
American Journal of Operations Research, 2016, 6, 213-225
Published Online May 2016 in SciRes. http://www.scirp.org/journal/ajor
http://dx.doi.org/10.4236/ajor.2016.63022

How to cite this paper: Melkonian, V. (2016) An Integer Programming Model for the KenKen Problem. American Journal of
Operations Research, 6, 213-225. http://dx.doi.org/10.4236/ajor.2016.63022

An Integer Programming Model for the
KenKen Problem
Vardges Melkonian
Department of Mathematics, Ohio University, Athens, Ohio, USA

Received 21 March 2016; accepted 7 May 2016; published 10 May 2016

Copyright © 2016 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this paper we consider modeling techniques for the mathematical puzzle KenKen. It is an inter-
esting puzzle from modeling point of view since it has different kinds of mathematical restrictions
that are not trivial to express as linear constraints. We give an integer program for solving KenKen
and its implementation on modeling language AMPL. Our integer program uses prime number
factorizations for converting product restrictions into linear constraints. It can be also used for
teaching various integer programming techniques in an Operations Research course.

Keywords
Discrete Optimization, Integer Programming, Education Operations Research, Mathematical
Games

1. Introduction
A KenKen puzzle is a grid of n by n cells (see Figure 1). The goal is to fill the whole grid with numbers 1 to n,
making sure no number is repeated in any row and column. An additional feature of KenKen (compared to a
similar puzzle Sudoku) is that the grid is partitioned into “cages”. Each cage consists of several adjacent cells.
The top left corner of each cage has a target number and an arithmetic operation (sum, difference, product, ratio).
The numbers entered into a cage must combine (in any order) to produce the target number using the arithmetic
operation. An 8 by 8 example of KenKen is given in Figure 1. This is a real example from KenKen website [1].

Among similar puzzles, KenKen is particularly interesting for mathematicians. Thanks to its mathematical
constraints, it creates a different level of interest and challenge for the solver. It is also a more challenging task
to create a mathematical model that can solve the puzzle.

While Sudoku has been studied extensively, not much research has been done on KenKen. [2] shows how
ideas from number theory can be used to solve KenKen. [3] discusses how KenKen can be used to develop rea-

http://www.scirp.org/journal/ajor
http://dx.doi.org/10.4236/ajor.2016.63022
http://dx.doi.org/10.4236/ajor.2016.63022
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

V. Melkonian

214

Figure 1. An example of 8 × 8 KenKen.

soning skills for different levels of students. In this paper we give an integer programming model for solving
KenKen. The Latin square constraints were given before for Sudoku [4] [5]. Our contribution is giving linear
constraints for sum, difference, product, and ratio restrictions. The product restrictions are the hardest ones for
expressing by linear constraints. We give a non-standard way of using prime number factorizations for product
constraints. The other parts of the model use different integer programming techniques, such as Either-Or con-
straints, converting absolute values to linear constraints, using auxiliary binary variables. Thus, the model could
be an example for teaching different integer programming techniques.

We implemented the model on optimization modeling language AMPL [6] and tested on examples. The im-
plementation requires different data structures needed for the model, such as prime number factorization of a
number. The AMPL techniques also can be a good teaching tool on how to implement an integer programming
model with an optimization software.

The paper is organized as follows. Section 2 gives the set of constraints that make the solution a Latin square.
Sections 3, 4, 5, 6 cover sum, difference, ratio, product constraints correspondingly. Section 7 gives the AMPL
model and an analysis of the solution. An Appendix section gives more details on a secondary method for con-
verting product restrictions to linear constraints.

2. Latin Square Constraints
First we need to give constraints to provide that the numbers filling the grid form a Latin square, that is, each
number occurs exactly once in each row and exactly once in each column. This type of constraints was given
before for Sudoku puzzles (reference). The following binary variables are essential for giving those constraints.

()1 if cell , is assigned value
0 otherwiseijk

i j k
x


= 


The following set of constraints provide that each cell (i, j) gets exactly one value k from 1, , n .

1
1

n

ijk
k

x
=

=∑ for each cell (i, j) (2.1)

The following set of constraints provides that there is exactly one number k in each row i:

1
1

n

ijk
j

x
=

=∑ for each row i and each number k from 1, , n (2.2)

The following set of constraints provides that there is exactly one number k in each column j:

V. Melkonian

215

1
1

n

ijk
i

x
=

=∑ for each column j and each number k from 1, , n (2.3)

3. Addition Constraints
While the binary variables defined are useful for giving the Latin square constraints, there is not a good way of
using them to express the arithmetic restrictions by linear constraints. As we will see below, it is more helpful to
define the following general integer variables for those constraints.

