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Abstract 
 
The objective of this paper is to develop a variable learning rate for neural modeling of multivariable 
nonlinear stochastic system. The corresponding parameter is obtained by gradient descent method optimiza-
tion. The effectiveness of the suggested algorithm applied to the identification of behavior of two nonlinear 
stochastic systems is demonstrated by simulation experiments. 
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1. Introduction 

The Neural Networks (NN) was well used in modeling of 
nonlinear systems because of its ability of learning, its 
generalization and its approximation [1-4]. Indeed, this 
approach provides an effective solution for wide classes 
of nonlinear systems which are not known or only partial 
state information is available [5]. 

Identification is the process of determining the dy- 
namic model of a system from measurements inputs/ 
outputs [6]. Often, the measured output system is tainted 
noise. This is due either to the effect of disturbances act-
ing at different parts of the process, either to measure-
ment noise. Therefore these noises may introduce errors 
in the identification. The stochastic model is a solution to 
overcome this problem [7]. In this paper, a multivariable 
nonlinear stochastic system is our interest. 

Among the parameters of the NN model, the learning 
rate ( )  has an important role in training phase. In this 
phase several tests are taken account to find the suitable 
fixed value. For instance, this parameter can slow down 
this phase of training [8,9] if it is small. However, if this 
parameter is large, the training phase is occurring quickly 
and it becomes unstable [8,9]. To overcome this problem, 
an adaptive learning rate was asked in [8,9]. This solu- 
tion is applied in training algorithm of a nonlinear sin- 
gle-variable system [8] and in multivariable nonlinear 
system [9]. In this paper, a variable learning rate of neu- 
ral network is developed in order to model a multivari- 
able nonlinear stochastic system. Different cases of sig- 
nal ratio to noise (SNR) are taken account to show the 

influence of the noise in identification and the stability of 
training phase. 

This paper is organized as follows. In second section, 
a multivariable system modeling by neural networks is 
presented. In third section, the fixed learning rate method 
is showed. The simulation of the multivariable stochastic 
systems by NN method using fixed learning rate is de- 
tailed in the fourth section. The development of the 
variable learning rate and results simulations are pre- 
sented in fifth section. Conclusions are given in sixth 
section. 

2. Multivariable System Modeling by Neural 
Networks 

To find the neural model of such nonlinear systems, 
some stages must be respected [10]. Firstly the input 
variables are standardized and centered. Then, the struc- 
ture of the model is chosen. Finally, the synaptic weights 
are estimated and the obtained model must be validated. 
In this context, different algorithms are interested of the 
synaptic weights estimation. For instance, the gradient 
descent algorithm [11], the conjugate gradient algorithm 
[11], the one step secant [11], the Levenberg-Marquardt 
method [11] and resilient Backpropagation algorithm [11] 
are developed and confirmed their effectiveness in train- 
ing. In this paper, the gradient descent algorithm is our 
interest. 

On the basis of the input and output relation of a sys- 
tem, the above nonlinear system can be expressed by a 
NARMA (Nonlinear Auto-Regressive Moving Average) 
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model [12], that is given by the Equation (1). The archi- 
tecture of the RNN is presented in Figure 1. 
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The output of the  hidden node is given by the 
following equation:  
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The  neural output is given by the following equa-
tion: 
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Finally, the compact form is defined as: 
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The principle of neural modeling of the multivariable 
stochastic system is showing in Figure 1. 

To show the influence of disturbances on modeling, a 
noise signal  is added to the output system. Dif- 
ferent cases of Signal Noise Ratio ( iSNR ) are taken. This 
( iSNR ) measures the correspondence between the system 
output and the estimated output, the equation of  
is as follows: 
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Figure 1. Principle of the neural modeling of the multivari-
able stochastic system. 
 

The accuracy of correlations relative to the measured 
values is finding by various statistical means. The criteria 
exploited in this study were the Relative Error (RE), 
Root Mean Square Error (RMSE) and Mean Absolute 
Percentage Error (MAPE) [11] given by : 
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3. Fixed Learning Rate Method 

The neural system modeling is the research of parame- 
ters (weights) model. The search of these weights is the 
subjects of different works [1-6,8-13]. The gradient de- 
scent method is one among different methods which was 
well applied on neural identification for single-variable 
system [8] and for multivariable system [9]. In this paper, 
the same principle is suggested to be applied on neural 
identification of the multivariable stochastic systems. 
Indeed, the  criterion is minimized as follows: thi
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By application of the GD method, the theory of [1] is 
used; we find then [9]: 
 For the variation of the synaptic weights of the hidden 

layer towards the output layer with s  .  1, ,i n

 
 

 
   i i

il i i i
il il

J k o k
z e

z k z k
 

 
   

 
k         (9) 

