data. Existing air 
quality stations are systematically eliminated and the missing data are filled in using the most ap-
propriate interpolation technique. The interpolated data are then compared with the observed 
data. Pre-defined performance measures root mean square error (RMSE), mean absolute percen-
tage error (MAPE) and correlation coefficient (r) were used to check the accuracy of the interpo-
lated data. An algorithm was developed in GIS environment and the process was simulated for 
several sets of measurements conducted in different locations in Riyadh, Saudi Arabia. This me-
thodology proves to be useful to the decision makers to find optimal numbers of stations that are 
needed without compromising the coverage of the concentrations across the study area. 
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1. Introduction 
It is well known that the air pollution causes adverse effects on human health in addition to the impact on envi-
ronment. Due to rapid urbanization and industrialization, air pollution assumes high significance particularly in 
large cities. Continuous monitoring of the air pollution with a well-designed air quality monitoring network 
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(AQMN) is the first step in addressing this issue. Obtaining the continuously monitored data to ensure the safe 
levels of air quality is one of the primary objectives of AQMN, in addition to evaluating exposure hazards and 
implementing effective control strategies. Environmental protection agencies would be looking for an optimal 
design of AQMN meeting these objectives with an obvious focus on minimizing cost. 

The methodology to design a new AQMN or evaluate an existing AQMN attracted the attention of several 
researchers. Maximum sensitivity of the collected data [1] [2] and maximum coverage factors such as intensity 
of emissions, source distance and meteorology [3] were one of the first techniques to design an AQMN. Statis-
tical measure of information content [4] and Fisher’s information measure [5] was used to determine the opti-
mum number and location of monitors in a network. The design of an AQMN in the greater London area was 
conducted by Handscombe and Elson [6] based on the concept of a spatial correlation analysis. The same con-
cept combining with potential of violation was used by Arbeloa et al. [7] to design an optimal air quality moni-
toring networks. Noll and Mitsutome [8] developed a method to design AQMN based on expected ambient pol-
lutant dosage. This method ranks potential locations by calculating the ratio of a station’s expected dosage over 
the study area’s total dosage. Another methodology developed by Nakamori and Sawaragi [9] determines the 
representative areas of monitor stations in urban areas. A different perspective, based on the use of Shannon in-
formation, was initiated with the results of Caselton and Zidek [10], applied in a univariate setup by Sampson 
and Guttorp [11] and Guttorp et al. [12] and later extended to a multivariate context by Perez-Abreu and Rodri-
guez [13]. The concept of sphere of influence and figure of merit was applied by McElroy et al. [14] to calculate 
the minimum number of air quality monitoring sites. A simple methodology for siting ambient air monitors at 
the neighborhood scale was developed by Richard et al. [15] and applied as a case study in Hudson County. 

Linear programming approach was also used by many researchers to site optimum AQMN. A multi-attribute 
utility function method was used for siting the air quality network by Kainuma et al. [16]. Trujillo-Ventura and 
Ellis [17] applied multiple objectives, including spatial coverage, violation detection, data validity, and a 
weighting method to determine the most suitable network for Tarragona, Spain. Chen et al. [18] developed a 
multiple objective optimization model for air quality monitoring networks in Taoyuan County, Taiwan. A mul-
tiple objective optimization model and procedure for sustainable air quality monitoring networks planning were 
developed. A holistic approach was adapted for optimal design of air quality monitoring network expansion in 
an urban area by Mofarrah and Husain [19]. In this approach multiple-criterion method with the spatial correla-
tion technique was implemented to design an expanded air quality monitoring network of Riyadh city in Saudi 
Arabia. Tseng and Ni-Bin [20] proposed a Genetic Algorithm (GA) based compromise programming technique 
for assessing the relocation of strategy of urban air quality monitoring network with respect to the mul-
ti-objective and multi-pollutant design criteria. Silva and Quiroz [21] used Shannon information index to optim-
ize atmospheric monitoring network by excluding the least informative stations with respect to different air pol-
lutants. An optimal design of AQMN was done around a refinery using a mathematical model based on the mul-
tiple cell approach with simultaneous multiple pollutants by Elkamel et al. [22]. Lu et al. [23] used the principal 
component analysis (PCA) and cluster analysis to optimize the air quality monitoring network in Hong Kong. 
PCA and fuzzy c-means clustering was applied for assessment of air quality monitoring in Turkey by Dogru-
parmak et al. [24]. The authors showed that a number of monitoring stations can be decreased using the metho-
dology. Ferradas et al. [25] developed a methodology based on self-organizing map (SOM) artificial neural 
networks for integrating data about multiple measured pollutants to group monitoring stations according to their 
similar air quality. The proposed method considered the subsequent geographical mapping of the clusters of sta-
tions observed with the SOM, which made it possible to detect geographically different areas that share similar 
air pollution problems.  

