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Abstract 
We consider a risk-neutral stock-price model where the volatility and the return processes are 
assumed to be dependent. The market is complete and arbitrage-free. Using a linear regression 
approach, explicit functions of risk-neutral density functions of stock return functions are ob-
tained and closed form solutions of the corresponding Black-Scholes-type option pricing results 
are derived. Implied volatility skewness properties are illustrated. 
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1. Introduction 
Stochastic volatility (SV) modeling is the subject of several papers in the option price literature. By assuming 
that the volatility and the return processes of a stock price model are correlated, one can explain better the skew-
ness of the implied volatility curve. Apart from the single-factor CEV model [1], the models proposed are most-
ly variations of 2-factor affine-jump diffusion models, [2]-[4], with one of the factors being stock volatility. The 
2-factor affine model [2] assumes correlated volatility and asset return processes. In [2], however, one has to 
numerically integrate conditional characteristic functions obtained as solutions of nonlinear pdf to derive the call 
option prices. The case of the two factors, namely the asset price and volatility being uncorrelated, is considered 
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in the paper [5], which obtains Call Option Price Conditional on the variance rate 2V  and derives the uncondi- 
tional call price by integrating using an approximate probability density function ( )g V . The paper [6] consi- 

ders stochastic forward rate processes which are lognormally distributed conditional on the volatility state va-
riables. See also [7] pp 182-183, for other numerical approximation methods. 

Some of the well-known numerical procedures for deriving option pricing that are tree-based binomial or tree- 
based trinomial are available in [8] and [9]. GARCH based heteroscedacity models are discussed in [10]-[13] 
where empirical versions of SV models in discrete time are approached. 

In the next section, the proposed two-factor stock price model that allows the volatility factor and the Brow-
nian motion return processes to be dependent and a linear regression approach that derives explicit expressions 
for the distribution functions of log return of a stock or stock index are used. 

In the subsequent section, we obtain a closed form formula for the call option price that has an algebraic ex-
pression that is similar to that of a Black-Scholes model, making it much easier to compute its value. 

In the following section, we define an implied volatility function and derive its skewness property.  
Finally, we provide concluding remarks and suggestions for future direction. 

2. Heston’s Stochastic Volatility Model 
It is known that under a Black-Scholes model formulation the implied volatility function must remain constant 
for different values of the strike price when the other parameters of the option pricing model are kept constant. 
However, skewness in implied volatility curves is observed in actual market data for European options. To ex-
plain the skewness property of implied volatility functions, [2] considers the following model (1)-(3) with the 
condition that the (2) asset price and volatility are correlated: 

( )
( ) ( )1

d
d dt

S t
t v z t

S t
µ= +                                 (1) 

( )2d dt tv v z tβ δ= − +                                 (2) 

( ) ( )( )1 2d ,d dCov z t z t tρ=                                (3) 

where , 1, 2jz j =  are Brownian processes. 
Note that it can be shown, applying the Ito formula, that the variance rate tν  has a square root process model 

(see [2]). 
Computation of option price in the case of the above correlated model as described in using a pdf is fairly 

complicated. To obtain a closed form solution for the option price one has to invert two conditional characteris-
tic functions to compute the difference between two probability functions as the required solution of the pdf. 

3. A Two-Factor Stochastic Volatility Model 
Here, we will explicitly specify the sde of the asset price and volatility processes. In this paper, we consider a 
risk-adjusted diffusion process (4) for spot asset price ( ) , 0 ,X u u s≤ ≤  defined with respect to a probability 

space ( ), ,u PΩ Γ , with the data-gathering measure P 

( )
( ) ( )d

d d ;
X u

u B u
X u

µ υ= +                                (4) 

( ) ( ) ( )2d ln 2 d dX u u B uµ υ υ= − +                           (5) 

In (4), Rυ ∈  is called the instantaneous diffusion rate and µ  is called the instantaneous drift rate of the 
diffusion process. 

In (5), we have a log normal model for the asset price ( ) , 0 .X u u s≤ ≤  

At this point, we introduce a second factor ( )H u , which is a mean-reverting process, in Equation (7), and 

corresponds to the volatility tv  in Equation (1) of Heston’s model. 
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( )
( )

( ) ( )( ) ( )
2d

d d
2

X u H u
u H u B u

X u
µ ν
 

= + + +  
 

                       (6) 

( ) ( )( ) ( )d d , , 0 and 0.H u H u Y uα θ η θ η α= − + ≥ >                     (7) 

(6) can be transformed to 

( ) ( )( ) ( )
2

ln d d
2

d X u u H u B uυµ ν
 

= − + + 
 

                      (6a) 

4. Formulation of a Risk-Neutral Model 
The dynamic processes (8)-(9) below are defined with respect to the martingale probability measure Q, where 

( )1B u  and ( )1Y u  are Brownian motions under Q, where we assume the corresponding Novikov’s condition is 
satisfied. 

