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ABSTRACT 

No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of 
industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have 
been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy 
(CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in 
combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE 
implementation results an optimal value with less computational time in average. However, using original CE to solve 
large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of 
cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other 
metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA 
providing better or at least equal makespans in comparison with the other two methods. 
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1. Introduction  

No-wait job-shop scheduling problem (NWJJS) is a 
problem categorized to non-polynomial hard (NP-Hard) 
problem, especially for m-machines [1]. In a typical job 
shop problem, each job has its own unique operation 
route. Because the continuity of operation in each job 
must be kept to avoid operation reworking or job redoing, 
the use of incorrect method for scheduling purpose may 
make the makespan significantly longer. In addition, the 
existance of no-wait constraint, e.g. on metal, plastic, and 
food industries, made the problem even more complex. 

Many researches have been using various methods to 
solve NWJJS. Genetic Algorithm-Simulated Annealing 
(GASA) [2] and Hybrid Tabu Search [3] are examples of 
methods used to solve this problem. Several methods fail 
to achieve the optimum solution, others succeed, but 
with relatively long computational time. 

Cross entropy method, as a relatively new metaheuris- 
tic, has been widely used in broad applications, such as 
combinatorial optimization, continuous optimization, noisy 
optimization, and rare event simulation [4]. On these 
problems, cross entropy can find optimal or near optimal 

solution with less computational time. However, using 
original CE to solve large scale NWJSS requires longer 
computational time. This paper proposed a new algo- 
rithm of hybridized cross entropy with genetic algorithm 
(CEGA). The proposed method is also new in solving 
NWJSS problem. Using the hybrid of CE and GA the 
computational time can be reduced significantly while 
maintaining better makespan. 

2. Problem Overview 

NWJSS is a specific job-shop scheduling problem in 
which a constraint not to allow any waiting time between 
two sequential processes for each job applies. This kind 
of problem can be found in many industries with “no- 
wait” constraint, such as steel processing, plastic Indus- 
tries, and chemical-related industries (such as pharmacy 
and food industries), also for semiconductor testing pur- 
poses [1] and [5]. On such industries, if there’s any wait- 
ing time exist between processes, it may cause a defect 
on the product and would require it to be reworked with 
a certain process. It may also cause a product failure, 
means that we must redo all the processes for related job 
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from the beginning. 
Many researches were conducted to obtain a better al-

gorithm to approach this problem. A simple heuristic ap- 
proach for solving this problem is presented by Mascis 
and Pacciarelli. The method consists of four alternative- 
graph-based greedy algorithms: AMCC, SMCP, SMBP, 
and SMSP. These algorithms are also being tested on 
job-shop with blocking problem, assumed that complex- 
ity of both problems are almost equal [6]. Later, hybridi- 
zations of more than one heuristic method tend to be 
used for better results, for instances: a hybridization of 
Genetic Algorithm with Simulated Annealing (GASA) to 
make the convergence of the results better [2], a combi- 
nation of GA with a specific genetic operator contained 
ATSP and local search principle [1], and a hybridization 
of Tabu Search with part of HNEH algorithm, which 
aims to ensure that the solution produced is much ac- 
ceptable [3].  

In [2], another type of heuristic method based on local 
neighbourhood search so called fast deterministic vari- 
able neighbourhood search is introduced. The search was 
used for exploiting the special structure of the problem to 
be solved with GASA algorithm. While the development 
of hybridization methods is gaining its momentum, the 
pure methods are not yet old fashion. In fact, modifica- 
tions have been proposed to improve obtained solution. 
A complete local search with memory (CLM) using local 
neighbourhood search was introduced withthe use of a 
memory system for special purposes i.e. to avoid the 
same solution alternative visited [7]. Modifications of 
completed local search with limited memory (CLLM) are 
also options in the field of pure heuristic development, 
i.e. by giving a constraint to limit the number of memory 
to CLM algorithm [8], and the preference to use a shift 
timetabling technique rather than enhanced timetabling 
proposed on CLM. Graham et al. (tahun) on literature [2] 
defines NWJSS problem as follow. 

Given a set of machines 1,2, , M m 

 1, 2, ,

 purposed 

to process a set of jobs J n

i n



, ,O



. For each i-th job 

J, given a sequence of j operations  

 as the detail of process 

in i-th job. Each operation has  


    ,1 , , 2 ,O O i O i 

    , , ,m i j w i j M  

 , j

 ,w i j

, specifying that operation 

 will be processed on  with processing 

time . 

O i  ,m i j

No wait constraint is given by setting the condition of 
’s starting time equals to ’s finishing 

time. Then, the assumptions used are: one job can not be 
proc- essed at more than one machine at a time, or one 
machine can not process more than one job at a time; 

also there is no interruption or pre-emption allowed.  