The strides that the field Geographical Information System (GIS) and its components (such as interpolation 
methods) are making as an application in almost every field are incredible. GIS and spatial interpolation tech-
niques were also used in AQMN. Bayraktar et al. [26] used a Kriging-based approach to locate sampling site for 
assessing the air quality. Long years of the smoke data measurements were used in the determination of the re-
gion for the representation by drawing contours through the Kriging method. Then, the selection of the sampling 
site in this region was done based on the EPA criteria. External drift Kriging of NOx concentrations with disper-
sion model output was used by Kassteele et al. [27] to reduce the uncertainties in parameter estimation due to 
the reduction of air quality network. GIS ancillary variables were used to predict volatile organic compound and 
nitrogen dioxide levels at unmonitored locations [28]. The predictive equations were developed by regressing 
the passive monitor measurements at the 22 monitored schools on land-use variables derived from GIS. Univer-
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sal Kriging interpolation method was found to perform better than other methods, when a comparison was made 
between various interpolation methods by developing EU-wide high resolution air pollution maps [29]. The best 
method to model concentrations was selected on the basis of predefined performance measures; correlation 
coefficient and RMSE. A generalized monotonic regression based on B-splines with an application to air pollu-
tion data was proposed by Leitenstorfer and Tutz [30] and spline method was used to estimate the varying health 
risks from air pollution across Scotland by Duncan [31].  

The methods summarized above are very useful, well established and has been implemented widely; however 
it appears a simple GIS based methodology would further reduce the complexities of AQMN design. The basic 
advantage of using GIS is that it organizes geographic data in such a way that the decision making process be-
comes easy. In addition to this, it provides several advanced functionalities to manage statistical and spatial data, 
interpolate the data to create smooth surface, extract data from the interpolated surface, and create algorithms to 
automate the process. Furthermore, it creates the results that can be visualized in interactive maps which will 
further simplify the decision making process. Taking the cue on these advantages, this paper proposes a simple 
and innovative process to optimize AQMN by using GIS, interpolation methods and the historical data. The ex-
isting stations are systematically eliminated by creating several interpolated maps and comparing it with the ob-
served values. The number of stations that can be eliminated is governed by the pre-defined performance meas-
ures criteria. In recent times an increasing trend of air pollution has been observed in Riyadh city of Saudi Ara-
bia and there is an emphasis on frequent air pollution measurements [32], hence Riyadh is used as a case study 
to test the proposed methodology.  

2. Methodology 
2.1. Interpolation Methods 
Interpolation predicts values for cells in a raster using a limited number of sample data points, which helps in 
predicting unknown values for any geographic station. Five interpolation methods were selected to estimate the 
concentrations of air pollution at the unknown stations. The selected methods were 1) Inverse Distance 
Weighted (IDW); 2) Spline (SPL); 3) Ordinary Kriging (OK); 4) Universal Kriging (UK) and 5) Natural 
Neighbor (NN). These methods have been widely used in estimating the air pollution concentrations.  

The IDW uses a method of interpolation that estimates cell values by averaging the values of sample data 
points in the neighborhood of each processing cell [33]. The closer a point is to the center of the cell being esti-
mated, the more influence or weight it has in the averaging process and has been used in several instances to in-
terpolate the air pollutant concentrations [34]-[36]. 

The SPL uses an interpolation method that estimates values using a mathematical function that minimizes 
overall surface curvature, resulting in a smooth surface that passes exactly through the input points. This method 
was found superior in varying health risk from air pollution [31] and also was recommended by Leitenstorfer 
and Tutz [30]. 

Kriging is an advanced geo-statistical procedure that generates an estimated surface from a scattered set of 
points with z-values. While Kriging is a weighted combination of monitor values, this method also uses spatial 
auto correlation among data to determine the weights. Generally Kriging has two different forms i.e. ordinary 
and universal Kriging [37]. In the ordinary Kriging the mean value is assumed constant and determined during 
interpolation and universal Kriging assumes that data follows a known trend. Ordinary and universal Kriging 
have previously been used with success to model ozone [38] and particles [39] at the local scale, and to model 
broad scale variations in background air pollution [40]. Kriging has also been implemented in several other stu-
dies [29] [41] [42]. 