The compact form (4) is used here, so we find 
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Finally, the synaptic weights of the hidden layer to- 
wards the output layer can be written in the following 
way: 
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 For the variation of the synaptic weights of the input 
layer towards the hidden layer.  
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Finally, the synaptic weights of input layer towards the 
hidden layer can be written in the following way: 
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In these expressions, i  is a positive constant value 
[8,9] which represents the learning rate (0 1)i   and 

 F Pv  represents Jacobian matrix of  F Pv
T
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4. Simulation of Multivariable Nonlinear 
Stochastic Systems  ( 5)SNR 



In this section, two types of multivariable nonlinear sto- 
chastic systems with 2 dimensions  are 
presented with . The system   [8] and 

 [14] are defined respectively by the following 
equations:  
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with 1  and 2  
are a random signals, or 1u  and 2  

are the input signals of the systems considered defined 
by:  
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The input signal  and  are presented in Figure 
2. 

1u 2u

4.1. Simulation Results of System (S1) 

A dynamic NN is used to simulate a multivariable 
nonlinear stochastic system (S1)  . In Figure 
3, the evolution of the process output and the NN output 
of the system (S1) is presented. The estimation error be- 
tween these two outputs is presented in Figure 4. 
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The obtained results, present that for a fixed learning 
rate 1 0.32  , the NN output 1  follows the measured 
output 1  with an error of prediction 
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Figure 2. Input signals of the multivariable nonlinear sto-
chastic system. 
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Figure 3. Output of process and NN of system (S1) using a 
fixed learning rate. 
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Figure 4. Learning error between the output of process and 
NN. 
 

If this system has not an added noise, the error of pre-
diction is 

 
and 1 0.0384e  2 0.0375e   [9]. 

4.2. Simulation Results of System (S2)  

A dynamic NN is used to simulate a multivariable 
nonlinear stochastic system (S2)  . In Figure 
5, the evolution of the process output and the NN output 
of the system (S2) is presented. The estimation error be- 
tween these two outputs is presented in Figure 6. 
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Figure 5. Output of process and NN of system (S2) using 
fixed learning rate. 
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NN. 
 
whose learning rate is 2 0.25  .  

However, if 1 0b   and , the error of predict- 
tion is 

2 0b 
1 0.0531e 

 2

Table 1 shows the obtained results of each statistical 
indicator in the system (S1) and (S2) in the case of fixed 
learning rate. 

and  [9]. 0.047 1e

Three cases of  SNR 5,10 and 20  are taken to show 
the influence of disturbances modeling. The obtained 
results are presented in Table 2 for the first system and 
in table 3 for the second system. 

In both Tables 2 and 3, when the  increases the SNR
 imse e  decrease, it is due under the presence of dis-

turbances in the system. 
In this section, the simulation of the two systems (S1 

and S2) is carried out using a fixed learning rate. To find  
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Table 1. Values of different statistical indicators. 

SNR = 5% RE MAPE 

 
S1 

 
S2 

e1 
e2 
e1 
e2 

4.370e – 4 
4.106e – 4 
2.616e – 4 
3.542e – 4 

0.0437 
0.0211 
0.0262 
0.0354 

 
Table 2. Different cases of SNR. 

SNR 5% 10% 20% 

mse(e1) 7.611e – 5 6.679e – 5 5.648e – 5 

mse(e2) 7.458e – 5 6.643e – 5 4.205e – 5 

 
Table 3. Different cases of SNR. 

SNR 5% 10% 20% 

mse(e1) 8.698e – 5 7.705e – 5 5.947e – 5 

mse(e2) 8.688e – 5 7.562e – 5 5.278e – 5 

 
the suitable learning rate it is necessary to carry out sev- 
eral tests by keeping the condition that . This 
research of the learning rate can slow down the phase of 
training. To cure this disadvantage and in order to accel-
erate the phase of training, a variable learning rate is used 
and a fast algorithm will be developed. 
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by application of [8,9] 
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

 , the condition  1 1i i k    has to  

be satisfied [8,9]. This condition implies  
 10 2i i k   

i

. It is clear that the upper range of the 
learning rate ( ) is variable because  i k  depends on 