 ,O i j

Generally, this problem is divided into two sub-prob- 
lems: 1) sequencing; is how to find the best sequence of 
job-scheduling-priority with the best makespan obtained 
from all of the combinations, and 2) timetabling; is how 
to get the best starting time for all jobs scheduled for 
finding better makespan than one obtained from se- 
quencing sub-problem [8]. 

As illustration, an example is given below. 
Given a set of jobs  1,2,3J   to be processed on a 

set of machines {I, II, III}. The route of machines and 
processing time for each machine is indicated in Table 1. 

The sequencing sub-problem here is how to find the 
priority of each job to be scheduled. There are 3! possi- 
bilities or 6 priority sequences: 1-2-3, 1-3-2, 2-1-3, 2-3-1, 
3-1-2, and 3-2-1. Then, the timetabling sub-problem is 
how to get the best makespan from all possible se- 
quences. For example, for priority sequence 1-2-3, with a 
type of timetabling method will produce result as shown 
in Figure 1(a). When another method used, it may pro- 
duce result as shown in Figure 1(b). From this explana- 
tion, we can conclude that the use of different timeta- 
bling methods may result in different makespans. 

The use of optimum sequencing method within opti- 
mum timetabling method may not produce an optimum 
makespan, and otherwise. Therefore, to obtain the best 
makespan, we must choose the best method to combine 
these two sub-problems. 

3. Problem Formulation 

Referring to Brizuela’s model [1], NWJSS problem with 
objective of minimizing makespan can be modelled with 
integer programming formulation as follow:  
 Symbols definition 

Ji   i-th job 

 
(a) 

 

   , 1O i j 
(b) 

Figure 1. Comparison of timetable results using different 
methods for sequence 1-2-3. 
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m k
k

Mk   k-th machine 
Oi

k   Operation of Ji to e processed on Mk 
O(i,j)   j-th operation of Ji 
Ni   Number of operations in Ji 

 Problem parameters 
M   A very large positive number 
n   Number of jobs 
m   Number of machines 
wi

k   Processing time Ji on Mk 
r(i,j,k)   1 if O(i,j) requires Mk, 0 otherwise 

 Decision variables 
Cmax   Maximum completion time of all jobs (makespan) 
si

k   The earliest starting time of Ji on Mk 

Z(i,i’,k)   1 if Ji precedes Ji’ on Mk, 0 otherwise 
 Problem formulation 

Minimize Cmax 
Subject to 

     , , , ,1 1

m k k
i i ii j k i j kk

r s w r s
 

         (1) 

  , ,1k k k
i i i i i ks s w M Z              (2) 

 , ,
k k k
i i i i i ks s w MZ    

m



           (3) 

    max, ,1 i

m k k
i ii N kk

r s w C


           (4) 

max 0C  ; ;              (5) 0k
is 

with ; ; 
 and . 

 1,2, , ,i n 

   0,1
 1,2, , 1ij N 

1 'i i n  
1,2, ,k  

, ,i j k

Constraint (1) restricts that Mk begins the processing 
of  right after finished (to ensure that 

no-wait constraints are met). Constraints (2) and (3) en-
force that only one job may be processed on a machine at 
any time. is a binary variable used to guarantee 

that one of the constraints must hold when the other is 
eliminated. Constraint (4) is useful to minimize Cmax in 
the objective function. Finally, Constraint (5) guarantees 
that Cmax and si

k are non-negative. 

Z

 , 1i jO   ,i jO

 , ',i j kZ

4. Cross Entropy 

4.1. Basic Idea of Cross Entropy 

If GA is inspired by natural biological evolution theory 
developed by Mendel, which includes genes transmission, 
natural selection, crossover/recombination and mutation, 
differently, cross entropy (CE) is inspired by a concept 
of modern information theory namely the concept of 
Kullback-Leibler distance, also well-known with the 
same name: the concept of cross entropy distance [4]. 
This concept was developed to measure the distance be- 
tween an ideal reference distribution and the actual dis- 
tribution. This method generally has two basic steps, 
generating samples with specific mechanism and updat- 

ing parameters based on elite sample. The concept then 
is redeveloped by Reuven Rubinstein with combining the 
Kullback-Leibler concept and Monte Carlo simulation 
technique [4].  

CE has been applied in wide range of problems. Re- 
cently, it had been applied in credit risk assessment 
problems for commercial banks [8], in clustering and 
vector quantization [9], as well as to solve combinatorial 
and continuous optimization problem [4]. Additionally, 
CE is also powerful as an approach to combining multi- 
ple object classifiers [9] and network reliability estima- 
tion [10] while other has successfully used CE on gener- 
alized orienteering problem [11]. CE application has 
been widely adopted in the case of difficult combinato- 
rial such as the maximal cut problem, Traveling Sales- 
man Problem (TSP), quadratic assignment problem, 
various kinds of scheduling problems and buffer alloca- 
tion problem (BAP) for production lines [4].  

