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Abstract

We study projections onto a subspace and reflections with respect to a subspace in an arbitrary
vector space with an inner product. We give necessary and sufficient conditions for two such
transformations to commute. We then generalize the result to affine subspaces and transforma-
tions.
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1. Introduction

Two lines ¢, and ¢, in R® are considered. When is the reflection over ¢, followed by the reflection over
¢, the same as the reflection over ¢, followed by the reflection over ¢, ? It is easy to see that it is the case if
andonlyif ¢, 1L¢, or ¢,=¢,.

When considering subspaces of R*, we can ask similar questions for lines, for planes or for the mixed case
of one line and one plane. Instead of addressing those cases one by one, we generalize the situation of arbitrary
two linear subspaces of a vector space with an inner product.

2. Projection

Supposing that U is a vector space equipped with an inner product, V < U is a linear subspace of U. Given a
vector ueU , we know from linear algebra [1] [2] that u can be decomposed uniquely as u=p, (u)+u’
where p, (u)eV isthe projection of the vector uonto Vand u' LV ,ie. U=V eV,

Here are some elementary properties of the projection p, :

1) p, islinear.

2) ueV ifandonlyif p,(u)=u

3) ueV* ifandonlyif p,(u)=0

4) VW < p, (W).
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5) If V; and V; are subspaces of U, then pyq,, (u)=p, (u)+p,, (u),forall ueu .

6) If V1, V, and W are subspaces of U, then  p,q,, (W) < p,, (Wj@ p, (W).

7) If Vi, V, and W are subspaces of U, then p, (V ®V,)=p, (V,)® pW( ,)-

Lemma 2.1. Supposing that U is a linear space and V, W are two linear subspaces of U,if p, (V)=p, (W)
then p, (V)=p, (W)=VNW.

Proof. We first show that p, (W)=VNW . Since p,(W)c=V and p,(W)=p, (V)=W , we have
P (W)cVNW . On the other hand, if ueVW , then ueV , hence u=p,(u)ep, (W) and thus
VAW < p, (W). Asaresult, p, (W)=V NW . The proofof p, (V)=VNW issimilar. B

Suppose U is a vector space and V, W are two subspaces of U. Intersecting the identity U ( W)@
(VW) with V and W, we get V =(V (\W)®(VN(VW)") and W =(V W)@ (W N(V ﬂW)(\B It is
obvious that these two sums are orthogonal.

Denote V'=VN(VNW)  and W'=WN(VNW)" . Using these notations, V =(V W)@V’ and
W=(VNW)ew'.

Lemma22. p,(W')=p, (V')=0 ifandonlyif p,(V)=p, (W).

Poorf.

Py (W): p(vﬂw)@w(w) = Pvw)ev’ ((V ﬂW)(—DW )
< By (VW)@ By (VW)@ iy (W) - (W)
(VW)@ {o}@{ojep, (W)
=(VNW)@ p,. (W')
(=) If p,(W')=0,then p, (W)c=V NW . On the other hand, by the fourth property of projection above,
VAW < p, (W).Similarly, p, (V)=VNW .Thus, p, (W)=p, (V).
(<) By Lemma 2.1, p, (W ) VAW .For weW',
By (W) = pyew (W) + Py (W) = . (W)
p(W)ep, (W)=VNW and p,(w)eV', but (VAW)NV'=0, we must have p,(w)=0, ie.
p (W) =0.Similarly, p,. (V')=0.1
Theorem 2.3. Supposing that U is a vector space and V, W are two subspaces of U, then p, o p, = py ° Py
ifand only if p, (V)=p, (W).
Proof. (=) Assume that p,, (p, (u))=py (py (u))forallueU . In particular,

Pw (V)= pw (P (V)= p (P (v)) e p, (W) forallveV.