, il  and lj . The fastest learning occurs when the 
learning rate is: 
v z p

     
    

1 2 2( ) 1 '

   ' '
il

T
i i l

T T
il

k f h F Pv F

z F Pv F Pv z v v

     

 

Pv
   (28) 

Note that this selection of i  implies  
     1 1 0e k k e k i i i i      . It’s certain that the 

learning process cannot finish instantly because of the 
approximation which is caused by the finite sampling 
time contrary to the theory which is proved that it can be 
happen if infinitely fast sampling can occur. 

ljf h F Pv z z F Pv P v

 



    


   



      

  (23) 

Using the obtained variable learning rate i , the syn- 

aptic weights ilz  and ljp  will be respectively. it’s 

certain that the learning process cannot finish instantly 
because of the approximation caused by the finite sam- 
pling time contrary to the theorie which proved that it 
can be happen if infinitely fast sampling can occur it’s 
certain that the learning process cannot finish instantly 
because of the approximation caused by the finite sam- 
pling time contrary to the theorie which proved that it 
can be happen if infinitely fast sampling can occur it’s 
certain that the learning process cannot finish instantly 
because of the approximation caused by the finite sam- 
pling time contrary to the theorie which proved that it 
can be happen if infinitely fast sampling can occur it’s 

Copyright © 2011 SciRes.                                                                                  ICA 



A. ERRACHDI  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  ICA 

172 

certain that the learning process cannot finish instantly 
because of the approximation caused by the finite sam- 

pling time contrary to the theorie which proved that it 
can be happen if infinitely fast sampling can occur. 

         
         

i
il i l i T T

l il

F Pv e k
z f h F Pv e k

T
ilf h F Pv F Pv z F Pv F Pv z v v

 


  
    

             (29) 

       
         

( )il iT
lj i l il i T T

l il

F Pv z v e k
p f h F Pv z v e k

T

T
ilf h F Pv F Pv z F Pv F Pv z v v

 



   

    
          (30) 

Finally,  and  can be:  ilz k ljp

       
       

1
( )

i
il il T T

l il

F Pv e k
z k z k

T
ilf h F Pv F Pv z F Pv F Pv z v v

  
    

                (31) 

       
         

1 il i
lj lj T T

l il

F Pv z v e k
p k p k

T

T
ilf h F Pv F Pv z F Pv F Pv z v v


  

    
                (32) 

rate, the neural output 1  follows the measured output 

1  with an error of prediction 1  and that 2  
follows the measured output 2  with an error of predict- 
tion 2

o
y 0.0634e  o

y
0.0588e  . However, if  and 1 0b  2 0b  , the 

error of prediction is 1 0.0175e 
 

and  [9]. 2e  0.0369

5.1. Simulation Results of System (S1) 
 ( 5)SNR 

In this section, the obtained variable learning rate ( 1 , 2 ) 
are applied. In Figure 7, the evolution of the process 
output and the NN output of the system (S1) is presented. 
The error estimation between these two outputs is pre- 
sented in Figure 8. 

5.2. Simulation Results of System (S2) 
( 5)SNR   

The obtained results present that for a variable learning 
The evolution of the process output and the NN output of 
the system (S2) is presented in Figure 9. The error be- 
tween these two outputs is presented in Figure 10. The 
evolution of the squared error in two cases; fixed and 
variable learning rates is presented in Figures 11 and 12. 
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The obtained results, concerning system (S2), present 
that for a variable learning rate, the neural output 1  
follows the measured output  with an error of pre- 
dicttion 

o

1y

1 0.0539e   and that 2  follows the measured 
output  with an error of prediction 

o

2y 2 0.06e 68 . 
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Figure 7. Output of process and NN of system (S1) using a 
variable learning rate. 

Figure 8. Learning error between the output of process and 
NN. 
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Figure 9. Output of process and NN of system (S2) using a 
variable learning rate. 
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Figure 10. Learning error between the output of process 
and NN. 
 
However, if  and , the error of prediction 
is and  [9]. 

1 0b 
2

2 0b 
0.01661  2

The obtained results presented in Figures 11 and 12 
showing that, when a variable learning rate is used, the 
convergence of the squared error is very faster than a 
fixed learning rate is used. 

0.029e  e 

Table 4 shows the obtained results of each statistical 
indicator in the system (S1) and (S2) in the case of vari- 
able learning rate.  