For solving optimization problem, cross entropy in- 
volves the following two iterative phases: 

1) Generation of a sample of random data (trajectories, 
vectors, etc.) according to a specified random mechanism, 
i.e. probability density function (pdf) 

2) Updating parameters of the random mechanism, 
typically parameters of pdfs, on the basis of data, to pro- 
duce a “better” sample in the next iteration. 

Suppose we wish to minimize some cost function S(z) 
over all z in some set Z. Let us denote the minimum by 
γ*, thus  

 * min
z Z

S z


                 (6) 

We randomize our deterministic problem by defining a 
family of auxiliary pdfs   ; ,f v v V   and we asso- 
ciate with Equation (6) the following estimation problem 
for a given scalar γ: 

    ( ) [ ]u u S Z
P S Z E I     the so-called associated 

stochastic problem. Here, Z is a random vector with pdf 
(.;u), for some u   V (for example Z could be a Ber- 
noulli random vector). We consider the event “cost is 

low” to be rare event   I S Z   of interest. To esti- 

mate the event, the CE method generates a sequence of 

tuples   ˆ ˆ,t tv , that converge (with high probability) to 

small neighbourhood of the optimal tuple   *, *v , 

where γ* is the solution of the problem (6), and v* is a 
pdf that emphasize values in Z with low cost. We note 
that typically the optimal v* is degenerated as it concen- 
trates on the optimal solution (or small neighborhood 
thereof). Let ρ denote the fraction of the best samples 
used to find the threshold γ. The process based on sam- 
pled data is termed the stochastic counterpart since it is 
based on stochastic samples of data. The number of sam- 
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ples in each stage of the stochastic counterpart is denoted 
by N, which is a predefined parameter. The following is 
a standard CE procedure for minimization borrowed 
from [4].  

We initialize 0 0  and choose a not very small 
ρ (rarity coeficient), say 

v̂ v u 
10 2   . We then proceed 

iteratively as follows. 

4.1.1. Adaptive updating of γt  
A simple estimator t̂  of γt can be obtained by taking 

random sample  1 ,  ,Z Z N  from the pdfs f(·;vt-1), 

calculating the performance   lS Z  for all l ordering 

them from smallest to biggest as    1 , ,S S

t̂

N and 

finally evaluating the ρ 100% sample percentile as    

 ([ ])NS 

4.2.2. Adaptive updating of vt  
For a fixed γt and vt-1, derive vt from the solution of the 
program: 

     
1

min min ln ;
t tv S Zv v

D v x E I f Z v       (7)  

The stochastic counterpart of (7) is t̂  and 1t̂v  , de-
rive  from the following program: t̂v

      ( )

1

1ˆmin min ln ;l
t

N
i

S Zv v l

D v I f Z v
N 



      (8) 

The update formula of the kth element in v (Equation 
(8)) in this case simply becomes: 

      

  

1ˆ
1

ˆ
1

ˆ
ll

t

l
t

N

ZS Z
i

t N

S Z
i

I I

v k
I















            (9) 

To simplify Equation (9), we can use the following 
smoothed version provided by [4]: 

  1ˆ ˆ ˆ1t t tv v v                 (10) 

where  is the parameter vector obtained from the so-
lution of Equation (8), and β is a smoothing parameter. 
The CE optimization algorithm is summarized in Algo-
rithm 1. 

t̂v

Algorithm 1. The CE Method for Stochastic Optimi-
zation 

1) Choose . Set t = 1 (level counter) 0

2) Generate a sample Z(1), , Z(N) from the density f 
(·;vt-1) and compute the sample ρ 100-percentile 

v̂

t̂  of 
the sample scores. 

3) Use the same sample Z(1), , Z(N) and solve the 
stochastic program (8). Denote the solution by . tv

4) Apply (10) to smooth out the vector . tv
ˆ ˆ5) If for some , say d = 3, 1 ddt  ˆt t t       

then stop; otherwise set t = t + 1 and reiterate from step 
2. 

It is found empirically that the CE method is robust 
with respect to the choice of its parameter N, ρ, and β. 

Typically those parameters satisfy that 0.01 0.1  , 
0.5 0.9  , and , where n is the number of 
parameter. 

3N  n



This procedure provides the general frame. When we 
are facing a specific problem, we have to modify it to fit 
it with our problem.  

4.2. Cross Entropy for Combinatorial 
Optimization 

In case of job scheduling we require parameter P in place 
of v. P is a transition matrix where each entry pi,j denotes 
the probability of the job i to the place j, for i = 1, 2, , 
n, j = 1, 2, , n, where n is the number of job. For the 
initial P we can put equal values to all entries, it means 
that the probability of the job i to the place j is equally 
distributed.  