Natural Neighbor interpolation finds the closest subset of input samples to a query point and applies weights to 
them based on proportionate areas to interpolate a value. It is also known as Sibson or “area-stealing” interpolation. 

2.2. Performance Measures 
A statistical error is the amount by which an observation differs from its expected value. The statistical indices 
selected to measure performance are Root Mean Square Error (RMSE), Mean Absolute Percentage Error 
(MAPE), Nash-Sutcliffe equation (NSE) [43], and Accuracy Factor (ACFT) [44] given by Equations (1) to (4) 
respectively. Pearson correlation coefficient (r) was also measured to check the strength and direction of linear 
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relationship between the observed and interpolated values. 
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where Intri = Interpolated value; Obsi = Observed value; n = number of observations. 

RMSE is the frequently used measure of the differences between values predicted by a model or an estimator 
and the values actually observed. It basically represents the sample standard deviation of the differences be-
tween predicted and observed values. RMSE gives important information in predicting the magnitude of a pol-
lutant concentration, a measure close to zero represents good predictions. The absolute mean percentage error 
denoted by MAPE is calculated by dividing sum of percentage error by number of observations, and a value 
equal or close to zero is considered ideal. Coefficient of correlation is a measure of linear dependence between 
two variables, and it was chosen to get an indication of the correspondence of timing and evolution between ob-
served and interpolated concentration values. The coefficient of efficiency (NSE) indicates the normalized fit of 
the model, the value ranges from −∞ to 1. It compares the mean square error generated by a particular model 
simulation to the variance of the output sequence; a value of 1 indicates a perfect fit [43]. Ross [44] proposed a 
simple multiplicative factor called accuracy factor (ACFT) representing the spread of the results of the modelled 
data. A value of one indicates that there is perfect agreement between all the predicted and the modelled values 
and values larger than one indicates the less accurate average estimate. 

Several studies have used error statistics in comparing observed and predicted meteorology and air quality 
data. RMSE was used by Shad et al. [42] in comparing the observed data with the predicted air pollution using 
fuzzy genetic linear Kriging. Monteiro et al. [45] used it in bias correction techniques to improve air quality en-
semble predictions and Son et al. [46] used in the study of individual exposure to air pollution and lung function 
in Korea. EU-wide maps were prepared based on the predictor variables and the modelled air pollution concen-
trations were selected on the predefined performance measures r2 and RMSE. A value of RMSE < 10 and r2 > 
0.5 were considered a good performance measure [29]. Singh et al. [47] used RMSE, ACFT and NSE as per-
formance measures of different linear and nonlinear modeling approaches for predicting urban air quality. Solar 
radiation and air pollution index were estimated based on linear, exponential and logarithmic models and the 
similar indices were used to check performance index in China [48]. In the current study, RMSE, MAPE and r2 
were primarily used as performance measure; RMSE < 8 MAPE < 25% and r2 > 0.5 were considered a good 
measure. 

2.3. Station Elimination Process 
The main objective of this optimization process is to eliminate as many stations as possible and filling in the 
missing information through the interpolated values. The steps involved in this process are illustrated in Figure 
1 and elaborated as follows. 

Step 1: Selection of stations 
As a first step, a single station (P) or set of stations (P1, P2...) are selected to be eliminated from the vector da-

taset used for creating the raster. A particular station or set of stations can be chosen or set of all possible sta-
tions tested in a loop. 

Step 2: Storing the observed values 
The observed concentrations at the selected station (P ()) or stations (P1 (), P2 () …) are stored as arrays. These 

values will later be compared with the interpolated values.  
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Figure 1. Station elimination process. 
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Step 3: Creating vector layer 
A vector layer is a coordinate-based data model that represents geographic features, such as points. Each point 

is the station represented by the geographical coordinates. The layer has a column of “z” values used for inter-
polation. Several columns of “z” values i.e. the concentration of the pollutants are added to the vector for simu-
lation. In this step the vector layer is created without the selected stations. 

