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Abstract 
 
Fuzzy equations were solved by using different standard methods. One of the well-known methods is the 
method of -cut. The method of superimposition of sets has been used to define arithmetic operations of 
fuzzy numbers. In this article, it has been shown that the fuzzy equation A X B  , where A, X, B are fuzzy 
numbers can be solved by using the method of superimposition of sets. It has also been shown that the 
method gives same result as the method of -cut. 
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1. Introduction 
 
Fuzzy equations were investigated by Dubois and Prade 
[1]. Sanchez [2] put forward a solution of fuzzy equation 
by using extended operations. Accordingly various re-
searchers have proposed different methods for solving 
the fuzzy equations [see e.g. Buckley [3], Wasowski [4], 
Biacino and Lettieri [5]. After this a lot research papers 
have appeared proposing solutions of various types of 
fuzzy equations viz. algebraic fuzzy equations, a system 
of fuzzy linear equations, simultaneous linear equations 
with fuzzy coefficients etc. using different methods ([see 
e.g. Jiang [6], Buckley and Qu [7], Kawaguchi and 
Da-Te [8], Zhao and Gobind [9], Wang and Ha [10]). 
Klir and Yuan [11] solved the fuzzy equations A X B   
where A, X and B are fuzzy numbers, by using the me-
thod of -cut.  

Mazarbhuiya et al. [12] defined the arithmetic opera-
tions viz. addition and subtraction of fuzzy numbers with 
out using the method of -cuts i.e. using a method called 
superimposition of sets introduced by Baruah [13].  

In this article, we would put forward a procedure of 
solving a fuzzy equation A X B   without utilising 
the standard methods. Our method is based on the opera-
tion of superimposition of sets. It will be shown in this 
article that our method for the solution of equation 
A X B   gives same result as given by the method of 

-cut. 
The paper is organised as follows. In Section 2 we 

discuss about the definitions and notations used in this 
article. In Section 3, we discuss the solution of fuzzy 
equation by -cut method. In Section 4, we discuss about 
equi-fuzzy interval arithmetic. In Section 5, we discuss 
our proposed method of solution A X B  . In Section 
6, we give brief conclusion of the work and lines for fu-
ture work. 
 
2. Definitions and Notations 
 
We first review certain standard definitions. 

Let E be a set, and let x be an element in E. Then a 
fuzzy subset A of E is characterized by 

  , ;A x A x x E   

where  A x  is the grade of membership of x in A. A(x) 
is commonly called the fuzzy membership function of 
the fuzzy set A. For an ordinary set A(x) is either 0 or 1, 
while for a fuzzy set    0,1A x  . A fuzzy set A is said 
be normal if its membership function  A x  is unity for 
at least one x E . An -cut A of a fuzzy set A is an 
ordinary set of elements with membership not less than  
for 0 1  . This means  

  ;A x E A x     
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A fuzzy set is said to be convex if all its -cuts are 
convex sets (see e.g. [14]). A fuzzy number is a convex 
normal fuzzy set A defined on the real line such that A(x) 
is piecewise continuous. 

The support of a fuzzy set A is denoted by sup  p A  
and is defined as the set of elements with membership 
nonzero i.e., 

    sup ; 0p A x E A x    

A fuzzy number A, denoted by a triad [a,b,c] such that 
   0A a A  c  and   1A b  , where  A x  for [ , ]x a b  

is called the left reference function and for [ , ]x b c  is 
called right reference function. The left reference func-
tion is right continuous monotone and non-decreasing 
where as the right reference function is left continuous, 
monotone and non-increasing. The above definition of a 
fuzzy number is called L-R fuzzy number [15].  

We would call a fuzzy set A() over the support A 
equi-fuzzy if all elements of A() are with membership  
where 0 1  . The operation of superimposition S of 
equi-fuzzy sets A() and B() is defined as [13]  

         

  

A SB A A B A B

B A B

  



    

  



 

where , 0, 1    and the operation ‘+’ stands 
for union of disjoint sets, fuzzy or otherwise. 