Based on matrix P, we will generate N sequences of 
jobs. Each sequence (Zi) will be evaluated based on S(zi) 
where S = Cmax value for each sequence. Out of N se- 
quences, we take ρN percent elite samples with the best S 
(instead of using  as a threshold to select elite sample). 

Let ES = ρN, the updating formula for is given 

by 

ˆ ,tP i j

 
 

1ˆ ,
ki

ES

Z j
i

t

I
P i j

ES





           (11) 

To generate sequence of job we can use trajectory 
generation using node placement [4] as shown in Algo- 
ritm 1. 

Algorithm 2. Trajectory generation using node place- 
ment 

1) Define P(1) = P, Let k = 1 
2) Generate Zk from the distribution formed by the k-th 

row of P(k). Obtain the matrix P(k+1) from P(k) by first 
setting the Zk-th column of P(k) to 0 and then normalizing 
the rows to sum up to 1. 

3) If k = n then stop, otherwise k = k + 1 and reiterate 
from Step 2. 

4) Determine the sequences and evaluate their makespan  
The main CE algorithm for job scheduling is given in 

Algorithm 3. 
Algorithm 3. The CE method for Job scheduling 
1) Choose initial reference transition matrix 0 , say 

with all entries equal to 1/n, where n is the number of job. 
Set t = 1. 

P̂

2) Generate a sample Z1, , ZN of job sequence via 
Algorithm 2 with P = t-1 and choose ρN elite sample 
with the best performance of S(z). 


P̂

3) Use the elite sample to update . t̂P
4) Apply (10) to smooth out matrix . t̂P
5) If for some , say d = 5, 1 dt d ˆ ˆ ˆt t t       

then stop; otherwise set t = t+1 and reiterate from step 2. 

4.3. Example  
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Table 1. NWJSS case example 

Job Operation Machine Processing Time

1 O11 I 1 

 O12 II 3 

2 O21 I 1 

 O22 II 4 

 O23 III 2 

3 O31 I 1 

 O32 II 3 

 
To understand the use of CE in jobshop scheduling more  
easily, let’s see the following example. There are 3 jobs 
with known processing time (L), due date (d) and weight 
for tardiness (w) for each job as in Table 1. It is desired 
to find the optimal sequence based on total weighted 
tardiness. Let’s use N = 6, ρ = 1/3, β = 0.8. 

The objective function for jobshop scheduling with 
single machine with minimum total weighted tardiness 
(SMTWT) is 

   1
min min max ,0

n

z Z k k kk
S z w f d 

     

where 
1

n

k jj
f L


   

Suppose the initial transition matrix is 

0

1 3 1 3 1 3

1 3 1 3 1 3

1 3 1 3 1 3

P

 
   
  

  

and the population generated is as follows: 

Z1: 1-2-3; with S = 1.5 
Z2: 1-3-2; with S = 2 

Z3: 2-1-3; with S = 0.5 

Z4: 2-3-1; with S = 1 
Z5: 3-1-2; with S = 2 

Z6: 3-2-1; with S = 2 

Two best samples as elite sample are  

Z3: 2-1-3; with S = 0.5 

Z4: 2-3-1; with S = 1 

For the sequence 2−1−3, we have 

0 1 2 0

1 2 0 0

0 0 1 2

w

 
   
  

 

Considering the second best sequence 2-3-1, we get 

0 1 0

1 2 0 1 2

1 2 0 1 2

w

 
   
  

 

Using P1 = βw + (1 − β) P0, we obtain the transition 

probability for the next iteration as  

1

0.0667 0.8667 0.0667

0.4667 0.0667 0.4667

0.4667 0.0667 0.4667

P

 
   
  

 

Using this transition probability, N new sequences will 
be generated. From these sequence, evaluate the objec- 
tive function S(z) and repeat the same steps until stop-
ping criteria is met.  

5. Proposed Algorithm 

The proposed method to solve the NWJSS problem is a 
hybrid of cross entropy with genetic algorithm (CEGA). 
The cross entropy is used as the basic; while from the 
GA the procedure of sample generation is adopted.  

For this NWJSS problem, the flowchart of CEGA is 
given in Figure 2. 

The explanations of Figure 1 is as follows: 
Defining Inputs and Outputs 
The inputs and outputs are determined as follows: 

Inputs: 
 Machine routing matrix (R(j, k); j state the job number 

and k state the operation number) 
 Processing time matrix (W(j, k)) 
 Number of population (N) 
 Ratio of elite sample (ρ) 
 Smoothing coefficient (β) 
 Initial crossover rate (Pps) 
 Terminating criterion () 

 

Figure 2. Flowchart of CEGA. 
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Outputs: 
 Best schedule’s timetable (starting and finishing time 

of each job) 
 Best schedule’s makespan (Cmax) 
 Computational time (T) 
 Number of iteration  
Assessing Initial Parameters 
The initial values of predefined inputs (N, ρ, α, initial Pps, 
and ) are determined by user. The parameters values are 
as follows:  
 Population size N, there is no certain threshold, the 

larger number of job, requires larger number of popu- 
lation size as the permutation of possible schedules 
getting bigger. In this paper we use N as cubic of the 
number of jobs (n3). 