Let yij be the numerical value assigned to cell (i, j). The possible values to be assigned to yij are numbers 1 to n.
This new set of variables can be easily used to express the summation restrictions by linear constraints. For a
cage C having a target number t and arithmetic operation “+”, the constraint is

(),
ij

i j C
y t

∈

=∑ (3.1)

For example, the cage consisting of cells (3, 1), (3, 2) and (3, 3) in Figure 1 needs the following constraint:
31 32 33 21y y y+ + = .
The new integer variables should be connected to the original binary variables. For each cell (i, j), the connec-

tion is given by the following constraint.

1

n

ijk ij
k

k x y
=

⋅ =∑ (3.2)

The constraints (3.1) and (3.2) together provide that yij takes the value k for which the corresponding variable
xijk is equal to 1.

Note that constraint (3.2) is an example of an integer programming technique to provide that a variable takes
one of the given values, 1 to n in this case.

Constraint (3.2) provides that yij is a sum of products of integers, and thus it can take only integer values.
Therefore, there is no need to require variables yij to be integers since (3.2) will guarantee it. This observation
reduces the number of integer variables in the model, thus making the solution process more efficient.

4. Difference Constraints
A difference restriction is given for two adjacent cells with a target number d. For example, if the cells are (i, j)
and (i, j + 1) then the restriction is that either , 1ij i jy y d+− = or , 1i j ijy y d+ − = . This is an example of Ei-
ther-Or constraints (reference). While each of the two equalities is a linear constraint, their Either-Or combina-
tion is not. It should be replaced by an equivalent set of constraints where all of them must hold. It is normally
done by introducing a new binary variable and using the big M method [7]. However, that method works when
each of the Either-Or constraints is an inequality. In the case of equalities, first each of them should be switched
to a pair of equivalent inequalities and only then applying the standard technique. But in this case there is a
simpler way of switching to linear constraints as explained below.

Note that requiring to have one of , 1ij i jy y d+− = or , 1i j ijy y d+ − = hold is equivalent of requiring that

, 1ij i jy y d+− = .

The absolute value makes the constraint nonlinear. But it has the following equivalent linear constraint

, 1 2ij i jy y d u d+− = − ⋅ ⋅ , (4.1)

where u is an auxiliary binary variable.
When u = 0, (4.1) becomes , 1ij i jy y d+− = ; while when u = 1, (4.1) becomes , 1ij i jy y d+− = − .
For example, the cage consisting of cells (1, 3) and (1, 4) in Figure 1 needs the following constraint:

13 14 7 2 7y y u− = − ⋅ ⋅ .

5. Division Constraints
A division restriction is given for two adjacent cells with a target number r. For example, if the cells are (i, j) and

V. Melkonian

216

(i, j + 1) then the restriction is that either , 1ij i jy y r+ = or , 1i j ijy y r+ = . This is another example of Either-Or
constraints. But unlike the difference constraints, there is no simple way of switching it to equivalent linear con-
straints. Below is given the sequence of steps for achieving linearity.
1) , 1ij i jy y r+ = or , 1i j ijy y r+ = .
2) , 1– 0ij i jy r y +⋅ = or , 1 – 0i j ijy r y+ ⋅ = (by simple algebra).
3) (, 1– 0ij i jy r y +⋅ ≥ and , 1– 0ij i jy r y +⋅ ≤) or (, 1 – 0i j ijy r y+ ⋅ ≥ and , 1 – 0i j ijy r y+ ⋅ ≤)
(by switching to equivalent pairs of inequalities).
4) , 1– 0ij i jy r y M u+⋅ ≥ − ⋅ (5.1)

, 1 0ij i jy r y M u+− ⋅ ≤ + ⋅ (5.2)

(), 1 0 1i j ijy r y M u+ − ⋅ ≥ − ⋅ − (5.3)

(), 1 – 0 1i j ijy r y M u+ ⋅ ≤ + × − , (5.4)

where u is an auxiliary binary variable and M is a large positive number (its choice is explained below).
When u = 0, (5.1) and (5.2) together imply , 1 0ij i jy r y +− ⋅ = and hence , 1ij i jy y r+ = ; while (5.3) and (5.4)

do not force any restrictions on the variables.
When u = 1, (5.3) and (5.4) together imply , 1 0i j ijy r y+ − ⋅ = and hence , 1i j ijy y r+ = ; while (5.1) and (5.2)

do not force any restrictions on the variables.
Thus, constraints (5.1)-(5.4) should be included in the model for every ratio cage.
Proper choice of big M.
To solve the integer program efficiently, M should be assigned the smallest possible value. For a puzzle of

size n × n, the smallest value for M to make constraints (5.1)-(5.4) work is ()() ()mod divr n n r n r⋅ − − . Con-
sider the following example to illustrate that choice. Suppose the target number of a ratio cage is 3 in a puzzle of
size 8 × 8. Then the highest cell values satisfying the ratio restriction are 2 and 6. Here 6 is the highest multiple
of 3 under 8, and it can be written as 8 – (8 mod 3); while 2 is 6 div 3 = 8 div 3. Suppose u = 1, yi,j+1 = 6, and yij
= 2, thus making , 1 0i j ijy r y+ − ⋅ = . Then the left-hand side of (5.1) is

() ()(), 1 2 3 6 8 div 3 3 8 8mod3 16ij i jy r y +− ⋅ = − × = − × − = − . Thus, 16 should be the smallest value assigned to
M to make constraint (5.1) satisfied.