5. Two Factor Risk-Neutral Model 

( )
( )

( ) ( )( ) ( )
2

1
d

d d
2

X u H u
r u H u B u

X u
υ

 
= + + +  
 

                      (8) 

Remark 1: 
An equivalent Two-factor Black-Derman-Toy model [14] can be formulated. 
The sde  (6) and (8) can be transformed using Ito formula to (6a) and (9), a two-factor Black-Derman–Toy 

(1990)-type model [14] obtained by introducing a second factor ( )H u  in Equation (5).  
As mentioned previously, in (4), Rυ ∈  is the instantaneous diffusion rate and µ  is called the instantane-

ous drift rate of the diffusion process. 
As stated previously, in Equation (7), we define the volatility ( ) RH u ∈   as a mean reverting Gaussian 

process with θ  as its long-term mean1. 
We assume ( )H u  to be correlated with ( )1B u  as in the Equation (8) and that ( )1Y u  is a standard Brow-

nian motion process. 
Then it follows (see [2]).that the distribution of ( )H u  is: 

( ) ( ) ( )1 22~ , 1 e ,0 .
2

uH u N q u u sαη
α

− − ≤ ≤ 
 

, 

Alternatively, ( )H u  may be expressed as 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
0

d d d ,
u

H u q u t B t C t B uψ ρ δ= + +  ∫  

where 

( )
( ) ( )

e , , 0,0 ,

e 1 e .

t

u u

t t u

q u

α

α α

ψ η η α

κ θ

−

− −

= ≥ ≤ ≤

+ −

 

Assumption 1: The Brownian motion processes ( )1Y u   and ( )1B u  are related as follows:  

( ) ( ) ( )1 1 1 ,Y u B u C uρ δ= +                                (10) 

where 21δ ρ= − . 

Also, the Brownian motion processes ( )1B u  and ( )1C u  under Q are independent.   

 

 

1This process is known as “O-U” process, the Ornstein-Uhlenbeck process. 
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See [15] for a similar assumption. See also [3] and [4]. 
From (6) and (10), it is clear that 

( ) ( ) ( ) ( ) ( ) ( )
2

1 1 1
0

d ln d d d d ;
2

u

X u r u q u t B t C t B uυ υ ψ ρ δ
  

= − + + + +     
   

∫            (11) 

( )

21 ,

e , , 0.uu α

δ ρ

ψ η η α−

−

= ≥



 

Equation (11) follows because from [16] we know that the Gaussian random variable ( )H u  may be ex-
pressed as 

( ) ( ) ( ) ( ) ( )1 1
0

d d ,0 ,
u

H u q u t B t C t u sψ ρ δ= + + ≤ ≤  ∫   

where 

( )
( )
( ) ( ) ( )

( ) ( )

2

0

0

1 ,

e , , 0,

0

( ) e 1 e ,

where e

t

u u

u

t

H

EH u q u q u

q u

α

α α

α

δ ρ

ψ η η α

κ

κ θ θ

κ θ

−

− −

−

−

= ≥

=

+ − = +

−



 



 

( ) ( ) ( )
( )2

2 2 2

0

1 e
d

2

uu

HVarH u u t t
α

σ ψ η
α

−−
= =∫  

Note that ( )1B s  has a normal distribution with mean 0 and variance s, so ( )1B s  can be written as 

( ) ( )1B s Z s s= , where ( )Z s  is a standard normal variable. Then ( )ln X s  can be written as a quadratic 

function of ( ) ( )1 , 0.
B s

Z s s
s

= >  plus a residual term ( )sε . (See Proposition 1 below). 

For ( )d d ,0 ,0C t t u u sξ = ≤ ≤ ≤ ≤ , we define a volatility process 

( ) ( ) ( )
0

d ,0
u

uV V t C t u sξ ψ
 

= = ≤ ≤ 
 

∫ . 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

0 1 1 1
0

2

0 1 1 1
0 0 0 0 0

1 1
0 0

d ln d d d d ,
2

d ln d d d d
2

d d , 0

u

s s s s u

s u

X u r u q u t B t C t B u

X u r u q u B u t B t B u

t C t B u t u s

υ υ θ ψ ρ δ

υ υ θ ψ ρ

ψ δ

  
= − + + + + +      
   

 
= − + + + +    

 

+ ≤ ≤ ≤

∫

∫ ∫ ∫ ∫ ∫

∫ ∫

 

Define ( )( ) ( )
1 2

2 2

0

1 e1 d
2

us

V s u V
s

αη
σ

α

−  −
  
    
∫   as the average standard deviation in the case of uncorre-

lated Brownian motion process ( ){ }1 , 0 .C u u s ξ≤ ≤   (see [7], p. 182). 
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Then the average variance is: 

