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Abstract 
 
In this paper, stabilizability of first order nonlinear systems by a smooth control law is investigated. The 
main results are presented by the examples and finally summarized in a lemma. The proof for the lemma is 
according to Sontag’s formula. In addition, it is explained that using weak control Lyapunov functions in 
Sontag’s formula generates (possibly nonsmooth) the control law, which globally stabilizes the system- 
globally asymptotic stability needs more investigation. 
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1. Introduction 

Consider the following nonlinear system: 

   x f x g x u              (1) 

where nx R  is state space vector,  is control 
input vector and 

mu R
   ,  nf x g x R . 

Definition [1]: A differentiable positive definite and 
radially unbounded function  is 
called a CLF for the system (1), if for each , 

  : nV x R R 
0x 

0

0   0g fL V x L V x          (2) 

If there exist nonzero points where   0V x  , then 
 is sometimes referred to as Weak Control 

Lyapunov Function (WCLF) [2,3]. 
 V x

Assume that  is a CLF for the system (1). It is 
known that the existence of a CLF for the system (1) is 
equivalent to the existence of a globally asymptotic sta-
bilizing control law  which is continuous 
everywhere except possibly at  [2]. If 

 V x

  ,u k x
x 0  V x  is a 

CLF for the system (1), then a particular stabilizing con-
trol law  su x , smooth for all , is given by Son-  0x

tag’s formula: Equation (3) [3,4] 
It is often desirable to guarantee at least Lipschitz con-

tinuity of the control law at  in addition to its 
smoothness elsewhere [1]. A further characterization of a 
stabilizing control law  for (1) with a given 

0x 

xsu
 V x  is continuous at 0x   if and only if the CLF 

satisfies the small control property [3]. It is well known 
there is a class of nonlinear systems that can not be stabi-
lized by a continuous time-invariant feedback. Examples 
of systems which do not admit continuous stabilizing 
feedback laws are systems which do not satisfy brokett’s 
necessary condition for continuous stabilizability [5,6]. 

Stabilizability of nonlinear systems is studied in lit-
eratures [7,8]. In [3] Brockett defines a necessary condi-
tion for stabilizability of nonlinear systems by a con-
tinuous feedback. In this paper sufficient condition for 
stabilizability of single input nonlinear systems by a con-
tinuous feedback is introduced. 

2. Problem Formulation 

Consider the following nonlinear system: 
 

          
    

 

 

22

( ( ))( )

0                    0

T

f f g g
T

g gT
s

g g

g

L V x L V x L V x L V x
L V x L V xu x

L V x L V x

L V x


 

  

 

0
           (3)
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   x f x g x u                  (4) 

where x R  is the state space vector,  is the 
control input vector and 

u R
   ,f x g x R  are smooth. 

The question is, “when can the system (1) be stabi-
lized at  by a smooth feedback control law?” 0x 

It is clear that when the unforced system is GAS, then 
the problem is solved. But when the unforced system is 
unstable or locally stable, the problem depends on the 
roots of the equation . In the next section all 
possible situations by using numerical examples will be 
presented. 

  0g x 

3. Examples 

Example 1: 
Consider the following nonlinear system, 

 3 1x x x    u           (5) 

The equation  has a root at   0g x  1x  , but the 
unforced system is stable. Thus this system can be stabi-
lized by a continuous control law. 

Example 2: 
Consider the following nonlinear system, 

 2 1x x x    u            (6) 

Although the equation  has a root at   0g x  1x  , 
the unforced system solutions with initial states 

 converge to the origin.   0 0x 
Hence this system can be stabilized by a continuous 

control law. 
Example 3: 
Consider the following nonlinear system, 

 3 1x x x   u               (7) 

The equation  has a root at   0g x  1x   but the 
unforced system solutions with initial states  0 0x  
escape to infinity. For that reason the system can not be 
stabilized by a continuous control law. 

Example 4: 
Consider the following nonlinear system, 

 2 2 1x x x    u               (8) 

The equation   0g x   has roots at 1x   and 
. For the root 1x   1x 

x
 the argument is as example 2, 

but for the initial states  0 0  the unforced system 
solutions escape to infinity. Because of that the system 
can not be stabilized by a continuous control law. 

Example 5: 
Consider the following nonlinear system, 

3 2x x x u                     (9) 

The unforced system is unstable, and the equation 

  0g x   has the root 0x  . This system can be stabi-
lized by a smooth control law (i.e. ). Actually 
when the equation 

2u   x
  0g x   has only the root 0x  , 

the system can be stabilized by a control law which is 
smooth everywhere except possibly at  0x 

Example 6: 
Consider the following nonlinear system, 

2 3x x x u                   (10) 

This system can not be stabilized by a smooth control 
law. Nevertheless, this system can be stabilized by a 
control law, which is continuous at every nonzero x  
and is right-continuous at . The control law, 0x 

  21 1
0

0  0

Sgn x x
xu x
x



    
 

       (11) 

globally asymptotically stabilizes the system and this 
control law is right-continuous at . 0x 

The reason is that the unforced system solution with 
initial states  0 0x   is stable. 