In the AMPL model of Section 7, the (5.1)-(5.4) are given in the segment named “ratio constraints”, while big
M is defined in the segment named “sets and parameters used in ratio constraints”.

Example.
The cage consisting of cells (5, 2) and (5, 3) in Figure 1 needs the following set of constraints:

52 534 0 30y y u− ⋅ ≥ − ⋅
52 534 0 30y y u− ⋅ ≤ + ⋅

()53 524 0 30 1y y u− ⋅ ≥ − ⋅ −
()53 524 0 30 1y y u− ⋅ ≤ + ⋅ −

6. Product Constraints
Product restrictions are the hardest ones for converting to linear constraints. Simply requiring that the product of
y-variables is equal to the target number makes it a nonlinear constraint. We suggest two different ways of giv-
ing linear constraints for product restrictions.

Our main method gives a non-standard way of covering all product restrictions by using prime number facto-
rizations of target numbers. That method is covered in Subsection 6.1 and is the basis of the AMPL model given
in Section 7.

The second method is more intuitive and can be used to practice standard integer programming techniques.
The disadvantages of this method are: (i) auxiliary binary variables are needed to write the constraints which
makes the solution of the integer program less efficient; (ii) more importantly, while the method covers the most
common situations it is not clear how to extend it to the general case. But this method is even more intuitive and
simple than method 1 for the most common product restrictions when a cage consists of two cells (3 out of 5

V. Melkonian

217

product cages in the example of Figure 1 consist of two cells). Thus, one can use a combination of methods 1
and 2 when building the model. An idea how method 2 works is given in Subsection 6.2 for a special case; the
rest of the discussion is in Appendix A.

6.1. Method 1 for Product Restrictions
The method first finds the prime number factorization of the target number. The puzzles in [1] are of size at
most 9 × 9. For that kind of puzzles, the prime numbers in the factorizations are 2, 3, 5, 7. In this section we will
give constraints for each of those prime numbers for a puzzle of size 9 × 9. But the constraints can be easily ge-
neralized to any problem size and any prime number.

- Product constraint for 5: Suppose the power of 5 in the prime number factorization is d (could also be 0).
Then the following constraint should be added.

()
5

,
ij

i j C
x d

∈

=∑ (6.1.1)

The constraint provides that the number of cells in cage C getting 5 is d.
- Product constraint for 7: The constraint for 5 can be easily extended to 7. Suppose the power of 7 in the

prime number factorization is d (could also be 0). Then the following constraint should be added.

()
7

,
ij

i j C
x d

∈

=∑ (6.1.2)

The constraint provides that the number of cells in cage C getting 7 is d.
- Product constraint for 3: Suppose the power of 3 in the prime number factorization is d (could also be 0).

Then the following constraint should be added.

()
()

3 6 9
,

2ij ij ij
i j C

x x x d
∈

+ + =∑ (6.1.3)

It is similar to the previous case except that each entry 9 in the cage contributes 2 to the total power of 3, thus
the coefficient of xij9 is 2.

- Product constraint for 2: Suppose the power of 2 in the prime number factorization is d (could also be 0).
Then the following constraint should be added.

()
()

2 4 6 8
,

2 3ij ij ij ij
i j C

x x x x d
∈

+ + + =∑ (6.1.4)

Here each entry 4 contributes 2 and each entry 8 contributes 3 to the total power of 2. Thus the coefficient of
xij4 is 2, and the coefficient of xij8 is 3.

- A complete example: Suppose the target number is 2520. Its prime number factorization is 23 × 32 × 51 × 71.
Then the following set of constraints is needed.

()
()

2 4 6 8
,

2 3 3ij ij ij ij
i j C

x x x x
∈

+ + + =∑

()
()

3 6 9
,

2 2ij ij ij
i j C

x x x
∈

+ + =∑

()
5

,
1ij

i j C
x

∈

=∑

()
7

,
1ij

i j C
x

∈

=∑

Note that there is no easy way to extend Method 2 (described in Subsection 6.2 and Appendix A) to this
example.

General product constraint: Let P be the set of prime numbers used in a puzzle of size n × n. For a prime
number p ∈ P we define the following three sets.

M[p] represents the integers from 1 to n that are multiples of p but are not multiples of its square:

[] { }21, , : mod 0 and mod ! 0M p i n i p i p= ∈ = = ;

V. Melkonian

218

S[p] represents the integers from 1 to n that are multiples of p2 but are not multiples of p3:

[] { }2 31, , : mod 0 and mod ! 0S p i n i p i p= ∈ = = ;

C[p] represents the integers from 1 to n that are multiples of p3:

[] { }31, , : mod 0C p i n i p= ∈ = ;

Note that there are no higher powers of p in actual Kenken puzzles; but the technique can be easily genera-
lized to higher powers too.