Thus, p, (V)< p, (W). Similarly, p, (W)<py (V).
(<) Assume p, (V)=p, (W).BylLemma22, p,(W')=p, (V')=0.

pw(pv(U)) P (Purw (U)+ By (u))
P ( Py (1)) + Py (P (1))
P ( Py () + Py (Pvr (W) + P (P (u))
=pvmw( ).

Similarly, py (py (u))= Py (u). M

3. Reflection over a Subspace

Supposing that U is a vector space equipped with an inner product, V < U is a subspace of U. We define the
refection of ueU with respectto V as

Iy (u):2pv (u)_
The above formula can be easily derived from the observation that p, (u)= %(u +1,(u)). Note that if ueV,

then r, (u)=u.
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Lemma 3.1. Supposing that U is a vector space and V, W are two vector subspaces of U, then

R/OrW:r{NOR/ ifand0n|yif p\/opW:pWopV'
Proof.

e (% (u)=2py (v (u))-% ZRN(ZPv() u)-(2m, (u)-u)
=4p, (py (u))-2 py (u)+u.

Similarly, «, (x, (u))=4p, (py (u))-2p, (u)-2 pW(u)+u.Hence,
yol, =K ot if andonly if p, o p, =p, o Py-

Theorem 3.2. Supposing that U is a vector space and V, W are two subspaces of U, then 1, or, =1, or, if

andonly if p, (W)=p, (V).
Poor. By Lemma3.1, r, o, ifandonlyif p,op, =pycp, .ByTheorem23, p,op, =p,op ifand

onlyif p, (W)=p, (V). ®
4. Projection onto a Translated Subspace
Define the projection of ueU onto a translated subspace V =V +V, as
Py (U)=py (U=Vg)+Vo =Py (U)= Py (V) + Vo

p; is well defined: supposing V +v, =V +vg, then v, —vyeV . Hence p, (vy)—ny, (Vo) = by (Vo —Vg) =V, — Vg
and thus

Py (U) = Py (Vo) +Vo = Py (U) = Py (Vo) + Vo
Theorem4.1. p;op, =p; o P, ifandonlyif VAW =¢ and p, (W)=p, (V).

Proof.
P (Rg (1)) =Py (Rg ()= Py (Vo) +V
=Py (P (U) = P (Wo) +wp) = By (Vo) +Vo
=P (Pw (W)= B (B (Wo))+ By (Wo) = By (Vo) + Vo,
(pv ) (Vo) = P (Wp) + W .

Similarly, pW(pV( )) pw (P (u))-
Thus, p\i( ,; (u )):pw(p\;(u)) if and only if
{pv(pw(U))=pw(pv(u))
=Py (P (W0)) + By (Wo) = Py (Vo) +Vo = =P (B (Vo)) + P (Vo) = Puu (Wo ) + Wy

(=) By Theorem 2.3, the first equation implies p, (W)= p, (V). The second equation simply means that
VNW =4¢.

(<) By Theorem 2.3, the first equation is satisifed. To show the second equation, since V NW = ¢ , we have
V+V, =W+w,, forsome VeV and WeW , or v,=W+w,—V:

=P (P (Vo)) + P (Vo) + By (V) = Vo
=Py (B (W+Wo =)+ py, (W+Wy = V) + Py, (W+ Wy =) =W —w, +V
=—py (W)= py (B (Wo))+ Py (9)+ W+ Py, (Wo) = Py (V) + Py (W) + Py (Wy) =V — W —w, +V
==y (Pw (Wo))+ P (Wo) + By (W)~ Wo

which is the second equation.