Step 4: Creating raster from the vector 
Raster is defined as a spatial data model that defines space as an array of equally sized cells arranged in rows 

and columns, and composed of single or multiple bands. Each cell contains an attribute value and location coor-
dinates. Rasters are created using the vector data and applying appropriate interpolation techniques. In this step 
five rasters are created using IDW, Spline, Ordinary Kriging, Universal Kriging and Natural neighbor methods. 

Step 5: Extracting the interpolated value 
This step calculates the predicted concentrations. The values at the eliminated stations are extracted from the 

created rasters. The values for each interpolation method (IDW, SPL, OK, UK, and NN) are stored in separate 
arrays (IDW1(), IDW2()…; SPL1(), SPL2()…; OK1(), OK2()…; UK1(), UK2()…; and NN1(), NN2()… ). This 
process of interpolation and value extraction are repeated for all the observed datasets. 

Step 6: Performance measure  
The process of interpolation and value extraction generates arrays of the interpolated values. In this step, the 

performance measures are applied to observed and interpolated values. RMSE, Bias, and correlation coefficient 
are calculated for the selected stations and the five interpolation methods. The interpolation method that gene-
rates the minimum performance measure is then chosen and the others are discarded. These measures are com-
pared with the pre-defined threshold limits and if the measures are within the limit, they are stored in the possi-
ble station combinations array C (). 

Step 7: Repeat for another station combination 
The process is repeated for another station combination until all the combinations are exhausted. 
Step 8: Finding the best possible station combination 
Best possible station combinations can be chosen from the list of possible station combination array C (). The 

decision maker can then choose from the list of possible station combinations which can be eliminated from the 
AQMN.  

2.4. Study Location and Field Measurements 
The proposed methodology is applied to the city of Riyadh, Saudi Arabia. The city is divided into sixteen cells 
that are identical in area and each cell is 12 km × 12 km. The measurements were carried out intermittently from 
September 2011 to September 2012. Most of the measurements have been conducted approximately in the cen-
ter of each cell (Figure 2) with two equipped mobile air quality monitoring stations capable of monitoring me-
teorological variables, as well as CO, O3, NOx, CH4, OC, EC and PM2.5. However, the methodology suggested 
in this study is implemented for the following four criteria pollutants i.e. SO2, NOx, O3 and CO. The type of 
sensors used with their respective method of monitoring for the pollutants utilized in this study are: NO, NO2 
and NOx-Chemiluminescence; CO-Dual Beam NDIR; O3-UV Photometer; and SO2-UV Fluorescence. 

As the measurements are staggered, in order to get a continuous dataset, 24 datasets were prepared from the 
available measurements by averaging the hourly measurements for the entire study period for all the 16 stations. 
These 24 datasets were used for simulation to create the raster with different interpolation techniques and com-
pared with the observed values. ESRI’s ArcGIS (ESRI, Redlands) exposes several functions to run the interpo-
lations and extract the necessary data. These functions were customized to run the simulation process through 
Microsoft Visual Basic for application (VBA) environment in ArcGIS. 

3. Results and Discussion 
The pollutant concentration data were collected from 16 stations as shown in Figure 2. It is assumed that a 
minimum of 8 stations are needed to produce reliable interpolated maps, therefore up to 8 possible elimination 
scenarios were simulated. Table 1 outlines the simulation details such as the number of stations to be eliminated, 
possible number of combinations, number of simulations and the approximate time of simulation (on a high end 
PC). As seen in the table, the station combinations and the computing power required increase with the increase 
in number of stations. The methodology proposed in this study is tested on 4 pollutants namely O3, NOx and  
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Figure 2. Distribution of AQMN in Riyadh. 

 
Table 1. Simulation parameters. 

No. of stations to be eliminated Possible combinations No. of simulations Approximate time of simulation (hours) 

1 16 1920 0.3 

2 120 14,400 2.25 

3 560 67,200 10.5 

4 1820 218,400 34 

5 4368 524,160 81 

6 8008 960,960 150 

7 11,440 1,372,800 214 

8 12,870 1,544,400 241 

 
SO2 and CO, and the results of the simulations are discussed as follows. The interpolation was performed using 
five methods i.e. IDW, Spline, OK, UK and NN. The IDW and UK outperformed other methods particularly in 
terms of producing lower RMSE, MAPE values and higher value of r2.  