Let power[t, p] be the power of p ∈ P in prime number factorization of target number t. The parameter pow-
er[t, p] is recursively computed in the parameters section of the AMPL code. Then we have the following gener-
al product constraint for p.

[] [] []()
[]

,
2 3 power ,ijk ijk ijk

i j C k M p k S p k C p
x x x t p

∈ ∈ ∈ ∈

 
+ + =  

 
∑ ∑ ∑ ∑ (6.1.5)

This general constraint represents the product constraints in our AMPL code.

6.2. Method 2 for the Case When the Cage Consists of Two Cells and There Is a Single
Factorization for the Target Number

Most product restrictions in KenKen are given for two adjacent cells, and there is a single factorization for the
target number. It happens when

(i) the target number is a prime number, namely, 2, 3, 5, 7;
(ii) the target number is composite but the size of the puzzle implies a single factorization; for example, when

the target number is 4, 9, 10, 14, 15, 16, 20, 21 in puzzles of size at most 9 × 9.
Case (i). Suppose the cage consists of two adjacent cells (i, j) and (i, j + 1), and the target number is a prime

number p. Then the restriction is the following:

() (), 1,1 1 , 1,1 and 1 or 1 and 1ijp i j ij i j px x x x+ += = = = (6.2.1)

There are two ways to convert the restriction to linear constraints.
Technique 1: Restriction (6.2.1) is equivalent to requiring that

() (), 1,1 1 , 1,2 or 2ijp i j ij i j px x x x+ ++ = + =

The Either-Or constraint is equivalent to the following pair of linear constraints:

, 1,1 2ijp i jx x u++ = ⋅ , (6.2.2)

()1 , 1, 2 1ij i j px x u++ = ⋅ − , (6.2.3)

where u is an auxiliary binary variable.
When u = 1, (6.2.2) and (6.2.3) together imply xijp = 1 , xi,j+1,1 = 1 , xij1 = 0 , xi,j+1,p = 0; thus cell (i, j) gets value

p, and cell (i, j + 1) gets value 1.
When u = 0, (6.2.2) and (6.2.3) together imply xijp = 0 , xi,j+1,1 = 0, xij1 = 1 , xi,j+1,p = 1; thus cell (i, j) gets value

1, and cell (i, j + 1) gets value p.
Technique 2: The second way is less intuitive but simpler since it is given by just one constraint without using

any auxiliary variables.

, 1,1 1 , 1, 2ijp i j ij i j px x x x+ ++ + + = (6.2.4)

Another advantage of this second way is that it does not need any new auxiliary binary variables.
Constraint (6.2.4) does not work by itself but rather with the combination of other constraints we introduced

before. Recall that constraint (2.1) provides that each cell gets exactly one value k from 1, , n ; that constraint
for cells (i, j) and (i, j + 1) are given below:

, 1,
1 1

1, 1
n n

ijk i j k
k k

x x +
= =

= =∑ ∑ (2.1a)

V. Melkonian

219

Also, constraint (2.2) provides that there is exactly one number k assigned to each row i; that constraint for
row i and numbers 1 and p are given below:

1
1 1

1, 1
n n

ij ijp
j j

x x
= =

= =∑ ∑ (2.2a)

There are only two combinations of variable values that can satisfy constraints (2.1), (2.1a), (2.2a) at the same
time:

- xijp = 1 , xi,j+1,1 = 1, xij1 = 0 , xi,j+1,p = 0; thus cell (i, j) gets value p, and cell (i, j + 1) gets value 1.
- xijp = 0 , xi,j+1,1 = 0, xij1 = 1 , xi,j+1,p = 1; thus cell (i, j) gets value 1, and cell (i, j + 1) gets value p.
Case (ii). Suppose the target number is composite but the size of the puzzle implies a single factorization. For

example, if the target number is 30 for a puzzle of size 9 × 9 then the only factorization is 30 = 5 × 6. The solu-
tion for this case is identical to case (i) by taking 5 and 6 instead of 1 and p.

Example.
The cage consisting of cells (2, 3) and (2, 4) in Figure 1 needs the following constraint:

235 246 236 245 2x x x x+ + + =

7. The AMPL Model and Its Solution
In this section we give the full AMPL model for the integer program developed in previous sections. The model
has comments for most of the parameters, sets, variables, constraints; more detailed explanations about how they
work are given in Sections 2-6. We also give a data set for the example of Figure 1 and its solution.

The model is given in Section 7.1. The data set is in Section 7.2. A brief analysis of the solution process and
efficiency follows in Section 7.3.