The arithmetic operation using the method of -cut on 
two fuzzy numbers A and B is defined by the formula 

 * *A B A
   B  

where A , are -cuts of A and B, B (0,1]   and * is 
the arithmetic operation on A and B. In the case of divi-
sion  for any 0  B (0,1]  . The resulting fuzzy 
number *A B  is expressed as  

 * *A B A B       (see e.g.[11])       (1) 

 
3. Solution of the Fuzzy Equation  A X B  

by Using the Method of -Cut 
 
For any (0,1]  . Let 1 2,A a a      ,  

and 

1 2,B b b     

1, 2X x x  
   denote, respectively, the -cuts of 

A, B and X in the given equation (see e.g. Klir and Yuan 
[11]). Then the given equation has a solution if an only if  

1)  for every 1 1 2b a b a      2 (0,1]   and 

2)     

1 1 1 1 2 2 2b a b a b a b a              2  

Property 1) ensures that the interval equation  

A X B     

has a solution, which is 1 1 2 2,X b a b a         . 

Property 2) ensures that the solution of the interval 
equations for  and  are nested i.e. if    then 

X X  . if a solution X  exists for every (0,1]   
and property 2) is satisfied, then by (2.1) the solution X 
of the fuzzy equation is  

[0,1]
X X 

                  (2) 

where    .X x X
  x  

 
4. Equi-Fuzzy Interval Arithmetic 
 
The usual interval arithmetic can be generalized for 
equi-fuzzy intervals. If 1 1[ , ]A a b  and 2 2[ , ]B a b , 
we denote interval addition and interval subtraction as  

1 2 1 2( ) [ , ]A B a a b b     

and  1 2 2 1( ) ,A B a b a b     

Accordingly, 

 ( )( ) ( )
1 2 1 2( ) ,A B a a b b

      

 ( )( ) ( )
1 2 2 1( ) ,A B a b a b

      

Let now, (1), (2) be the ordered values of 1, 2 in 
ascending magnitude, Then 

        (1/2) (1/2) (1/2) (1/2)

1 1 2 2 1 1 2 2

(1/2) (1) (1/2)

(1) (2) (2) (1) (1) (2)

(1/2) (1) (1/2)

(1) (2) (2) (1) (1) (2)

(1/2)

(1) (1) (2) (2)

, , ( ) , ,

, , ,

( ) , , ,

,

a b S a b c d S c d

a a a b b b

c c c d d d

a c a c a



               

               

     
(1)

(2) (2) (1) (1)

(1/2)

(1) (1) (2) (2)

,

,

c b d

b d b d

   

    

 

(3) 

where  
2

1
,i i

i
a b


   ,  

2

1
,i i

i
c d


    

Similarly,  

        (1/2) (1/2) (1/2) (1/2)

1 1 2 2 1 1 2 2

(1/2) (1) (1/2)

(1) (2) (2) (1) (1) (2)

(1/2) (1) (1/2)

(1) (2) (2) (1) (1) (2)

(1/2)

(1) (2) (2) (1)

, , ( ) , ,

, , ,

( ) , , ,

,

a b S a b c d S c d

a a a b b b

c c c d d d

a d a d a



               

               

     
(1)

(2) (1) (1) (2)

(1/2)

(1) (2) (2) (1)

,

,

d b c

b c b c

   

    

 

(4) 
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In the next section, we shall use (3) and (4) to find the 
solution X of the fuzzy equation A X B  . 
 
5. Solution of the Fuzzy Equation  A X B  

by Using the Method of Superimposition 
 
Let 1 2 are sample realisations from the uniform 
population 1 1  and 1 2

, , , na a a  
[ ,u v ] , , , nb b b    are sample realisa-

tions from the uniform population . 1 1

We denote as the superimpositions of equi- 
fuzzy intervals [ , ; with membership 
(1/n) i.e. 

[ , ]v w
 , 

n

n

G a b

ia b ]i 1,2, ,i  

       (1/ )(1/ ) (1/ )

1 1 2 2

(1/ ) (2/ )

(1) (2) (2) (3)

(( 1)/ ) (1)

( 1) ( ) ( ) (1)

(1 1/ ) (2/ )

(1) (2) ( 2) ( 1)

(1/ )

( 1) ( )

, , , ,

, ,

, ,

, ... ,

,

nn n

n n

n n

n n

n n n

n

n n

n

n n

G a b a b S a b S S a b

a a a a

a a a b

b b b b

b b H a







 



  

          
       

        

     , (say)b

 

(5) 
where  are ordered values of      1 2, , , na a a   1 2, , , na a a  

1 2, , , nb b b

 

and  are ordered values of      1 2, , , nb b b       
in ascending magnitude.  