( )( ) ( ) ( ) ( )( )2 2 22 2 2 2
2 2

2
0 0

2 1 e1 e 1 e1 1d d .
2 2 4

su us s s
V s u u V

s s

αα α η αη η
σ

α α α

−− −    − −− −
  = = =
     

∫ ∫   

Proposition 1: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

0 1 1 1 1
0 0 0 0

2
0 1 1 1 1

2
1

2 2 1

2

d ln d d d ;
2

1ln ln
2

2 2

, ,
2

s s s u

s

X u r u q u B u t dB t C t B u

X x rs s B s s B s e s

B s ss e s VB s

m s
Z s Z s n s p s s U s s

υ υ θ ψ ρ δ

υ υ θ γ

γ ρ δ

ε ξ ε

 
 = − + + + + +      

 


= + − + + + +   


  
+ − + +         

+ + + +

∫ ∫ ∫ ∫

 

    (12) 

and where 

( ) ( ) ( ) ( ) ( ) ( )2, ,
2

m s
U s Z s Z s n s p sξ = + +  

( ) ( )2 ;m s s sργ=  

( ) ( )( )

( ) ( )

1

2
0 2

,

1ln ;
2 2

n s s V s

sp s x r s s

γ υ θ δ

υ ργ

= + + +

 = + − − 
 

 

( ) ( ) ( )1 2 ,s e s e sε = +  where 

( ) ( )
( ) ( )

( ) ( )
( ) ( )( )

1 0
0

2 2 2 2 2
0 0 0

1 e1 d ;

1 e1 e2 2 2d d d .

ss

sus u s

s q u u
s s

s
s t t u u

s s s

α

αα

κ θ
γ

α

αη η ηγ ψ
α α

−

−−

− −
= =

− −−
= = =

∫

∫ ∫ ∫

 

( ) ( )0, ,s N εε σ  approximately, where  

( )( ) ( )( )( )1 2var var ,e s e sεσ = +  because                      (13) 

( ) ( )( )1 2, 0Cov e s e s =                                 (14) 

( )( ) ( )
22

2
1

1 e 1 e ;
2

s

Var e s
s

α α

κ θ
α α

− −    − − = − −   
     

                    (15) 

( )( ) ( ) ( )
22 2

2
2 2 21 e 1 e

2 4
s ss sVar e s α αη η η η

α αα α
− −   = − − − − −   

  
                 (16) 

( ) ( )( )1 2, 0;Cov e s e s =                                 (17) 

Proof: See Appendix A 
Assumption 2: 
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(a) ( )sε  and ( ),U s ξ  are independent random variables. 
(b) ( ) ( )0,s N εε σ  approximately where 

( )( ) ( )( )( )1 2var var ,e s e sεσ = +  because ( ) ( )( )1 2, 0Cov e s e s =  

Remark 2: 
Some of the limitations of the model can be described as follows: 
a) Since we can verify that ( ) ( )( )ov , , 0C s U sε ξ = , we have only the necessary condition for independence  

between ( )sε  and ( ),U s ξ  is satisfied. 

b) We have assumed that the error terms ( )1e s  and ( )2e s  of the linear regressions are normally distributed 

and that ( ) ( ) ( )1 2s e s e sε = +  is also normally distributed. 
Proposition 2: 

( )( )0 0e rX sQE x− =                                       (18) 

where the expectation is obtained using the risk neutral distribution of ( ) ,X s  as defined in (6). 
Remark 3: 
Proposition 2 restates the result that the risk neutral property of ( ) , 0.X t t ≥  holds; the normalized process 

( )e , 0,rs X s s− ≥  is a martingale with respect to Q and the market ( ){ }, 0X u u ≥  is arbitrage free. 

Derivative Securities 
We can evaluate any security that is a derivative of ( )X s  using the risk neutral probability distribution of 
( )X s . In particular, consider a non-dividend paying European call option with strike price K and maturity 

dates2. 
Then the price ( )2

0 , , , , ,C x K r sρ η  at time 0 of the call option is the present value of the expected terminal 

value, ( )( )( )0 eQ rsE X s K
+− − , where the expectation is obtained using the risk neutral distribution of 

( )X s .Similarly the put option is defined as ( ) ( )( )( )2
0 0, , , , , eQ rsP x K r s E X s Kρ η

−−= − . Then, using Put Call- 

parity formula and the Equation (18) we have 

( ) ( ) ( )( )2 2
0 0 0 0, , , , , , , , , , e eQ rs rs

sC x K r s P x K r s E X K x Kρ η ρ η − −− = − = −  

( ) ( ) ( )2 2
0 0 0, , , , , , , , , , e rsP x K r s C x K r s x Kρ η ρ η −∴ = − −  

In the next sections, we will derive a simple Black-Sholes type expression for the call option price 
( )2

0 , , , , ,C x K r sρ η  and derive its properties. 

Implied Risk-neutral distribution of lnX(s)  
For easier reference we present below the explicit expressions for the vector 

( ) ( ) ( ) ( )( ), , ,m s n s p s sε  

( ) ( )
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

2

1

2 2
0 2 0

1 2

;

1 1ln n 2;
2 2 2
;

m s s s

n s s V s

sp s x r s s l x r s m s

s e s e s

ργ

γ υ θ δ

υ ργ υ

ε

=

= + + +

   = + − − = + − −   
   

= +

         (19) 

where the conditional risk-neutral distribution function of ( ) ( )( )ln |X s s hε =  is derived below. 