7.1. The AMPL Model
######### INPUT DATA: PARAMETERS AND SETS ########
param n;
size of the problem
set rows := 1..n;
set columns := 1..n;
set cells := {rows, columns};
Cage information ###
param t; # number of cages
set cage{1..t} within cells;
each cage is a collection of cells
check: forall {(i,j) in cells} card({c in 1..t: (i,j) in cage[c]}) = 1;
checking that each cell is in exactly one cage
param target_number{1..t};
param operation{1..t} symbolic;
target number and operation for each cage
The following parameters are used for giving difference and ratio constraints ###
by distinguishing the two cells in difference and ratio cages ###
param min_cell_number{c in 1..t}:=min{(i,j) in cage[c]}(i+j);
param max_cell_number{c in 1..t}:=max{(i,j) in cage[c]}(i+j);
Sets and parameters used in ratio constraints ###
set possible_ratio_numbers:=2..n;
possible ratio numbers in a puzzle of size n
param bigM{r in possible_ratio_numbers: r<=n}:= r * (n - (n mod r)) - (n div r);
Sets and parameters used in product constraints ###
set prime_numbers;
prime numbers for puzzles of size up to 9
set prime_number_multiples {p in prime_numbers}:= {i in 1..n: i mod p = 0 and i mod (p^2) != 0};

V. Melkonian

220

set prime_number_squares {p in prime_numbers}:= {i in 1..n: i mod (p^2) = 0 and i mod (p^3) != 0};
set prime_number_cubes {p in prime_numbers}:= {i in 1..n: i mod (p^3) = 0};
param max_multipl_target_numbers := max{c in 1..t: operation[c]='product'} target_number[c];
maximum product target number in the puzzle
param prime_number_power {m in 1..max_multipl_target_numbers, p in prime_numbers}
:= if (m mod p != 0) then 0 else prime_number_power[m div p, p] + 1;
this parameter gives the power of prime number p in prime number factorization of m
############################### VARIABLES #################################
var x{i in rows, j in columns, k in 1..n} binary;
is equal 1 if value k is assigned to cell (i,j)
var y{i in rows, j in columns} >=1, <=n;
the value assigned to cell (i,j)
var u{c in 1..t: operation[c]='difference' or operation[c]='ratio'} binary;
auxiliary binary variable for a difference or ratio cage c
########################### OBJECTIVE FUNCTION ###########################
maximize something: 1;
no need for an objective function #####
############################### CONSTRAINTS ###############################
Latin Square Constraints #####
Constraint (2.1): each cell is assigned exactly one value
subject to one_value_for_each_cell {i in rows, j in columns}:
sum{k in 1..n} x[i,j,k]=1;
Constraint (2.2): each row has exactly one number k
subject to one_of_each_number_for_each_row{i in rows, k in 1..n}:
sum{j in columns} x[i,j,k]=1;
Constraint (2.3): each column has exactly one number k
subject to one_of_each_number_for_each_column{j in columns, k in 1..n}:
sum{i in rows} x[i,j,k]=1;
Constraint (3.2): connection between x and y variables
subject to value_of_each_square {i in rows, j in columns}:
y[i,j]=sum{k in 1..n} k*x[i,j,k];
Constraint (3.1): Sum Constraints #####
s.t. Cage_sum_restriction{c in 1..t: operation[c] == 'sum'}:
 sum{(i,j) in cage[c]} y[i,j] = target_number[c];
Constraint (4.1): Difference Constraints #####
s.t. Cage_difference_restriction{c in 1..t: operation[c] == 'difference'}:
 sum{(i,j) in cage[c]: i+j == max_cell_number[c]} y[i,j] -
 sum{(i,j) in cage[c]: i+j == min_cell_number[c]} y[i,j] =
 target_number[c] - 2 * target_number[c] * u[c];
Ratio Constraints (5.1)-(5.4) #####
s.t. Cage_ratio_restriction1{c in 1..t: operation[c] == 'ratio'}:
 sum{(i,j) in cage[c]: i+j = max_cell_number[c]} y[i,j] -
 target_number[c] * sum{(i,j) in cage[c]: i+j = min_cell_number[c]} y[i,j] >=
 - bigM[target_number[c]] * u[c];
s.t. Cage_ratio_restriction2{c in 1..t: operation[c] == 'ratio'}:
 sum{(i,j) in cage[c]: i+j = max_cell_number[c]} y[i,j] -
 target_number[c] * sum{(i,j) in cage[c]: i+j = min_cell_number[c]} y[i,j] <=
 bigM[target_number[c]] * u[c];
s.t. Cage_ratio_restriction3{c in 1..t: operation[c] == 'ratio'}:
 sum{(i,j) in cage[c]: i+j = min_cell_number[c]} y[i,j] -
 target_number[c] * sum{(i,j) in cage[c]: i+j = max_cell_number[c]} y[i,j] >=
 - bigM[target_number[c]] * (1 - u[c]);
s.t. Cage_ratio_restriction4{c in 1..t: operation[c] == 'ratio'}:

V. Melkonian

221

 sum{(i,j) in cage[c]: i+j = min_cell_number[c]} y[i,j] -
 target_number[c] * sum{(i,j) in cage[c]: i+j = max_cell_number[c]} y[i,j] <=
 bigM[target_number[c]] * (1 - u[c]);
Product Constraints (6.1.5) #####
s.t. Cage_product_restriction{c in 1..t, p in prime_numbers: operation[c] == 'product' and p<=n}:
 sum{(i,j) in cage[c], k in prime_number_multiples[p]} x[i,j,k] +
 sum{(i,j) in cage[c], k in prime_number_squares[p]} 2*x[i,j,k] +
 sum{(i,j) in cage[c], k in prime_number_cubes[p]} 3*x[i,j,k] = prime_number_power[target_number[c],p];

7.2. The Data Set for Figure 1
param n:=5;
param t:=10;
set cage[1]: = (1, 1) (1, 2) (2,1);
set cage[2]: = (1, 3) (1, 4);
set cage[3]: = (1, 5) (2, 5);
set cage[4]: = (2, 2) (2, 3) (2,4) (3,2) (4,2);
set cage[5]: = (3, 1) (4, 1);
set cage[6]: = (3, 3) (3, 4);
set cage[7]: = (3, 5) (4, 5) (5,5);
set cage[8]: = (4, 3) (5, 3) (5,4);
set cage[9]: = (4, 4);
set cage[10]: = (5, 1) (5,2);
param: target_number operation:=
1 9 "product"
2 1 "difference"
3 2 "ratio"
4 13 "sum"
5 1 "difference"
6 2 "ratio"
7 15 "product"
8 24 "product"
9 3 "sum"
10 3 "difference";
set prime_numbers:= 2 3 5 7;

7.3. The Solution, Efficiency of the Model and Future Directions
We ran the AMPL model on the NEOS server using the solver Gurobi [8] and received the following correct
solution for the puzzle.

y [*,*]
: 1 2 3 4 5 6 7 8 :=
1 3 5 8 1 2 4 7 6
2 2 3 5 6 8 1 4 7
3 8 6 7 5 1 3 2 4
4 4 7 2 8 5 6 3 1
5 7 1 4 3 6 2 8 5
6 6 4 3 2 7 5 1 8
7 1 2 6 7 4 8 5 3
8 5 8 1 4 3 7 6 2
;
It took under 1 second to return the solution. Thus, the model is very efficient for puzzles of size 9 or less. But

it is still an interesting question how to make the model more efficient for any size. Below we describe related
open questions.

V. Melkonian

222

It would be more efficient to solve the LP-relaxation of our integer program. But our computations show that
the LP-relaxation does not always return an integer solution. It is an interesting open question if there are any
techniques to achieve integrality. A possible technique could be the following.

The integer program does not need an objective function. Thus, one has a flexibility of adding an appropriate
objective function. It is an interesting open question if there is an objective function that would make the optimal
solution of the LP-relaxation integral.

The existence of appropriate cutting planes that would make the solution process more efficient and perhaps
make the optimal solution of the LP-relaxation integral is another open question.

References
[1] The KenKen Website. http://www.kenkenpuzzle.com/
[2] Watkins, J. (2012) Triangular Numbers, Gaussian Integers, and KenKen. The College Mathematics Journal, 43, 37-42.

http://dx.doi.org/10.4169/college.math.j.43.1.037
[3] Reiter, H., Thornton, J. and Vennebush, G.P. (2013) Using KenKen to Build Reasoning Skills. Mathematics Teacher,

107, 341-347.
[4] Chlond, M. (2005) Classroom Exercises in IP Modeling: Sudoku and the Log Pile. INFORMS Transactions on Educa-

tion, 5, 77-79. http://dx.doi.org/10.1287/ited.5.2.77
[5] Bartlett, A.C., Chartier, T.P., Langville, A.N. and Rankin, T.D. (2008) An Integer Programming Model for the Sudoku

Problem. The Journal of Online Mathematics and Its Applications, 8, Article ID: 1798.
http://www.maa.org/external_archive/joma/Volume8/Bartlett/index.html

[6] The AMPL Website. http://www.ampl.com/
[7] Hillier, F. and Lieberman, G. (2014) Introduction to Operations Research. 10th Edition, McGraw-Hill, New York.
[8] The Gurobi Website. https://neos-server.org/neos/solvers/lp:Gurobi/AMPL.html

http://www.kenkenpuzzle.com/
http://dx.doi.org/10.4169/college.math.j.43.1.037
http://dx.doi.org/10.1287/ited.5.2.77
http://www.maa.org/external_archive/joma/Volume8/Bartlett/index.html
http://www.ampl.com/
https://neos-server.org/neos/solvers/lp:Gurobi/AMPL.html

V. Melkonian

223

Appendix. Method 2 for Product Restrictions
In this appendix, we give a further discussion on Method 2 for product restrictions.