Here 
n

1
[ , ]i i

i
a b


    

From (5), we get the membership functions are the 
combination of empirical probability distribution function 
and complementary probability distribution function re-
spectively as 

 

(1)

1 ( 1)

( )

0,

1
,

1,

r r

n

x a

r
( )x a x a

n

x a






   

 

 

and  

 

(1)

2 ( 1)

( )

1,

1
1 ,

0,

r r

n

x b

r
( )x b x b

n

x b






    

 

 

It is known that the Glivenko-Cantelli lemma of Order 
Statistics [16] states that the mathematical expectation of 
empirical distribution function is the theoretical probabil-
ity distribution function and that of empirical comple-
mentary probability distribution the theoretical survival 
function. Thus 

   1 1,E x P u   

and  

  2 1 ,E x P v     1 x            (6) 

where  

 

1

1
1 1

1 1

1

0,

, ,

1,

x u

x u
P u x u x v

v u

x v

 



1  


 

 

is the uniform probability distribution function on . 
and  

1 1[ , ]u v

 

1

1
1 1

1 1

1

0,

, ,

1,

x v

x v
P v x v x w

w v

x w

 



1   

 

 

is the uniform probability distribution function on . 1 1

From (5) using (6) we get the membership grades in 
[ , ]v w

 ,G a b which is nothing but  , H a b  can be estimated 
by the membership function  

 

1 1

1
1 1

1 1

1
1 1

1 1

0, ,

,

1 ,

x u x w

x u
A x u x v

v u

x v
v x w

w v


  
    
    



       (7)  

where 1 1 1[ , , ]A u v w  is a fuzzy number. 

Again let 1 2 n, , ,x x x    are sample realisations from 
the uniform population 2 2[ ,  and 1 2]u v , , , ny y y  

[ ,v
 are 

sample realisations from the uniform population ]. 2 2

We denote 
w

 , yG x  as the superimposition of equi-  

fuzzy intervals [ , ]i ix y ; 1,2, ,i n  with membership 
(1/n) i.e. 

       (1/ )(1/ ) (1/ )

1 1 2 2

(1/ ) (2/ )

(1) (2) (2) (3)

(( 1)/ ) (1) (1 1/ )

( 1) ( ) ( ) (1) (1) (2)

(2/ ) (1/ )

( 2) ( 1) ( 1) ( )

, , , ,

, , ...

, , ,

... , ,

nn n

n n

n n

n n n

n n n

n n

n n n n

G x y x y S x y S S x y

x x x x

x x x y y y

y y y y

H x

 



  

 

         
           

        
  , y

 

(8) 
where     1 2, , , nx x x  

, n

 are the ordered values of 

1 2, ,x x x    y y and 1 2 n   , , , y    are the ordered values 
of 1 2, , , ny y y    in ascending order of magnitude and 
here  x  
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 
1

,
n

i i
i

x y

    

Here the empirical probability distribution function 
and empirical complementary distribution function are 
respectively given by  

 

(1)

3 ( 1)

( )

0,

1
,

1,

r r

n

x x

r
( )x x x x

n

x x






   

 

 

and 

 

(1)

4 ( 1)

( )

0,

1
1 ,

1,

r r

n

x y

r
( )x y x y

n

x y






    

 

 

By Glivenko Cantelli lemma of order statistics, we get  

   3 2 ,E x P u    x

2 x

 

and  

   4 1 ,E x P v                  (9) 

where   

 

2

2
2 2

2 2

2

0,

, ,

1,

x u

x u
P u x u x v

v u

x v

 


 


 

2  

is the uniform probability distribution function on [u2,v2]. 
And  

 

2

2
2 2

2 2

2

0,

, ,

1,

x v

x v
P v x v x w

w v

x w

 


 


 

2



 

is the uniform probability distribution function on  
. 2 2

From (8) using (9) we get the membership grades in 
G(x,y) which is nothing but 

[ , ]v w

 ,H x y  can be estimated 
by the membership function  

 

2 2

2
2 2

2 2

2
2 2

2 2

0, ,

,

1 ,

x u x w

x u
X x u x v

v u

x v
v x w

w v


  
    
   



 

e 2 2 2[ , , ]X u v w  



wher is also a fuzzy number. 