 Elite sample ratio ρ, suggested range is 1% - 10% [4]. 
In this paper, we used ρ = 2%.  

 Smoothing coefficient α, the range is 0 - 1, and 0.4 - 
0.9 is empirically the optimum range [4]. We used β = 
0.8.  

 Crossover rate (Pps), we used Pps = 1 for the initial 
value. 

 Terminating criterion  = 0.001. 
Generating Sample 
Each sample represents the sequence of job, which 
should be scheduled as early as possible. The generation 
of initial sample (iteration = 1) is fully randomized, but 
in the next iterations, samples are generated using ge- 
netic algorithm operators (crossover and mutation), are 
done based on these stepsare done based on these steps: 
1) Weighting Elite Sample 
This weighting is necessary for the next step (selecting 
parents), where the first parent is selected from elite sam- 
ples by considering the weight of each elite sample. The 
weighting rule is, if the makespan generated by a se- 
quence is better than the best makespan ever visited of 
the previous iteration, the weight is equal to the number 
of elite sample, otherwise is given 1. 
2) Assessing Linear Fitness Rank 
Linear fitness rank (LFR) for actual iteration calculated 
from fitness value of all sample generated in the previous 
iteration. The value of LFR is formulated by  

         1 1 1max max minLFR I N I F F F i N        

where the fitness value is same as 1/makespan value. i is 
stated the i-th sample (which is valued between 1 and N), 
and I state the job index on sample matrix. 
3) Selecting Parents 
Parent selection is conducted by using roulette wheel 
selection,samples with higher fitness values have larger 
chance to be selected as parent. The first parent is se-
lected from elite samples (with the weight calculated by 
Step 3a), and the second parent is selected from all of the 

last iteration samples with LFR weight from step 3b). 
4) Crossover 
Crossover is done with two-point order-crossover tech- 
nique, which the choosing of points held randomly from 
both of parents. The offspring resulted from this tech- 
nique have the same segment between these two points 
with their parents. Other side, the other segment will be 
kept from the other different parent’s sequence of jobs.  
5) Mutation 
Mutation was conducted with swapping mutation tech- 
nique, whereas mutation conducted by exchanging se- 
lected job with another job in the same offspring. 
Calculating Makespan 
The calculation of makespan value will be conducted 
with simple shift timetabling method, adapted from shift 
timetabling method by Zhu et al. [8]. The steps are: 

a) Schedule the first job from t = 0 
b) Schedule the next job from t = 0, check whether or 

not machines are overloads. If they exist, shift jobto 
therightside until there is no machine overloaded. 

c) Repeat b) until all jobs are scheduled 
Choosing Elite Sample 
Elite sample was chosen as [ρN] best sample out of 
population N based on makespan values. 
Updating Crossover Rate and Mutation Rate 
Parameter updating is done by taking the ratio between 
average makespan and best makespan in each iteration, 
noted as u. Crossover rate then updated with Pi = βu + (1 
– β)Pi-1 , and mutation rate defined as half of crossover 
rate. 
Checking for Terminating Condition 
Terminating condition used in this research is when the 
difference between actual crossover rate with crossover 
rate from previous iteration is less than (If this condition 
is met, then stop the iterations. Otherwise, repeat from 
Step 4. 

The outputs of this process are the best timetable and 
makespan, computational time, and number of iteration. 

For more explanation, we use data in Table 2 as an 
example. From Table 2, we obtain machine routing and 
processing times as follows: 
 Machine routing matrix  

1 2 3

: 1 3 2

1 2 3

 
 
 
  

R  

Table 2. Job data. 

No Lj dj wj 
1 1.0 2.0 1.0 
2 1.0 1.0 1.0 
3 1.0 2.5 1.0 
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 Processing time matrix 

1 3 0

: 1 4 2

1 3 0

 
 
 
  

W  

The row and column denote the number of job and 
operation respectivelly. Actually O13 and O33 in W do not 
exist, 0 processing time (dummy operation) in these en- 
tries is just to keep the matrices squared. The other re- 
quired parameters are N, ρ, β, initial Pps, and ε. Let set N 
= 3, ρ = 0.02, β = 0.8; initial Pps = 1; and ε = 0.001. The 
terminating condition is reached when |Pps(it) – Pps(it–1)| ≤ 
ε. 

Initially, the population is generated randomly; sup- 
pose the initial population is 

1 2 3

3 1 2

2 1 3

 
   
  

X  

For each sample, we compute the makespan with left- 
shift technique, results 11 for first, 9 for second, and 10 
for third instances. Then, we choose the elite samples by 
[ρN] or [(0.2)(3)] = 1. Therefore only one out of three is 
chosen as the elite sample, and it must be 3-1-2 with 
makespan value 9. 