3.1. O3 
Table 2 presents the results of the simulation for O3. The values of RMSE, r2, MAPE, NSE and ACFT are 
shown along with the number of stations to be eliminated. The variations of RMSE, MAPE and r2 with respect 
to stations are illustrated in Figures 3-5 respectively. The station 11 was the best single station that could be 
eliminated and the stations 4, 5, 6, 8, 11, 12, 15, and 16 were the best eight stations. RMSE and MAPE increased 
from 3.224 to 7.018 and 4.041 to 49.61 from one station elimination to eight respectively. Similarly NSE and 
ACFT decreased from 0.944 to 0.775 and 0.960 to 1.138, respectively. In order to limit MAPE within 25%, 
maximum number of station that could be eliminated were 6 (4, 8, 11, 12, 13, and 15), this also generated a sa-
tisfactory RMSE (6.113) and r2 (0.831). Accuracy factor i.e. ACFT was 1.015 which is considered to be very 
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good performance. The remaining 10 stations that are required to produce satisfactory maps of ozone are shown 
in Figure 6; these stations could essentially be considered as hotspots of O3 emissions.  

The primary sources of ground level O3 are automobiles, cement and power plants, construction activities and 
biogenic or natural sources. Small industries such as paint shops, dry cleaners and bakeries are also known to 
contribute O3. These 10 stations fall within these areas. The stations 10 and 7 are located in dense residential 
area, and the stations 2 and 3 are in industrial area. The agricultural areas are found near station 9, and construc-
tion activities are reported near station 14. Station 1 and 16 are the city outskirts where small scale industries are 
located. 

3.2. NOx 
The simulation results for NOx concentrations are shown in Table 3. For the one station elimination scenario, it 

 
Table 2. Performance measures for O3 simulations. 

No. of station(s) to 
be eliminated 

Optimal station(s) combination 
that can be eliminated 

Interpol. 
method RMSE r2 MAPE NSE ACFT 

1 11 IDW 3.224 0.953 4.041 0.944 0.960 

2 11, 15 IDW 3.811 0.925 5.153 0.919 0.973 

3 4, 11, 15 UK 3.964 0.913 7.991 0.901 1.003 

4 4, 11, 12, 15 UK 4.588 0.911 15.699 0.884 1.099 

5 4, 5, 11, 15, 16 IDW 5.495 0.862 22.805 0.844 1.095 

6 4, 8, 11, 12, 13, 15 UK 6.113 0.831 25.322 0.821 1.015 

7 4, 5, 8, 11, 12, 15, 16 IDW 6.488 0.832 36.469 0.809 1.081 

8 4, 5, 6, 8, 11, 12, 15, 16 IDW 7.018 0.817 49.610 0.775 1.138 

 

 
Figure 3. Variation of RMSE with respect to combination of stations that are eliminated. 
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Figure 4. Variation of MAPE with respect to combination of stations that are eliminated. 

 

 
Figure 5. Variation of r2 with respect to combination of stations that are eliminated. 
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Figure 6. Stations required to generate O3 concentration maps (RMSE < 7 and MAPE < 25). 

 
Table 3. Performance measures for NOx simulations. 

No. of station(s) to 
be eliminated 

Optimal station(s) combination 
that can be eliminated 

Interpol. 
method RMSE r2 MAPE NSE ACFT 

1 11 IDW 5.999 0.865 3.792 0.848 1.020 

2 3, 11 IDW 7.470 0.808 4.006 0.731 0.961 

3 3, 5, 11 UK 9.084 0.619 6.591 0.599 0.984 

4 3, 5, 7, 11 UK 10.766 0.439 12.184 0.430 1.025 
5 3, 5, 7, 11, 14 IDW 11.521 0.461 15.621 0.459 1.022 
6 3 , 5, 7, 11, 14, 16 UK 12.119 0.438 19.839 0.438 1.019 
7 3 , 5, 6, 7, 11, 14, 16 IDW 14.834 0.395 23.148 0.341 0.966 
8 1, 3 , 5, 6, 7, 11, 14, 16 IDW 14.684 0.312 27.468 0.287 0.977 

 
was found that station 11 was the best one with a RMSE = 5.999; MAPE = 3.792 and r2 = 0.864. These values 
increased to 14.684, 27.468 and 0.312, respectively, for 8 stations eliminations (Figures 3-5). For MAPE scena-
rio of ≤25, 7 a maximum of 7 stations could be eliminated (3, 5, 6, 7, 11, 14, and 16), however RMSE and r2 
values were not within the predefined limits. Taking the MAPE as priority, a minimum of 9 stations is needed to 
produce satisfactory NOx concentration maps as shown in Figure 7. In addition to the industrial emissions, the 
primary source of NOx is from the automobile emissions, these are reasonably evenly distributed over the study 
area, and hence less number of stations is required to produce the concentration maps. Stations 4 and 8 signify 
the presence of industries and the other stations are spread over the densely populated areas in the city where the 
automobiles move predominantly. The ACFT = 0.966 and NSE = 0.341 supports the elimination of the 7 sta-
tions. 