 

 

2This condition can be relaxed by replacing r by r − d, where d is the dividend payout rate and r is the annual risk-free interest rate. 
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Next we determine an explicit expression for the conditional distribution function 

( ) ( ) ( ) ( )( )ln | , ln | , RX sF x P X s s hξ ω ω ε ω= ≤ = ∈  

So given ( )s hε =  

( ) ( ) ( ) ( ) ( ) ( )

( )

2ln , ,
2

0.

m s
X s Z s Z s n s p s h

m s

ω ξ− = + + +

≠
                  (20) 

Then the roots of the equation 

( ) ( ) ( ) ( ) ( ) ( )

( )

2ln , 0,
2

0.

m s
X s Z s Z s n s p s h

m s

ω ξ− = + + + =

≠
 

are 

( ) ( )
( ) ( ) ( ) ( )( )

( )

2

1 2

2
,

n s n s m s p s h
z z h z h

m s
− ± − +

= =                   (21) 

Assumption 3: 
( ) ( ) ( )( )2 , 2 0n s m s p s hξ − + ≥                                (22) 

Assumption (3) ensures that the roots are real and are well defined. 
Let ( ) ( ) ( ) ( ) ( )( )ln | , , ln | ,X sF h P X s s h V sξ ω ξ ω ε ξ= ≤ = =  

Then 

( ) ( ) ( ) ( )1 2ln
2

m s
X s Z z Z zω− = − −  

where 

( ) ( )
( ) ( ) ( ) ( )( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )
( )

2

1 2

2
2 *

, 2
,

,
, 2 0 , ,

2

n s n s m s p s h
z z h z h

m s

n s
n s m s p s h h h p s

m s

ξ ω
ω ω

ξ
ξ ω ω ω ρ ξ

− ± − + −
= − − =

− + − ≥ ⇒ ≥ = + −

 

( ) ( )2
0 2

1ln ;
2 2

sp s x r s sυ ργ = + − − 
 

 

Define 

( ) ( ) 0, ln lnp s h p s h rs x K∗ + − − +  

and also suppose Assumption (2) holds. Note that the functions ( )m s  and ( )n s  are independent of h. 

Conditional Risk-neutral distribution of ( ) ( ) ( )( ) ( ),X s s h V s m sln | , 0ε ξ= = >  
Remark 4: 
If ( ) 0,m s >  then ( ) ( ) ( )( )ln | ,X s s h V sε ξ= =  is a convex function of ( )Z s  and a minimum of 

( )( )ln X s  as a function of ( )Z s  exists. 

Similarly if ( ) 0,m s <  then ( ) ( ) ( )( )ln | ,X s s h V sε ξ= =  is a concave function of ( )Z s  and a maxi-

mum of ( )( )ln X s  as a function of ( )Z s  exists. 

Proposition 3: 
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Suppose 0ρ > , which implies that ( ) 0m s > . 

If Assumption (3) holds then the conditional risk-neutral distribution of ( ) ( ) ( ){ }ln | ,X s s h V sε ξ= =  is: 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )( )

( )

( ) ( ) ( )
( )

1 2
ln

1 2
ln

2

1 2

2
*

1 , , ,
1 , ln |

1, , ,

, , ,
, ln |

0, , ,

, 2
where , , ,

,
2

X s

X s

z h z h h
F h P X s s h

h

z h z h h
F h P X s s h

h

n s n s m s p s h
z z h z h

m s

n s
h h p s

m s

ω ω ρ ξ
ω ω ε

ω ω ρ ξ

ω ω ρ ξ
ω ω ε

ω ω ρ ξ

ξ ω
ξ ξ

ω ρ

∗

∗

∗

∗

− Φ + Φ ≥
− = ≥ = =

≤

Φ −Φ ≥
∴ = ≤ = =

≤

− ± − + −
= =

= + −

 

If ( ) ( ) ( )( )2 *, 2 0n s m s p s hξ ω− − − = , then the roots of the equation defined in (18) are equal so that 

( ) ( )
( )1 2
,n s

z z z
m s

ξ
ξ∗= = = − , then there exists a value ( ), ,hω ρ ξ∗  such that  

( ) ( ) ( ) ( )( )2ln , | , 1P X s h s h V sω ρ ε ξ∗≥ = = = .  

In other words, ( )* , ,hω ρ ξ  is the lowest value the conditional random variable ( ) ( ){ }ln |X s s hε =  can 
assume in this case. 

Next we consider the case of ( ) 0.m s <  
Conditional Risk-neutral Distribution function of ( ) ( ) ( )( )ln | ,X s s h V sε ξ= = , ( ) 0.m s < . 