Then, update the crossover rate (Pps) by updating pa- 
rameter u value. Let the value for this NWJSS problem is  

Average makespan

2 The best makespan
u 


 

Average makespan denotes the average of makespan 
obtained in current iteration. The best makespan is the 
best value of makespan in current iteration.  

For current iteration, u value is 
10

2 9
 or 

5

8
. The Pps 

for next iteration then updated as 0.8
5

8
 + 0.2 1 = 0.7, 

and the mutation rate is (1/2) 0.7 = 0.35.  
Go to next iteration. For second iteration until termi- 

nating condition reached, generating samples will be 
done by GA mechanism. First we must compute the 
weight value w and the LFR value of each samples gen- 
erated before. For this problem, both w for elite sample 
or non-elite sample is 1, cause of the size of elite sample 
is also 1. The Fmax value is 1/9, while Fmin is 1/11. Then, 
for each sample, the LFR value results is 1/9, 1/11, and 
10/99.  

For parent selection, we use the roulette wheel mecha- 
nism, when the first parent is chosen by weight value w, 
and the second is chosen from LFR selection. Then we 
conduct the two-point order crossover. The “chromo- 

some” to be changed with the crossover results are just 
the second and third, while the first sample is changed 
with the first rank of sample elite to keep the best 
makespan results (elitism mechanism).  

Let 1-2-3 and 3-1-2 as the chosen parents. Choose a 
random U (0, 1) number, say 0.56. Since 0.56 < 0.7, then 
do the crossover mechanism. Let the lower and upper 
bound of crossovered “genes” are 2 and 2 (so just the 
second “gen” to be crossovered).  

Then the temporary population is  

3 1 2

2 1 3

3 2 1

 
   
  

X  

After that, conduct the swap mutation mechanism for 
each new sample (except the top one) by firstly choosing 
again a random U (0, 1) number and check with the mu- 
tation rate. When the mutation condition met, choose 2 
different genes to be exchanged randomly. Suppose only 
the second sample will be mutated, and the exchanging 
genes are gen 2 and gen 3. Then, the new “chromosome” 
is 2-3-1, and the temporary new samples matrix after 
updated replaces old population matrix:  

3 1 2

2 3 1

3 2 1

 
   
  

X  

Do the same process as the first iteration (calculating 
makespan etc.) until the terminating condition reached.  

6. Experiments 

The algorithm was coded using Matlab. The experiment 
is conducted in 30 replications. The average and standard 
deviation of all replications were recorded. The data used 
in this experiment are taken from OR Library, including 
Ft06, Ft10, La01-La25, Orb01-Orb06 and Orb08-Orb10.  

The best makespan average and standard deviation 
resulted from the experiments are shown in Tables 3 and 
4. Ref denotes the best known solution obtained using 
branch and bound technique. The term ARPD was cal- 
culated using this formula:  

 
100

best ref
ARPD

ref


   

Based on the results in Table 3, we can see that the 
minimum value of ARPD is 0.0 and all of the ARPD 
values are below 1.0 (except La02 and La18). This value 
shows that CEGA method can give good result as well as 
branch and bound calculation. In addition, for Ft06 and 
Orb08 data, the minimum and standard deviation of 
ARPD value in CEGA is 0.0, which means that all repli-  

Copyright © 2011 SciRes.                                                                               JILSA 



A Cross Entropy-Genetic Algorithm for m-Machines No-Wait Job-Shop Scheduling Problem 178

Table 3. Performance of CEGA for small instances. 

Size Makespan CEGA Time (sec) 
Instances Job/ 

Mach 
Ref 

Best Avg StDev ARPD Avg StDev

ft06 6/6 73 73 73.0 0.0 0.0 7.1 0.1 
la01 10/5 971 975 990.1 14.7 0.4 132.6 10.8
la02 10/5 937 961 970.9 9.0 2.5 141.1 6.1 
la03 10/5 820 820 852.4 19.3 0.0 133.0 12.2
la04 10/5 887 887 891.7 8.8 0.0 130.1 12.7
la05 10/5 777 781 788.0 11.4 0.5 149.3 12.4
ft10 10/10 16071607 1611.9 12.4 0.0 269.4 12.1

orb01 10/10 16151615 1630.6 20.2 0.0 307.8 24.2
orb02 10/10 14851485 1509.2 14.8 0.0 240.4 10.8
orb03 10/10 15991599 1620.2 19.8 0.0 295.8 16.9
orb04 10/10 16531653 1692.7 39.3 0.0 278.5 14.0
orb05 10/10 13651370 1390.3 18.7 0.4 257.1 14.9
orb06 10/10 15551555 1559.1 15.5 0.0 284.2 15.0
orb08 10/10 13191319 1319.0 0.0 0.0 291.7 3.4 
orb09 10/10 14451445 1482.6 39.2 0.0 270.7 23.2
orb10 10/10 15571557 1585.6 16.2 0.0 253.4 17.7
la16 10/10 15751575 1581.5 19.9 0.0 250.9 13.6
la17 10/10 13711384 1405.5 24.9 0.9 241.5 21.6
la18 10/10 14171507 1509.7 9.1 6.0 240.0 17.8
la19 10/10 14821491 1531.4 34.8 0.6 253.2 7.4 
la20 10/10 15261526 1542.5 28.8 0.0 255.8 11.4

Table 4. Performance of CEGA for large instances. 