3.3. SO2 
Station 1, which is located outskirt of the City, was the best one station to be eliminated with RMSE = 2.155,  
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Figure 7. Stations required to generate NOx concentration maps (RMSE < 15 and MAPE < 25).  

 
MAPE = 2.155 and r2 = 0.944. For eight stations, these parameters increased to 9.962, 69.931 and 0.301 respec-
tively as shown in Table 4. To limit the MAPE value to <25, a maximum of 5 stations could be eliminated. 
Figure 8 shows the rest of 11 stations required to produce the SO2 concentration maps. The higher number of 
stations is needed for this, as the sources of SO2 are distributed with a wide variation in the concentration. The 
stations in the south i.e. 2, 3, 7, 8 are predominantly located in the industrial area where power plants and refine-
ries are located. Other stations are in the residential area, where exhaust from automobile could be the source of 
SO2. Station 9 is in the agriculture area and 14 and 16 are located in the automobile workshops and small scale 
industries zones. 

3.4. CO 
The results of simulations run on CO data are shown in Table 5. Since the concentrations of CO were very small, 
RMSE values were also very small ranging from 0.144 to 0.329 (Figure 3). MAPE values ranged from 6.608 to 
51.586 for one station to eight station elimination as shown in Figure 4. The station 10 was the best single sta-
tion that could be eliminated and the stations 2, 4, 7, 9, 10, 14, 15, and 16 were the best eight stations. However, 
in order for the MAPE to be within 25, a maximum of only 5 stations could be eliminated as shown in Table 5. 
The NSE, ACFT and r2 values were satisfactory for this 5 station elimination. Figure 9 shows the rest of 12 sta-
tions that are needed to make good CO concentration maps. As shown in the figure, most of the stations are lo-
cated in industrial zones or the highly densely populated areas. 

3.5. Overall 
As observed from Tables 2-5, there is no single station which is common among the list of possible elimination 
stations. Table 6 outlines the stations required against each pollutant to achieve MAPE level of 25. This indi-
cates that the sources of the pollutants are highly varied with respect to the location. It will be up to the decision 
maker to prioritize the pollutant and select the stations. Tables 7-10 illustrate the statistical parameters taking 
the priority stations for O3, NOx, SO2 and CO, respectively. For the case of O3 as priority, MAPE for NOx  
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Table 4. Performance measures for SO2 simulations. 

No. of station(s) to 
be eliminated 

Optimal station(s) combination 
that can be eliminated 

Interpol. 
method RMSE r2 MAPE NSE ACFT 

1 1 UK 2.155 0.323 2.155 −1.507 0.983 

2 1, 4 IDW 3.991 0.446 5.925 0.421 1.029 

3 1, 4, 13 UK 4.599 0.375 10.792 0.355 1.042 

4 1, 4, 6, 13 IDW 4.737 0.268 15.562 0.167 1.063 

5 1, 4, 6, 13, 15 IDW 5.124 0.582 25.187 0.428 1.140 

6 1, 4, 6, 11, 13, 15 IDW 6.258 0.642 43.558 0.284 1.248 

7 1, 4, 6, 7, 11, 13, 15 UK 7.579 0.469 60.337 0.038 1.278 

8 1, 4, 6, 7, 9, 11, 13, 15 UK 9.962 0.301 69.931 0.100 1.279 

 
Table 5. Performance measures for CO simulations. 