Suppose 0ρ < , which implies ( ) 0.m s <  

If Assumption (3) holds then the conditional risk-neutral distribution of ( ) ( ) ( )( )2ln | ,X s s h V sε ξ= =  is 
derived as follows: 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )
( )

( ) ( )
( )( ) ( )( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )( )

( )

2 1
ln |

2 1
ln |

2

1 2

, , ,
1 , ln | ,

0, , ,

1 , , ,
,

1, ,

, , 2
where , , ,

X s

X s

z h z h h
F h P X s s h V s

h

z h z h h
F h

h

n s n s m s p s h
z z h z h

m s

ξ

ξ

ω ω ρ ξ
ω ω ε ξ

ω ω ρ ξ

ω ω ρ ξ
ω

ω ω ρ

ξ ξ ω
ξ ξ

∗

∗

∗

∗

Φ −Φ ≤
− = ≥ = = =

≥

−Φ +Φ ≤
∴ =

≥

− ± − + −
= =

 

Example 1: 
Let ( ) ( ), , , , , , 0.06,0.08,0.20,0.5, 0.8,0.1r υ α η θ ρ κ = − . Then in Figure 1 depicts the conditional risk-neutral 

distribution of 
( ) ( ) ( )( ) ( )ln | , , 0.X s s h V s m sε ξ= = <  

In the next section we consider the evaluation of price of a security that is derivative of stock price ( )X s . 
We need the following Assumption (4) to ensure that the call option price is well defined. 

Example 2: 
Let ( ) ( ), , , , , , 0.06,0.08,0.20,0.5,0.3,0.8,0.1r υ α η θ ρ κ = . 

Figure 2 shows the conditional risk-neutral distribution of ( ) ( ) ( )( ) ( )ln | , , 0.X s s h V s m sε ξ= = >  is de-
picted. 
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Figure 1. 1 ω← → ( )* , 1.4084hω ρ = , h = 0.                                             

 
CDF of lnX(s), m(s) > 0 

 
Figure 2. Conditional risk-neutral distribution ( ) 0.m s >                                   

 
Assumption 4: 
We will utilize the Assumption (4) later for deriving the price of any derivative security. 
Conditional Call Option Price 
Assumption 4 

( ) 1.m s <                                       (23) 

We will utilize the Assumption (4) later for deriving the price of any derivative security.  
Conditional Call Option Price 
Next we obtain an explicit closed form expression for the conditional call option price that is similar to the 

corresponding B-S expression and hence is easier to compute.  
Proposition 4: 
Given 0ρ >  and 

( ){ }0 1m s< <  
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( )

( )( ) ( )( )

( )
( ) ( )

( )( ) ( )

( )
( ) ( )( ) ( )

( )( )
( ) ( )( ) ( )

( )( )

( ) ( )
( )( ) ( )( )

0

0

2
9

1 20
1 2 1 2

2

1

, , , , , 0

e |

1. exp , e , for ln , ;
2 11

1 1
2. 1

1 1 1

exp , e 1
2 1

Q rs

rs

rs

C x K r h

E X s K s h

n sx
p s h K K h

m sm s

z h m s n s z h m s n sx
m s m s m s

n s
p s h K z h z

m s

η ρ

ε

ω ρ

∗

+−

∗ − ∗

∗ −

>

= − =

 
+ − ≤  −−  

    − − − −    = −Φ +Φ    − − −     
 

× + − −Φ +Φ  − 
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where 
( ) ( )
( ) ( ) ( ){ }
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, | .
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 and  
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1 2
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ξ ω
ω ω

ξ
ξ ω ω ω ρ ξ

− ± − + −
= − − =

− + − ≥ ⇒ ≥ = + −

, ( ) ( )z P Z zΦ = ≤  is the cdf of 

the standard normal variable Z. 
Remark 5: 
To simplify the presentation of the results, we have suppressed usually the dependence of ( ),n s ξ  on ξ . 
Proof: 
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× + − −Φ +Φ  − 
( )( ){ } ( )2 , for ln , ;h K hω ρ∗>

 

We prove Proposition 4 below using the risk-neutral distribution results (Proposition 3) of lnX(s) for 0ρ > . 
Again using the risk-neutral distribution results of lnX(s) (Proposition3) for 0ρ < , the Proposition 5 issimilarly 
proved. 

Case 1: 
Here, we make use of risk-neutral distribution of lnX(s) results for 0ρ > . 