Example 7: 
Consider the following nonlinear system, 

 2 1 4x x x x u              (12) 

The equation   0g x   has the root . The un-
forced system is unstable, but with the initial states 

0x 

 1 0x 0  

0x

 the unforced system solutions converge 
to the origin. Therefore the system can be stabilized by a 
control law, which is continuous at every nonzero x, and 
at   is left continuous. 

4. The Existence of WCLF 

Actually the single input system (1) when the unforced 
system is not stable and the equation  has real 
nonzero root(s) has not CLF and has only WCLF. The 
existence of WCLF is not the sufficient condition for the 
existence of a globally asymptotic stabilizing control law 
which is continuous everywhere except possibly at 

  0g x 

0x  . Furthermore using WCLF in Sontag’s formula 
generates a (possibly nonsmooth) control law, which 
guarantees asymptotic stability-globally asymptotic sta-
bility need to more investigation. 

Example 8: 
Consider the following second order nonlinear system, 

 
 

3 2
1 2 1 1 2 1

3
2 1 2 2

2x x x x x x

x x x x u

   

   





u

2

         (13) 

It can be proved that the function 2  is a 
WCLF for the system. With all initial states interior the 
circle 

  2
1V x x x 

2 2
1 2 1x x   and a smooth stabilizing control law, 
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the state trajectories converge to the origin. Globally 
asymptotic stabilizing by smooth control law is not pos-
sible. 

Example 9: 
Consider the following second order nonlinear    

system, 
    

   

1 2

2
1

2 1 1 22
1

5π
arctan 5 4 3

2 2 1 25

x x

x
x x x x

x



       
 



 u
(14) 

In [2] the function: 

  2 2
1 2

π

2
V x x x   

is used as a CLF in the Sonag’s formula. It can be veri-
fied the function: 

  2 2
1 2

π
2

2
V x x x   

is a WCLF for the system. Using this WCLF in the Son-
tag’s formula (Equation (3)) yields a discontinuous con-
trol law which does not globally asymptotically stabilize 
the system. The state trajectory with this control law and 
the initial state  converges to the point 
(2.946,0). In Figure 1 the state trajectory is shown. 

   0 3 2
T

x  

5. The Main Results 

From the above examples the following lemma can be 
suggested. 

Lemma 1: Consider the following single input first or-
der system, 
 

 

Figure 1. State trajectory for the example 9. 

   x f x g x u                 (15) 

where x R  is state variable,  is control input 
vector and 

u R
 f x R  and  g x R  are smooth. As-

sume the unforced system, 

 x f x               (16) 

is locally asymptotically stable and its domain of attrac-
tion is    0 ,x a b  and the roots of the equation 
  0g x   belong to the interval  The system can 

be stabilized by a continuous control law. 
 , .a b

Proof: Using   21

2
V x x  as a WCLF for the system, 

the Sontag’s formula gives: 

 

        
   

 

42 2( )
, 0

0,                                                                0

u x

f x Sgn x f x x g x
g x

g x

g x

 

   





(17) 

It can be shown that this control law globally asymp-
totically stabilizes the system (15). Assume   0g x   
has a nonzero root x c  such that . Accord-
ing to the assumption of lemma 

a c  b
  0,xf x   

 , , 0.x a b x    Thus we have: 

 
  

         
  

       

32

2 42

33

2 42

lim lim

lim 0

x c x c

x c

x g x
u x

f x Sign x f x x g x

x g x

xf x x f x x g x



 




 

 
 

 

This proves the continuity of the control law (17). 
When the equation  g x R  has root(s) at 0.x   
Then it is clear that: 

 
  20

lim
x

f x

g x
 

is equal to zero or infinity (when  f x  and  g x  are 
smooth and the system (16) is locally stable, this limit 
can not be equal to a nonzero finite value). Using this 
fact, it can be proved that: 

 
  

 
  

   
  

2

20 0

2
2 2

lim lim

0

x x

x g x
u x

f x f x
Sign x x

g x g x



 


 
  
 
 



 

Remark 1: If the unforced system is unstable and the 
unforced system solutions with initial states  
   0 0,x b 0  ,     0 ,0x a  converge to the origin, 
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then the system can be stabilized by a control law which 
is continuous at every nonzero x and right/left-continuous 
at . 0x 

0

6. Conclusions 

The stabilizability of affine single input first order sys-
tems by a continuous control law is investigated. It is 
demonstrated that sometimes a stabilizing control law 
can be defined that is right/left-continuous at the origin. 

. In addition, using WCLF in Sontag’s formula 
generates a (possibly nonsmooth) control law, which 
globally stabilizes the system and globally asymptotic 
stability needs more investigation. 

x
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