We took three cases of  to show 
the influence of disturbances modeling. The obtained 
results are presented in Table 5 for the first system and 
in Table 6 for the second system. In both tables, when 
the  increases the  decrease, it is due un- 
der the presence of disturbances in the system. 

(5,10 and 20)SNR

( )ie eSNR ms

The obtained values  in Tables 5 and 6 are 
lower compared to which are calculated in Ta- 
bles 2 and 3, that explains the variable rate adjusts with  

( )imse e
( )ie ems

0 200 400 600 800 1000
0

0.5

1
x 10

-8

iterations

M
ea

n 
S

qu
er

 E
rr

or
 

 

 

Fixed rate:0.32

Variable rate

0 200 400 600 800 1000
0

2

4

6

8
x 10

-4

iterations

M
ea

n 
S

qu
er

 E
rr

or
 

 

 

fixed rate:0.27

Variable rate

 

Figure 11. Evolution of the mean squared error of (S1). 
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Figure 12. Evolution of the mean squared error of (S2). 
 

Table 4. Values of different statistical indicators. 

SNR = 5% RE MAPE 

 
S1 

 
S2 

e1 
e2 
e1 
e2 

3.256e – 4 
3.793e – 4 
6.453e – 4 
6.236e – 4 

0.0326 
0.0379 
0.0645 
0.0624 

 
Table 5. Different cases of SNR. 

SNR 5% 10% 20% 

mse(e1) 
mse(e2) 

5.906e – 5 
6.501e – 5 

5.152e – 5 
5.552e – 5 

3.932e – 5 
4.310e – 5 

 
Table 6. Different cases of SNR. 

SNR 5% 10% 20% 

mse(e1) 
mse(e2) 

7.402e – 5 
7.863e – 5 

6.368e – 5 
4.601e – 5 

6.334e – 5 
4.537e – 5 
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changes in examples. 

6. Conclusions 

In this paper, a variable learning rate for neural modeling 
of multivariable nonlinear stochastic system is suggested. 
This parameter can slow down the training phase when it 
is chosen as small, and can be unstable when it is chosen 
as large. To avoid this step, a variable learning rate 
method is developed and it is applied in identification of 
nonlinear stochastic system. The advantages of the pro- 
posed algorithm are firstly the simplicity to apply it in a 
multi-input multi-output nonlinear system. Secondly, the 
gain of the training time is remarked and the result qual- 
ity is noticed. Besides, this algorithm is a manner to 
avoid the search for such fixed training rate which pre- 
sents a disadvantage at the level the phase of training. In 
contrary, the variable learning rate algorithm does not 
require any experimentation for the selection of an ap- 
propriate value of the learning rate. The proposed algo- 
rithm can be applied in real time process modeling. Dif- 
ferent cases of SNR are discussed to test the developed 
method and it showed that the obtained results using a 
variable learning rate is very satisfy than when the fixed 
learning rate was used. 
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Nomenclature 

iy : vector of process output, its average value iy , 

iu : vector of process input,   

pf : unknown function of process,  

1n : input delay,   

2n : output delay, , 1 2n n

U : input of the process,    1

T

nU u k u k    , 

Y : output of the process,    1

T

nsY y k y k    , 

io : vector of RNN output,  

O : output of the RNN model, ,  1

T

nsO o o 

1N : number of nodes of input layer, 

2N : number of nodes of hidden layer, 

ljp : synaptic weights of the input layer towards the hid-

den layer, ljP p     with  and 

,  

21, ,l   N

11, ,j N 

v : input vector of the RNN model, 




11

1

2

  ( ) ( 1) ( )

       ( 1)

N

i i i

i

v v v

u k u k n y k

y k n

   
  

 







, 

ns : number of nodes of output layer, 

ilz : synaptic weights of hidden layer towards the output 

layer,  ilZ z  with 21, ,l N   and ,  1, ,i n  s

i : learning rate, 0 1i  , 

 : a scaling coefficient used to expand the range of 
RNN output, 0 1  , 

f : activation function,  lf h  is the output of the  

node, 

thl

 ie k : error between the  measured process output 

and the  measured RNN output,  

thi
thi

     ie k k o k(i iy ,  

E : vector of error,    1

T

nsE e k e k    , 

N : number of observations, 
TDL : Tapped Delay Line block,  

lh :  output of neuron of hidden layer,  thl

     21

T

NF Pv f h f h   

   1F Pv diag f h f

,

 2

T

Nh     , 

 ib k : noise of measurement of symmetric terminal  , 

   , ,b ki       

ib : noise average value. 

 
 