No. of station(s) 
to be eliminated 

Optimal station(s) combination 
that can be eliminated 

Interpol. 
method RMSE r2 MAPE NSE ACFT 

1 10 IDW 0.144 0.877 6.608 0.841 0.914 

2 10, 16 UK 0.174 0.838 6.842 0.775 0.901 

3 2, 10, 16 UK 0.237 0.807 11.283 0.671 0.863 

4 2, 10, 14, 16 UK 0.239 0.718 16.928 0.659 0.915 

5 2, 9, 10, 14, 16 IDW 0.236 0.665 25.182 0.647 0.953 

6 2, 4, 9, 10, 14, 16 IDW 0.287 0.581 34.782 0.476 0.870 
7 2, 4, 7, 9, 10, 14, 16 IDW 0.288 0.509 44.646 0.467 0.951 
8 2, 4, 7, 9, 10, 14, 15, 16 UK 0.329 0.444 51.856 0.374 0.926 

 

 
Figure 8. Stations required to generate SO2 concentration maps (RMSE < 5 and MAPE < 25). 
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Figure 9. Stations required to generate CO concentration maps (RMSE < 0.24 and MAPE < 25). 

 
Table 6. Pollutant and the stations needed to achieve MAPE < 25. 

Pollutant Stations needed to achieve MAPE < 25 

O3 1, 2, 3, 5, 6, 7, 9, 10, 14, 16 

NOx 1, 2, 4, 8, 9, 10, 12, 13, 15 

SO2 2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 16 

CO 1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15 

 
Table 7. Parameters with priority as O3. 

Pollutant RMSE r2 MAPE NSE ACFT 

O3 6.114 0.831 25.322 0.821 1.016 

NOx 24.173 0.208 57.374 0.189 1.122 

CO 0.490 0.234 82.670 0.221 1.112 

SO2 17.579 0.056 240.894 −4.570 2.302 

 
Table 8. Parameters with priority as NOx. 

Pollutant RMSE r2 MAPE NSE ACFT 

NOx 14.834 0.396 23.148 0.341 0.966 

CO 0.565 0.285 73.538 0.275 1.183 

O3 10.736 0.815 85.331 0.432 1.438 

SO2 37.826 0.109 198.364 −0.194 0.900 
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Table 9. Parameters with priority as SO2. 

Pollutant RMSE r2 MAPE NSE ACFT 

SO2 5.125 0.582 25.128 0.431 1.139 

O3 11.834 0.550 28.723 0.496 0.929 

NOx 26.512 0.063 51.687 0.045 1.101 

CO 0.740 0.182 80.081 0.141 1.038 

 
Table 10. Parameters with priority as CO. 

Pollutant RMSE r2 MAPE NSE ACFT 

CO 0.236 0.665 25.181 0.647 0.953 

NOx 17.480 0.287 31.760 0.283 1.047 

O3 15.769 0.343 60.332 0.310 1.004 

SO2 20.571 0.149 327.356 −1.631 3.067 

 
and CO is about 57 and 82 while SO2 has a very high MAPE value of over 240. Considering NOx as priority, 
MAPE value for CO and O3 were about 73 and 85. In this case also SO2 has very high MAPE (over 198) as 
shown in Table 8. The MAPE value of O3 and NOx were less than 50 in the case of SO2 priority stations, while 
CO was little over 80. Taking CO as priority produced a MAPE value of 31 and 60 for NOx and O3 while SO2 
produced exorbitantly high value of 327 (Table 10).  

4. Conclusions 
A simple method of optimizing the AQMN is proposed using GIS, interpolation techniques and historical data. 
Existing air quality stations are systematically eliminated and the missing data are filled in using the most ap-
propriate interpolation technique. The interpolated data are then compared with the observed data. Pre-defined 
performance measures RMSE, MAPE and r2 were used to check the accuracy of the interpolated data. NSE and 
ACFT supported the validity of the interpolated data. The process was simulated for several sets of observed 
data using an algorithm developed in GIS environment. In order to achieve a MAPE value of 25 or less, no 
combination of station could be eliminated for all the pollutants. The pollutants could be prioritized to achieve 
the most optimal scenario. The results of the prioritization showed that the most optimal scenario was for the 
SO2 stations, which achieved MAPE for O3, NOx and CO about 28, 51 and 80, respectively. 

This methodology proves to be useful to the decision makers to find optimal numbers of stations that are 
needed without compromising the coverage of the concentrations across the study area. Although it is a simple 
procedure, it does have few limitations. A continuous set of data is required to get the reliable simulation results, 
owing to the unavailability of such continuous dataset; the staggered dataset is averaged as hourly data for a day 
and simulated in present case study. Secondly, the process is computing intensive and hence requires large 
computing resources, though not very expensive these days. Lastly, more parameters can be included in the per-
formance measures to get the most appropriate results. 
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