Size Makespan CEGA Time (sec) 
Instan 

ces Job/ 
Mach 

Ref 
Best Avg std ARPD Avg std 

la06 15/5 1248 1304 1342.0 24.3 4.3 1635.8 236.9
la07 15/5 1172 1221 1265.7 23.9 4.0 1670.1 205.8
la08 15/5 1244 1274 1323.8 23.2 2.4 1626.9 187.2
la09 15/5 1358 1382 1443.1 21.2 1.7 1745.9 202.6
la10 15/5 1287 1299 1353.9 30.7 0.9 1624.3 250.6
la11 20/5 1671 1722 1793.5 31.9 3.0 10061.7 1097.2
la12 20/5 1452 1538 1597.9 26.2 5.6 9695.1 1102.8
la13 20/5 1624 1674 1759.1 30.7 3.0 10525.0 1028.4
la14 20/5 1691 1749 1821.4 31.6 3.3 9976.7 1199.6
la15 20/5 1694 1752 1851.9 41.3 3.3 10722.1 1237.0
la21 15/10 2048 2054 2209.8 62.1 0.3 3032.3 426.2
la22 15/10 1887 1910 1972.1 42.1 1.2 2970.9 418.5
la23 15/10 2032 2098 2184.0 45.2 3.1 2995.8 429.7
la24 15/10 2015 2056 2133.6 36.9 2.0 2889.1 332.4
la25 15/10 1917 1994 2059.4 31.7 3.9 3049.5 458.7

 
cations gives the optimal value. Based on this result, we 
can conclude that the performance of CEGA is relatively 
well, especially for small instances.  

For larger size problem, CEGA’s performance tends to 
decline. Based on the result in Table 4, we can see that 
most of the ARPD values are greater than 1.0. It is oc- 
curred because the increase of jobs number processed 
will increase the number of search space as factorial. For 
example, when the job number increases from 10 to 15 
jobs, the search space increases from 10! to 15! or 15 × 
14 × 13 × 12 × 11 = 360360 times larger than 10 jobs. 
This increase, of course is hard to be followed by the 
number of sample size. However, by using n3 number of 
sample, we can say that this algorithm still has a good 
tolerable performance. This is indicated by the ARPD 

values which are less than 1.0 (for example in La10 and 
La21) and most of ARPD value are still less than stan- 
dard error 5.0 (except La12).  

Based on the result shown by Tables 3 and 4, the best 
and average makespan value obtained from all replica- 
tions, tends to have a close value with the reference 
makespan that shows that the t to the result 3 and Table 
4, the algorithm’s performance is good enough. Mean- 
while, the standard deviation tends to be large (greater 
than 10.0, except in certain cases). This means that the 
algorithm produces non-uniform makespan at each repe- 
tition. But, the probability of getting best result is rela- 
tively higher. To assure that the result not to converge to 
a local optimum, this algorithm actually needs to be op- 
timized again. By reducing the standard deviation value 
with better or at least same average value (which means 
the makespan values obtained at each repetition will be 
more uniform but still tend to approach best value of 
reference).  

Although this algorithm produces better makespans, 
the computation time is relatively long and will increase 
significantly when the job size are getting larger. This 
fact can be seen on Figure 2, where the average time 
needed by this algorithm and standard deviation value 
increase drastically as the job size increases. This is al- 
leged to be caused by timetabling process to calculate the 
objective function which is relatively time consuming. 
As explained previously that simple shift timetabling 
method used requires checking for the presence of over- 
load on the machine for each new job scheduled. Every 
will-be-scheduled-job has a specific machine overload 
when it is being scheduled. It must be shifted as far as 
the relevant value of time of overload on that machine. 
After being moved, the other machines are overload. 
Then the shifting must be done again until all of ma- 
chines have no overload. This mechanism certainly takes 
a long computing time, especially when the size of the 
jobs is getting larger. The use of lower level program- 
ming language such as C or C++ can improve computa- 
tional time performance. 

Compared with other algorithms, such as Genetic Al- 
gorithm-Simulated Annealing [2] and Hybrid Tabu 
Search [3], CEGA performance can be shown in Tables 
5 and 6. Highlighted in bold is the best makespan for 
each instance. Reference makespans (Ref), for small in-
stances, are the optimum value obtained by branch and 
bound algorithm. For large instances are the best known 
makespan ever obtained by researchers until present [8]. 