A1. The Subcase When the Cage Consists of Two Cells and There Are More Than One
Factorization for the Target Number

In puzzles of size at most 9 × 9, if a product cage consists of two cells and the target number is composite then at
most 2 different factorizations are possible. It is easy to verify it for all possible composite target numbers.
Namely, numbers 4, 9, 10, 14, 15, 16, 20, 21, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 54, 56, 63, 72 can have only
one factorization; while numbers 6, 8, 12, 18, 24 can have two different factorizations. In this subsection we will
show how to write linear constraints in the case of two different factorizations. For the sake of simplicity and
better demonstration, we will show it on an example of a specific number; the technique is identical for other
numbers.

Suppose the cage consists of two adjacent cells (i, j) and (i, j + 1), and the target number is 12. Then the re-
striction is the following:

() () () ()3 , 1,4 4 , 1,3 2 , 1,6 6 , 1,21 and 1 or 1 and 1 or 1 and 1 or 1 and 1ij i j ij i j ij i j ij i jx x x x x x x x+ + + += = = = = = = = (A.1)

As in Subsection 6.1, there are two ways to convert the restriction to linear constraints. And again one of the
methods is less intuitive but more efficient since it requires fewer constraints and auxiliary binary variables. But
for the sake of comparison and completeness, we will give both methods, starting from the more intuitive one.

Method 1: The restriction (A.1) is equivalent to requiring that

() () () ()3 , 1,4 4 , 1,3 2 , 1,6 6 , 1,2 2 or 2 or 2 or 2ij i j ij i j ij i j ij i jx x x x x x x x+ + + ++ = + = + = + =

The “1-out-of-4 must hold” constraint is equivalent to the following set of linear constraints:

3 , 1,4 342ij i jx x u++ = ⋅ , (A.2)

4 , 1,3 432ij i jx x u++ = ⋅ , (A.3)

2 , 1,6 262ij i jx x u++ = ⋅ , (A.4)

6 , 1,2 622ij i jx x u++ = ⋅ , (A.5)

34 43 26 62 1u u u u+ + + = (A.6)

where u34 , u43 , u26 , u62 are auxiliary binary variables.
Constraint (A.6) implies that exactly one of the upq variables takes value 1 while others are zero. When upq = 1,

the corresponding xijp and xi,j+1,q variables also take value 1 while other x-variables in (A.2)-(A.5) are forced to
be zero; thus cell (i, j) gets value p, and cell (i, j + 1) gets value q.

Method 2: The first step of this method is the same as in method 1. The restriction (A.1) is equivalent to re-
quiring that

() () () ()3 , 1,4 4 , 1,3 2 , 1,6 6 , 1,22 or 2 or 2 or 2ij i j ij i j ij i j ij i jx x x x x x x x+ + + ++ = + = + = + =

But from here we proceed as it was done in method 2 of Subsection 6.1. The Either-Or restriction
(3 , 1,4 2ij i jx x ++ =) or (4 , 1,3 2ij i jx x ++ =) is equivalent to constraint 3 , 1,4 4 , 1,3 2ij i j ij i jx x x x+ ++ + + = since
x-variables satisfy (2.1) and (2.2). Based on the same reason, the Either-Or restriction (2 , 1,6 2ij i jx x ++ =) or
(6 , 1,2 2ij i jx x ++ =) is equivalent to 2 , 1,6 6 , 1,2 2ij i j ij i jx x x x+ ++ + + = .

Thus, the restriction (A.1) is equivalent to

() ()3 , 1,4 4 , 1,3 2 , 1,6 6 , 1,22 or 2ij i j ij i j ij i j ij i jx x x x x x x x+ + + ++ + + = + + + =

This Either-Or restriction is converted to an equivalent pair of linear constraints in a standard way.

3 , 1,4 4 , 1,3 2ij i j ij i jx x x x u+ ++ + + = ⋅ , (A.7)

()2 , 1,6 6 , 1,2 2 1ij i j ij i jx x x x u+ ++ + + = × − , (A.8)

V. Melkonian

224

where u is an auxiliary binary variable.

A2. The Subcase When the Cage Consists of K Cells in the Same Row (Column) and There
Is a Single Factorization for the Target Number

The technique discussed in this section is the extension of the technique for 2-cell cages discussed in subsection
6.1.

Suppose the cells in the cage are () () (), , , 1 , , , 1i j i j i j k+ + − , the target value is m, and there is a single
factorization of 1 2 km m m m= ⋅  . Then there are k! permutations of assigning numbers 1 2, , , km m m to the
cells () () (), , , 1 , , , 1i j i j i j k+ + − . The following linear constraint together with Latin square constraints (2.1)
and (2.2) forces that exactly one of those permutations is chosen.

1

, ,
0 1

p

k k

i j r m
r p

x k
−

+
= =

=∑∑ (A.9)

The reason that this combination of constraints works is the same that we had for two-cell cages with a single
factorization as discussed in Subsection 6.1.