( ) ( ) ( ) ( )
( )

2

1 2

2
,

n s n s m s p s
z z z

m s
− ± −

= =   

where ( ) ( ) ( )0, ,m s m s n s≠  and ( ),p s h  are as defined in (19) 
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( ) ( )( ) ( )( )
( )

( )( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )
2 2 2

1

2 2
2

1

0 0

ln
0 ln ln

ln ln

1
, 1 2 2 .2

0

2 2

, , , , , e | ,

e e d d | ,

1 1e d e d
2π 2π

1 1e e d e d
2π 2π

Q rs

X sQ rs
X s X s

K K

m s zz n s z p s h m s z n s z p s h

z

z zz
rs

z

C x K r h E X s K s h

E F K F s h

x z z

K z z

σ ξ ε ξ

ε ξ

∗ ∗

+∗ −

∞ ∞
−

−∞ − + + − − + +

−∞

∞ − −−

−∞

= − =

  
= − =     

  = + 
  

− +

∫ ∫

∫ ∫

∫ ∫

( )
( ) ( )( ) ( )

( )( )
( ) ( )( ) ( )

( )( )

( ) ( )
( )( ) ( )( ) ( )( ){ } ( )

1 2
0 1 2 1 2

2

1 2

1 11 1
1 1 1

exp , e 1 , if ln , ;
2 1

rs

z h m s n s z h m s n s
x

m s m s m s

n s
p s h K z h z h K h

m s
ω ρ∗ − ∗

  
 
  

    − − − −    = −Φ +Φ    − − −     
 

× + − −Φ +Φ ≥  − 

 

Case 2: 

( )ln ,K hω ρ∗<  

Since ( ) ( )( )ln 1,P X s ω ρ∗> =  it follows that if ( )*ln ,K hω ρ≤  then  

( )( )ln ln 1.P X s K≥ =  

Then, 

( ) ( )( ) ( )( )
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∫ ∫  which follows as in Case 1. 

This completes the proof. 
Proposition 5: 
Suppose 0ρ <  which ( ) 0m s⇒ <  and which easily satisfies the Assumption (4): ( ) 1m s < . Then, 

( ) ( )( ) ( )( )

( )
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Case 1: ( )ln ,K hω ρ∗<  

Then given that ( ) 00X x=  and ( )0 1m s< <  we have: 
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( ) ( )( ) ( )( )ln , 1 ln ln 0.P X s h P X s Kω ρ∗≤ = ⇒ < =  

So in this case 
( )0 , , , , , 0 0,C x K r hη ρ∗ < ≡  

Case 2: ( )ln ,K hω ρ∗>  
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Remark 6: 
We define 

(i) Hedge ratio = 
( ) ( )

*
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.
.

C
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∂
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∂
 

Then, given that ( ) 00X x=  and ( ) 0m s <  we have: 
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Figure 3 shows the unconditional hedge ratio as derived using (28). 
 

 
Figure 3. Unconditional hedge ratio, k from 3 to 31.5.                                                
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(ii) Since 0 10,x =  we have, if 10,K <  the option is said to be in-the-money; if 10K = , the option is at- 
the-money and if 10,K >  then the option is out-of-the money. 

(iii) Subject to the condition (22), it can be verified that the call option price function increases (i) as time to 
maturity s increases and (ii) as ρ  increases. 

Delta-Neutral Portfolio 
Consider the following portfolio that includes a short position of one European call with a long position delta 

units of the stock. 
(i) The portfolio of delta-neutral positions is defined as 

( )*
0 Hedge ratio 0.P c x P= − + ∆ ⇒ =  

(ii) The hedge ratio expressions are similarly derived for the case of 0ρ >  using results in Proposition 4. 
Conditional Put-Call Parity 
Consider a non-dividend paying European put option with strike price K and exercise date s. Then the price 
( )2

0 , , , ,P x K sρ η  at time 0 of the put option is the present value of the expected terminal value, 

( )e ,rsE K X s
+− −    where the expectation is obtained using the risk neutral distribution of ( )X s . Here the 

investor can exercise the option at time s if ( )ln lnK X s≥ . However we have the relationship in terms of con-

ditional distribution of  ( )ln X s  given ( )s hε = : 

( ) ( )
( ) ( )( )

2 2
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e e | e .rs rs rs
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ε
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− − −

−

= − = = −
                      (24) 

Unconditional Call Option Price 

( ) ( ) ( )( ) ( )
2

2 2 2 2
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C x K r s E C x K r s u s u C x K r s u uε ε εη η σ ε σ σ σ
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−∞

= = = ∫     (25) 

where ( ) ( )( )2 s Var sεσ ε= , where we have assumed the marginal distribution of ( )sε  to be normal with 

mean 0 and variance ( )2 sεσ . 
One could evaluate the option price (26) numerically as follows: 
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              (26) 

Put-Call Parity 
The Put option price is obtained using Put-Call parity: 
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Again, we can apply the discrete approximation numerical method as in (26) in evaluating (27). 
Figures 4-6 represent respectively, conditional call option price given h = −0.5146, 0, 0.5146. 
Call option price functional values for the Equation (26) for m = 1, as the time to maturity 0.5s =  and the 

strike price Kvaries. 
For m = 1, (26) reduces to (28): 

( ) ( ) ( ) ( )0 0 0 1 0 1 0, , , , , , , ,0 , , , , , , , , ,C x K r C x K r C x K r C x K rε ε εη σ π η π η σ π η σ∗ ∗ ∗
−= + + −      (28) 

0 1 10.6827, 0.15865 and 0.15865.π π π−= = =  
 

 
Figure 4. Conditional call price where h = −0.5146.                                                                                   

 

 
Figure 5. Conditional call price where h = 0.                                                                                   

 

 
Figure 6. Conditional call price where h = 0.5146.                                                    
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The unconditional cost of call option as a weighted average of the cost of call option, as approximated for m = 
1, can be represented by Figure 7. 