5. Reflection over a Translated Subspace

We next discuss the reflection over a translated subspace. Let V U be a subspace. A translated subspace is
V=V +v, forsome v, eU .We define the reflection of ueU over V as
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G(u)=r6 (U=vy)+Vvy =1 (u) =1, (V) +V,.

r; is well-defined: supposing V +v, =V +v;, then v,—v;eV and hence r,(v,)—F (V5)="F (Vo —V5)=Vo—V5 -

As a result,
R(U) =K (Vo) + Vo =1, (U) = (V5) + V.
Supposing W =W +w, forsome w, eW is another translated subspace.
(1 (W) =5 (17 (U)) = K (Wo ) + W,
( (u) =% (vo)+V ) hy (Wo) + Wy
b (% (u))=+ ( ( ))+r( 0) = fu (Wo ) + W
6 ( (u))=x ( Wy ))+ K, (Vo) +Vp -

g or, |fandonly|fVﬂW¢¢ and n(W)=p, (V).
Proof. 1, (r; (u))=r;(r; (u)) ifand only if

(1
{rw(rv )=t (5 ( )
( ) W)+W0:_pv<pw(wo))+pv(Wo)_pv(V0)+Vo

(=) By Theorem 3.2, o, =K, of implies p,(W)=p, (V). The second equation simply means
VNW =4¢.
(<) We express 1, (r; (u)) and 1; (r; (u)) in terms of projections:
Ry

rW(r (u)) ( ()) apy (B (Vo)) +4pw (Vo) + 2y (Vo) — 205 — 2y (W, ) + 2w,
(w )) v ))_4pv(pw(Wo))+4pv(Wo)+2pw(Wo)_ZWO_va(Vo)+2Vo-

By Theorem 32 pv( )= pW(V) implies r, ok, =&, or, . By Lemma 3.1, we also have p,op, =p,°py -
Toshow r, or; =r; or., it suffices to verify the second equation

w
( Vo)) + P (Vo) + Py (Vo) =Vo = =Py (P (Wo)) + By (W) + Py (W) =W
Since V NW igb,wemusthave V+V,=W+w, forsome VeV and wWeW ,or v,=W+w,—V:
=P (P (Vo)) + B (Vo) + By (Vo) =V

=Py (B (F+W, = 7))+ pyy (W +W0—v)+pv(w+wo—v) W—Ww, +

Similarly, 1; (r; (u))
Theorem5.1. r. o

<@

= (59) -y (P () By (9 oy ()~ (9)
+py (W) + py (W) =V —W—w, +V

=P (v (%)= Py (P (Wo))+ P (W) + B () + Py (o) —wg
:_pv(pvv(~))_pv(pw(WO))+pw(Wo)+pv(W)+pv(Wo)_Wo
==y (W)= By (P (Wo )+ By (Wo )+ By (W) + Py (Wp) — vy
:_pv(pw(wo))+pv(Wo)+pw(Wo)_Wo

6. Mixed Transformations

Theorem 6.1. p; or, =1, o p, ifand only if VﬂW::q) and p, (W)=p, (V).
Theorem 6.2. p; or _r op, ifandonlyif VﬂW z¢ and V=W .
Theorem 6.3. pvor _pWor if and only if V W z¢ and V=W .

7. Generalizations

If we denote X, the permutation group of order n, then
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Theorem 7.1.
P, 00 Py, = Py o0 By forallo,reX
if and only if
Py Prggoy (Va(n)) =Py Py (Vf(”)) forall o,z €%,
Theorem 7.2.
rv o- OrVg(n) = rV,(l) o..-oR/T(n) f0r a” G,TEZn
if and only if
pvo'(l) pvo'(n—l) (VU(”)) = er(l) er(H) (VT(”)) forall o,z €X,.
Theorem 7.3.

p\ia'(l)
if and only if V,(\V, = ¢ foralli,j and

B i (Vo(n)) = Pry Py (V[(n)) forallo,zex,.

o0:++0 - =P, o--:0p- fOl’aIIO',TEZ
pvo'(n) pr(l) By ) "

z(n

Theorem 7.4.

oS
o
o
—
Il

P
o

, ow-of. forallo,reX,
“(1) Ve(n)

if and only if V,(V, =¢ foralli,j and
pVa(1) pVa(nA) (Va(n)) — er(l) er(nA) (Vr(n)) forall o,7 € Zn'
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