Based on the comparison in Table 5, for small in- 
stances, we can see that the performance of CEGA is 
absolutely better than GASA in terms of makespan. Out 
of 21 instance, CEGA can reach 18 optimal makespan 
values better than GASA which only reach only 4 in-  
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Table 5. Makespan comparison of GASA, HTS and CEGA 
for small instances. 

GASA HTS CEGA 
Instance Ref 

Best ARPD Best ARPD Best ARPD
ft06 73 73 0.0 73 0.0 73 0.0 
la01 971 1037 6.4 975 0.4 975 0.4 
la02 937 990 5.4 975 4.1 961 2.5 
la03 820 832 1.4 820 0.0 820 0.0 
la04 887 889 0.2 889 0.2 887 0.0 
la05 777 817 4.9 777 0.0 781 0.5 
ft10 1607 1620 0.8 1607 0.0 1607 0.0 

orb01 1615 1663 2.9 1615 0.0 1615 0.0 
orb02 1485 1555 4.5 1518 2.2 1485 0.0 
orb03 1599 1603 0.2 1599 0.0 1599 0.0 
orb04 1653 1653 0.0 1653 0.0 1653 0.0 
orb05 1365 1415 3.5 1367 0.1 1370 0.4 
orb06 1555 1555 0.0 1557 0.1 1555 0.0 
orb08 1319 1319 0.0 1319 0.0 1319 0.0 
orb09 1445 1535 5.9 1449 0.3 1445 0.0 
orb10 1557 1618 3.8 1571 0.9 1557 0.0 
la16 1575 1637 3.8 1575 0.0 1575 0.0 
la17 1371 1430 4.1 1384 0.9 1384 0.9 
la18 1417 1555 8.9 1417 0.0 1507 6.0 
la19 1482 1610 8.0 1491 0.6 1491 0.6 
la20 1526 1693 9.9 1526 0.0 1526 0.0 

Average  3.5  0.52  0.5 

Table 6. Makespan comparison of GASA, HTS and CEGA 
for large instances. 

GASA HTS CEGA In-
stances 

Ref 
Best ARPD Best ARPD Best ARPD

la06 1248 1339 6.8 1248 0.0 1304 4.3 
la07 1172 1240 5.5 1172 0.0 1221 4.0 
la08 1244 1296 4.0 1298 4.2 1274 2.4 
la09 1358 1447 6.2 1415 4.0 1382 1.7 
la10 1287 1338 3.8 1345 4.3 1299 0.9 
la11 1671 1825 8.4 1704 1.9 1722 3.0 
la12 1452 1631 11.0 1500 3.2 1538 5.6 
la13 1624 1766 8.0 1696 4.2 1674 3.0 
la14 1691 1805 6.3 1722 1.8 1749 3.3 
la15 1694 1829 7.4 1747 3.0 1752 3.3 
la21 2048 2182 6.1 2191 6.5 2054 0.3 
la22 1887 1965 4.0 1922 1.8 1910 1.2 
la23 2032 2193 7.3 2126 4.4 2098 3.1 
la24 2015 2150 6.3 2132 5.5 2056 2.0 
la25 1917 2034 5.8 2020 5.1 1994 3.9 

Average  6.5  3.3  2.8 

 
stance. The average ARPD resulted by GASA is also 
larger than the average ARPD resulted by CEGA. Com- 
paring CEGA with HTS shows that CEGA is better than 
HTS in terms of makespan. HTS reach 14 optimal 
makespan which is less than those of CEGA. Though, 
the ARPD of HTS is better than CEGA. 

For larger instances, as shown in Table 6, compared to 
GASA and HTS, generally CEGA performed better. 
CEGA dominates 9 out of 15 instances, while the rest is 
outperformed by HTS. For all those instances, all the 
three methods; GASA, HTS and CEGA; can not reach 
the ever best makespan values. In terms of ARPD, the 
performance of CEGA is slightly better than HTS.  

7. Conclusions 

We have applied hybrid cross entropy-genetic algorithm 
(CEGA) to solve NWJSS. We can conclude that CEGA 
can be used as an alternative tool to solve NWJSS prob- 
lem and can be applied widely on many industries with 
NWJSS characteristics. For small instances CEGA per- 
formed well in terms of makespan and computation time. 
Generally, CEGA performance is better than the Genetic 
Algorithm-Simulated Annealing (GASA) and Hybrid 
Tabu Search (HTS), especially for small size instances. 
In the future research, CEGA for NWJSS must be modi- 
fied to get better performance especially for the large 
size instances. The implementation using lower level 
programming language might improve the performance 
of CEGA. On the other hand, this algorithm application 
on the other problems is also suggested. 
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