Implied Volatility Functions 
By definition, an implied volatility function is the function ( )( )0 , , ,x K r sσ ∗∗  such that the following equa-

tion, connecting the call option price ( )2
0 , , , ,C x K r sη∗  of the new model with the corresponding Black- 

Sholes model’s call option price ( )*2
0 , , , ,BSC x K r sσ , is satisfied, where 

( ) ( ) ( )( ) ( )( )2 2
0 0 0 1 2, , , , , , , ,BSC x K r s C x K r s x l K lη σ σ σ∗ ∗ ∗= = Φ − Φ  

( ) ( )

( ) ( )

2
0

1 2

2
2 1

ln
2

x K rs sl
s

l l s

σσ
σ

σ σ σ

+
= +

= −

                            (29) 

In other words, we find a suitable value for implied volatility σ ∗  so that call option price values both under 
the new model with parameter values ( )2

0, , , ,r x K sη  and under the Black-Sholes model with parameters  

( )2
0, , , ,r x K sσ ∗  are equal. Implied volatility is a popular estimate of future stock price volatility, obtained from  

option price data. It is known that under a Black-Scholes model formulation the implied volatility function must 
remain constant for different values of the strike price when the other parameters of the option pricing model are 
kept constant. However, skewness in implied volatility curves is observed in actual market data for European 
options. 

With a view to explaining this anomaly, several different models have been proposed in the option-price lite-
rature. These models are mostly variations of 2-factor affine-jump diffusion models, one of the factors being 
stock volatility3 

Let ( ) ( )0 , , , , , , , 10,0.06,1,0.6,0.2,0.05,0.08, 0.8x r α η κ θ υ ρ = −  

In this section, we show that the implied volatility skewness property of negative correlation- 0ρ <  model. 
The “implied volatility smile curves are rotated clock wise into smirks”, which is known as “Volatility asymme-
try”. See [4], p. 350. The implied volatility can be easily computed and is an increasing function of the time to 
maturity s-(see Figure 8). 

6. Conclusion 
In this paper, we formulate a two-factor model of a stock index, where we assume the volatility process and the 
Brownian motion process of the model are dependent and use a novel linear regression approach to obtain call 
option price expressions for the proposed model. We have obtained closed form Black-Scholes type expressions  

 

 
Figure 7. Unconditional call option, k from 3 to 35.                                                

 

 

3But there are several empirical papers that use S & P 500 options data-set on a given date directly to estimate risk-neutral return densities 
and a measure of risk-neutral skewness, [17]-[20]. 
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Figure 8. Implied volatility.                                                                     

 
for option prices under the assumption of constant interest rate. We can also show stochastic interest rate and 
random economic shocks can also be incorporated in the model (see [21]-[23]). Analyzing the proposed model 
is computationally simpler than it is for the other affine jump process models. The results of this paper can also 
be applied to bond option, foreign currency option and futures option models and to more complex derivative 
securities including various types of mortgage-backed securities. 
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Appendix 
Appendix A 
Some preliminary results are stated below prior to the proof of Proposition 1. 

Application of Least Squares Linear Regression (see [24], p. 87). 

( ) ( ) ( )*
0 1

0

d
s

q s q u B u∫  on ( ) ( )1 1
0

d ,
s

B s B u= ∫  

where ( ) ( )0 e .uq u ακ θ −= −  
The regression equation obtained is: 

( ) ( ) ( ) ( ) ( ) ( )*
0 1 1 1 1

0

d
s

q s q u B u s B s e sγ= = +∫                        (1A1) 

and where 
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is the regression coefficient 
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222

1 0 1 1 0 1
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2) Regress the function 
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Note that (see [12]) 
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We can show that (see [12]) 
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Proof: 
Using Ito’s Lemma, we have 
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This completes the proof. 
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is the regression coefficient 

( ) ( ) ( )( ) ( ) ( )2 2 1 12
0 0

2 d d .
s u

e s t s B t B u
s

ψ γ= −∫ ∫  

( )( ) ( )( ) ( ) ( )( )2 1 1 20; 0, , 0E e s E e s Cov e s e s= = =                      (2A1) 
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2 2 22
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2d d d d
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Var e s u t s t t t u s
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ψ γ ψ γ
  

= − = −     
∫ ∫ ∫ ∫  

Then the regression equation is 

( ) ( ) ( ) ( )** 2
2 1 22 ;

2
ss s B s e sψ γ  = − + 

 
                         (2A2) 

Assumption: 

( ) ( )( )( )1 2
2 2~ 0,e s N Var e s  (approximately)                     (2A3) 

Note that ( ) ( )( )1 2, 0Cov e s e s =  and ( ) ( )( )( )1 2
1 2~ 0,e s N Var e s . 