It was assumed that  
1

,
n

i i
i

x y

   . 

Again let 1 2, , , nc c c  
 population 

 are sample realisations from 
the uniform  and 3 3[ , ]u v 1 2, , , nd d d  

pulation [ ,v w
 are 

sample realisations orm po
We denote 

 from the unif 3 3 ]. 

 ,G c d  as the superimposition of equi-  

intervals fuzzy ]i ; 1, 2, ,i n[ ,ic d    with me
(1/n) i.

mbership 
e. 

(10) 

where 

   (1/ )
, ,

n
G c d c d S    (1/ )(1/ )

1 1 2 2

(1/

(2)

( 1) ( )

/ )

(1) (2) ( 2) ( 1)

(1/ )

( 1) ( )

, ,

...

,

, ...

,

nn

n n

n

n n

n n

n n

n

n n

S c d S c d

c

d d

d d

H c



 



 

 

    

   
  , d

) (2/ )

(1) (2) (3)

(( 1)/ ) (1)

, ,
n

n n

c c c

c


     


( ) (1),nc c d         

(1 1 (2/ )
,d d


  

     1 2, , , nc c c    

, nc

are the ordered values of 

1 2, ,c c     and  d d   1 2, , , nd    are the ordered values 
of 1 2, , , nd d d    in ascend

n

ing order of magnitude and  

here  
1

,i i
i

c d

   . 

Here the empirical probability distribution function 
and empirical complementary distribution function

 given by 
 are 

respectively

 

(1)

5 ( 1) ( )

0,

r r

x c

( )1, n

1
,

r
x c x c


    
n 



  

 x c

and  

 

(1)

6 ( 1) ( )

( )

0,

1
1 ,

1,

r r

n

x d

r
x d x d

n

x d






    

 

 

antelli lemma of order statistics, we get By Glivenko C

   5 3 ,E x P u     x

and 

   6 31 ,E x P v     x            (11) 

where 
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 

3

3
3 3

3 3

3

3, ,

1,

x u
P v x u x v

v u

x v


  

 

 

is the uniform probability distribution function on 3 3

0, x u 



[u ,v ]. 
and  

 

3

3
3 3

3 3

3

0,

, ,

1,

x v

x v
P v x v x w

w v

x w

 


  
 

3  

is the uniform probability distribution function on [v3,w3]. 
From (10) using (11) we get the membership grades in 
 ,G c d  which is nothing but  ,H c d

 
 can be esti-

 the membership function mated by

 

3 3

3
3 3

3 3

0, ,x u x w

x u

x w


  
 



where is a fuzzy number.  

It was assumed that 

3
3 3

3 3

1 ,
x v

v
w v

   
 

,B x u x v
v u

  


 

3 3 3[ , , ]B u v w  

 
1

,
n

i i
i

c d

   . 

The given equation can be written as  


Replacing the values of , and 

and using the equi-f  interval arithm  we 



i.e. 

    , ( ) , ,G a b G x y G c d   

 ,G a b
uzzy

 ,G x y
etic, ,G c d  

get  
(1/ ) (2/ )

(2) ) (3) (3)

(( 1)/ )

( 1) ( 1) ( ) ( )

(1 1/

( )

,

.

, ]

n n

n n

n n n n

n

a x a x

a x a x

a



 



  

    

 
(2/ )

( 2) ( 2) ( 1) ( 1)

(1/ )

( 1) ( 1) ( ) ( )

,

,

n

n n n n

n

n n n n

b y b y

b y b y

   

 

  

    

(1) (1) (2) (2) (2,a x a x   
(( 1)/ )

( 1) ( 1) ( ) ( )... , ..
r n

r r r ra x a x


       

(1) )

( ) (1) (1) (1) (1) (2) (2), ,

.

n

nx b y b y b y        

 .. 

 

  , ,H a x b y H c d    

Using the equality of equi-fuzzy intervals, we get  

i  and i  

which gives  

i

     i ia x c       i ib y d  ; 1,2, ,i n  .

     i ix c a   and 

This implies 





(12) 
The left side of the identity (12) is  whose 

membership function 

     i iy d b  ; i 1,2, ,i n  . 