Here is a specific example to illustrate how constraint (A.9) works. Suppose the cells in the cage are (1, 1), (1,
2), (1, 3); the target number is 18, and thus the single factorization is 18 = 1 × 3 × 6. The constraint (A.9) in this
case is

111 113 116 121 123 126 131 133 136 3x x x x x x x x x+ + + + + + + + =

This constraint together with Latin square constraints (2.1) and (2.2) provides that exactly one of the follow-
ing 3! = 6 combinations of assignments:
- cell (1,1) gets 1; cell (1,2) gets 3; cell (1,3) gets 6;
- cell (1,1) gets 1; cell (1,2) gets 6; cell (1,3) gets 3;
- cell (1,1) gets 3; cell (1,2) gets 1; cell (1,3) gets 6;
- cell (1,1) gets 3; cell (1,2) gets 6; cell (1,3) gets 1;
- cell (1,1) gets 6; cell (1,2) gets 1; cell (1,3) gets 3;
- cell (1,1) gets 6; cell (1,2) gets 3; cell (1,3) gets 1.

A3. The Subcase When the Cage Consists of K Cells in the Same Row (Column) and There
Are More Than One Factorization for the Target Number

The technique discussed in this section is the extension of the technique for 2-cell cages discussed in subsection
A1.

Suppose the cells in the cage are () () (), , , 1 , , , 1i j i j i j k+ + − , the target value is m, and there are more
than one factorizations. Denote the set of all factorizations { }1, , sF FΦ =  . Let the factorization for Ft be

1 2t t tkm m m m= ⋅  . As in subsection A1, the constraint for factorization Ft would be
1

, ,
0 1

tp

k k

i j r m
r p

x k
−

+
= =

=∑∑ (A.10)

But we want constraint (A.10) to be satisfied by only one of the factorizations. Note that for the other factori-
zations the left-hand side of (A.10) is not necessarily 0 since the same factor m could be in more than one facto-
rization. The following set of constraints takes the above considerations into account.

1

, ,
0 1

tp

k k

i j r m t
r p

x k u
−

+
= =

≥ ⋅∑∑ , for each tF ∈Φ (A.11)

1
1

s

t
t

u
=

=∑ (A.12)

Note that the left-hand side of (A.11) cannot be more than k because of constraints (2.1) and (2.2). Thus,
(A.12) will force that the left-hand side of (A.11) is equal to k for exactly one factorization; for other
factorizations, the left-hand side of (A.11) is ≥0, hence not forcing anything on its x-variables.

Here is a specific example to illustrate how constraints (A.11)-(A.12) work. Suppose the cells in the cage are

V. Melkonian

225

(1, 1), (1, 2), (1, 3); the target number is 48, and thus the following three factorizations are possible:
48 1 6 8= × × ;
48 2 3 8= × × ;
48 2 4 6= × × .

The constraints (A.11)-(A.12) in this case are

111 116 118 121 126 128 131 136 138 13x x x x x x x x x u+ + + + + + + + ≥ ⋅ (A.13)

112 113 118 122 123 128 132 133 138 23x x x x x x x x x u+ + + + + + + + ≥ ⋅ (A.14)

112 114 116 122 124 126 132 134 136 33x x x x x x x x x u+ + + + + + + + ≥ ⋅ (A.15)

1 2 3 1u u u+ + = (A.16)

A4. General Case (Cage Occupies Multiple Rows and Columns)
A problem in this case could be the following. Even in the case of a single factorization, e.g., the cage is in cells
(1, 1), (1, 2), (2, 1), and the target number is 35 = 1 × 5 × 7, constraint of type (A.9) would not work:

111 115 117 121 125 127 211 215 217 3x x x x x x x x x+ + + + + + + + =
A solution satisfying this constraint could be x111 = 1, x125 = 1, x215 = 1, that is, cells (1, 2) and (2, 1) getting

value 5 while cell (1, 1) getting value 1, hence the cell restriction is not satisfied. Note that constraints (2.1) and
(2.2) are not violated by this solution.

A solution for the general case is given by the method described in Subsection 6.1.

	An Integer Programming Model for the KenKen Problem
	Abstract
	Keywords
	1. Introduction
	2. Latin Square Constraints
	3. Addition Constraints
	4. Difference Constraints
	5. Division Constraints
	6. Product Constraints
	6.1. Method 1 for Product Restrictions
	6.2. Method 2 for the Case When the Cage Consists of Two Cells and There Is a Single Factorization for the Target Number

	7. The AMPL Model and Its Solution
	7.1. The AMPL Model
	7.2. The Data Set for Figure 1
	7.3. The Solution, Efficiency of the Model and Future Directions

	References
	Appendix. Method 2 for Product Restrictions
	A1. The Subcase When the Cage Consists of Two Cells and There Are More Than One Factorization for the Target Number
	A2. The Subcase When the Cage Consists of K Cells in the Same Row (Column) and There Is a Single Factorization for the Target Number
	A3. The Subcase When the Cage Consists of K Cells in the Same Row (Column) and There Are More Than One Factorization for the Target Number
	A4. General Case (Cage Occupies Multiple Rows and Columns)