( )( ) ( )( )( ) ( )( ) ( )( )1 2
1 2 1 2Var e s Var e s Var e s Var e s∴ + = +  

Assumption:  

( ) ( ) ( ) ( )( ) ( )( )( )( )1 2

1 2 1 2~ 0,s e s e s N Var e s Var e sε = + +  (approximately)         (2A4) 

Proof of Proposition 1: 
1) 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 1 1
0

2

0 1 1 1
0 0 0

2
0 1 1 1 1

2
1

2 2 1

d ln d d d d ,0 ;
2

d ln d d d d ;
2

1ln ln
2

2 2

u

s s u

s

X u r u q u t B t C t B u u s

X s u r q u t B t C t B u

X x rs s B s s B s e s

B s ss e s VB s

υ υ ψ ρ δ

υ υ θ ψ ρ δ

υ υ θ γ

γ ρ δ

 
 = − + + + + ≤ ≤      

 
 

= − + + + + +    
 

= + − + + + +  

  
+ − + +      

∫

∫ ∫ ∫

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
12

0 1 1 1

2
1

1 2 2

1ln
2 2 2

.
2 2

B s sx rs s s B s e s

B s sVB s s e s

υ υ θ ρ γ

δ ρ γ



 
= + − + + − + +     

 
  

+ + − +      

 

2) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 1 2 1 1 2 2 1 2

0 0 0

d d d
2

s u s sB u t B t s B u B u e s s B s e sψ γ γ  = + = − + 
 ∫ ∫ ∫  

where 

( ) ( )
( )( ) ( )( )

2 2 2 2 2 2
0 0 0

1 e 1 e2 2 1 e 2 2d d d
s ss u s u s s

s u t t u
s s s s

α αα α α
γ ψ η η η

α α α

− − − − −−
= = = =∫ ∫ ∫  
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( ) ( ) ( )( )*
2 2

0

d ,
s

e s u s uψ γ= −∫   

where 

( ) ( )

( )( ) ( )( ) ( )
( )( )

*

0
2

22* 2 2
2 2

0 0

d .

1 e1 e 2d d d
2

u

ss s u

u t t

s
Var e s u t u s u

s

αα

ψ ψ

α
ψ γ η η

α α

−  − − −  = − = −      

∫

∫ ∫



 

Appendix B 
Proof of Proposition 3: 

( ) ( )( ) ( ) ( ) ( )( )1 2ln | 0P X s s h P m s Z z Z zω ε≥ = = − − ≥  

Now we assume ( ) 0m s >  and 1 2.z z≥  Then 

( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

1 2 1 2

1 2

ln | 1

ln |

P X s H s h P Z z Z z z z

P X s H s h z z

υ

υ

≥ = = ≥ ≤ = −Φ +Φ

≤ = = Φ −Φ



          (1B1) 

If ( ) ( ) ( )2 2 , 0n s m s p s h− = , then the roots of the equation defined in (18) are equal so that  

( )
( )1 2

n s
z z z

m s
∗= = = − , then there exists a value ( ), hω ρ∗  such that 

( ) ( ) ( ) ( )( )ln , | , 1P X s h s h C sω ρ ε ξ∗≥ = = =  

In other words, ( )* , hω ρ  is the lowest value the conditional random variable ( ) ( ){ }ln |X s s hε =  can as-
sume. 

The equations defined in (12) hold under the Assumption (2) so that the roots of the quadratic Equation (13) 
are well defined. 

Substituting for ( ),p s h  in the condition: 

( ) ( ) ( )2 2 , 0n s m s p s h− ≥ , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 2
02 , 2 , ln 2 ,n s m s p s h n s m s p s h x rs m s ω∗− = − + − ≥ −  where 

( ) ( ) ( )0, , lnp s h p s h x rs∗= + −  

( ) ( ) ( ) ( ) ( )
( )

2

00 0 , , ln .
2
n s

m s h p s h x rs
m s

ρ ω ρ ω∗ ∗ 
> ⇔ > ⇒ = + − − ≤ 

 
 

( ) ( ) ( ) ( )
( )

2

00 0 , ( , ) ln .
2
n s

m s h p s h x rs
m s

ρ ω ρ ω∗ ∗ 
< ⇔ < ⇒ = + − − ≥ 

 
 

In other words  ( )* , hω ρ  is the highest value the conditional random variable ( ) ( ){ }ln |X s s hε =  can 
assume. 

An explicit expression for ( )* , hω ρ  
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( ) ( ) ( ) ( )
( )

2

0, , ln
2
n s

h p s h x rs
m s

ω ρ∗ ∗= + − −  

Then, ( ) ( )( )ln , 1P X s hω ρ∗≥ = . 

( ) ( ) 0, , ln lnp s h p s h rs x K∗ = − − +                          (1B2) 
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