(1/ ) (2/ )

(1) (2) (2) (3)

(( 1)/ ) (( 1)/ )

( 1) ( ) ( 1) ( )

(1) (1 1/ )

( ) (1) (1) (2)

(2/ ) (1/ )

( 2) ( 1) ( 1) ( )

(1) (1) (2)

, ,

, ,

, ,

, ,

,

n n

r n n n

r r n n

n

n

n n

n n n n

x x x x

x x x x

x y y y

y y y y

c a c

 

 



  

         
          

          

       

  
(1/ ) (2/ )

(2) (2) (2) (3) (3)

(( 1)/ )

( 1) ( 1) ( ) ( )

( 1) ( 1) ( )

(1) (1 1/ )

(1) (1) (1) (1) (2) (2)

) (

,

,

n n

r n

r r r r

n n n

n

r

a c a c a

c a c a

d b d b d b

d b



 

 



      

      

  

     

    
(( )/ )

1) ( ) ( )

(1/ )

( 1) ( 1) ( ) ( )

,

,

n r n

r r

n

n n n n

d b

d b d b





 

    

    

 

(( 1)/ )
,

n n
c a c a

    ( )n

( ) ( ) , ,n nc a 

( 1r

  

 ,G x y
 X x  is estim

from the right side, we get the em
tribution function and survival function as 

ated by (9) and 
pirical probability dis-

 

(1) (1)

7 ( 1) ( 1) ( )

( ) ( )

0,

1
,

1,

r r r

n n

x c a

r
( )rx c a x c a

n
x c a

 

 


     


 

 

and 

 

(1) (1)

8 ( 1) ( 1)

( ) ( )

0,

1
1 ,

1,

r r r

n n

x d b

r
( ) ( )rx d b x d b

n
x d b

 

 


      


 

 

By Glivenko Cantelli Lemma of order Statistics 

  P  7 3 1,E x u u x      

and 

   8 31 ,E x P v v      1 x         (13) 

where 

   
   

3 1

3 1
3 1 3 1 3 1

3 1 3 1

3 1

0,

, ,

1,

x u u

x u u
P u u x u u x v v

v v u u

x v v

 


    
  

  

  

is the uniform probability distribution function on  

1]3 3[ ,u u v v   and 
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   
   

3 1

3 1
3 1 3 1

3 1 3 1

3 1

0,

, ,

1,

x v v

x v v
P u u x v v x 3w w v v

x w w

 


     
  

  

 

is
]

From (13), we get the solution of the equation 

w

 the uniform probability distribution function on 

3 1 3 1[ ,v v w w  . 

A X B  as 

 3 1 3 1 3 1, ,X u u v v w w             (14) 

 
where  

   
   

 
   

3 1 3 1

3 1
3 1 3 1

3 1
3 1 3 1

3 1 3 1

0, ,

,

1 ,

x u u x w w

x u u
X x u u x v v

v v u u

v v x w w
w w v v




   
      

  

    
   

 

Obviously,  

3 1 3 1

x v v

  



   
 

1 1 1 3 1 3 1 3 1

3 2 3

, , ,

,

A X u v w u u v v w w

u v w B

      

  
 

From the Equation (14), we get 
 3 1 3 1 3 1, ,X u u v v w w     

-
is a fuzzy number whose 

cut is given by 

      
     

3 1 3 1 3

3 1 3 1 3 1

X u u v v u u

w w w w v v

       
     

he solution of 

1
  

which is t A X B     
Obviously 

      

      

3 1 3 1 3 1
[0,1]

3 1 3 1 3 1

,X u u v v u u

w w w w v v




      

     

 

that is similar to the Equation (2). 
Thus, we can conclude that the method of superimpo-

sition e result as given by the method

 
6. Conclusion and Lines for Future Works 
 
In  new method of solv-
ing fuzzy equation 

gives the sam
-cut. 

 of 

 this article, we have presented a
A X  B . The method is based on 

he set superimpo ation. The set superimposi-
ethod has bee

t sition oper
tion m n used to define the arithmetic op-
erations on fuzzy numbers. It has been found that 

arithmetic operation based on set superimposition opera-
tion gives the same result as given by other standard 
method viz. the method of -cut. In this article, we have 
shown that our method of solution of fuzzy equation 

the 

A X B   gives the si smilar results a  given by other 
ethods. In future we would like solve other 

 equation namely fuzzy differential equa-
 integral equation etc. using same method. 

p. 129-146. 

ed 
p. 

standard m
kind of fuzzy
tion, fuzzy
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