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Abstract 
The pattern of isentropes in the vicinity of a first-order phase transition is proposed as a key for a 
sub-classification. While the confinement-deconfinement transition, conjectured to set in beyond 
a critical end point in the QCD phase diagram, is often related to an entropic transition and the 
apparently settled gas-liquid transition in nuclear matter is an enthalphic transition, the conceiv-
able local isentropes w.r.t. “incoming” or “outgoing” serve as another useful guide for discussing 
possible implications, both in the presumed hydrodynamical expansion stage of heavy-ion colli-
sions and the core-collapse of supernova explosions. Examples, such as the quark-meson model 
and two-phase models, are shown to distinguish concisely the different transitions.  
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1. Introduction 
The beam energy scan at RHIC [1]-[7] is aimed at searching for a critical end point (CEP) in the phase diagram 
of strongly interacting matter, which is related to confinement-deconfinement effects. At a CEP [8]-[11], a line 
of first-order phase transitions (FOPT) is conjectured to set in. Still, the hypothetical CEP could not (yet) be 
localized by ab initio QCD calculations. Therefore, details of the FOPT curve and details of the equation of state 
in its vicinity are unsettled to a large extent. 

The utmost importance of the search for a CEP is also manifested by the fact that further ongoing relativistic 
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heavy-ion collision experiments, such as NA61/SHINE [12]-[15], have it on the their priority list, and planned 
experiments at FAIR, e.g. CBM [16], at NICA, e.g. by the MPD group [17], and at J-PARC, e.g. by the J-PARC 
heavy-ion collaboration [18], are primarily motivated by it. The proceedings of the CPOD conferences [19] [20] 
document well the theoretical expectations and experimental achievements in this field. 

The CEP itself (which may occur also as a tricritical point [21]) is interesting, as it is expected to show up in 
specific fluctuation observables [22]-[27], related to critical exponents, however, also the emerging FOPT curve 
can give rise to interesting physics phenomena. If the hypothetical FOPT curve continues to small or even zero 
temperatures, astrophysical consequences for neutron stars [28]-[41] proto-neutron star formation and 
core-collapse supernova explosions [33] [36] [42]-[44] are directly related to the physics of heavy-ion collisions, 
supposed the FOPT curve is accessible in such experiments (cf. [45] for searches for two-phase mixture effects 
related to the deconfinement FOPT). 

From the theory side, the famous Columbia plot (cf. [21] for an update) unravels the following qualitative 
features: (i) At zero chemical potential, three-flavor QCD in the chiral limit displays a first-order confinement-  
deconfinement transition which extends to non-zero strange-quark masses tri

s sm m<  and light-quark masses 

, 0u dm → ; the delineation curve to the region , , 0u d sm >  is related to a 2nd order transition with ( )2Z  

symmetry, beyond which the transition turns into a cross over; for tri
s sm m>  and , 0u dm → , the 2nd order 

transition line is related to ( )4O  symmetry. The physical point , , 0u d sm >  is in the cross over region. (ii) For 
tri

s sm m>  and , 0u dm → , the phase structure in the temperature-chemical potential plane is determined by a 

2nd order transition curve of presumably negative slope (with the above mentioned universal ( )4O  scaling  
properties) which ends in a tri-critical point, where the 1st order transition sets in, expected to continue to zero 
temperature. (iii) Upon enlarging ,u dm  toward the physical values and keeping the conjectured tri 0s sm m> > , 
the 2nd oder transition curve turns into the pseudo-critical (cross over) curve which ends at non-zero chemical 
potential in a CEP. The latter one can be thought to arise from the previous tri-critical point along a 2nd order 
( )2Z  curve when enlarging ,u dm . Therefore, the expectation for 2 + 1 flavor QCD with physical quark masses  

is the existence of a CEP at a temperature below the pseudo-critical temperature of ( )154 9 MeV±  and non-  
zero chemical potential and an emerging 1st oder transition curve going to zero temperature [21]. Present day 
lattice QCD evaluations attempt to quantify these features, cf. [46], for example. 

In a recent series of papers [47]-[49], the authors promote a useful sub-classification of FOPTs by attributing 
the confinement-deconfinement transition to an entropic one, while the established gas-liquid transition in 
nuclear matter [8]-[11] is classified as enthalpic one. The key is the Clausius-Clapeyron equation  

( ) 1 1 2 2

1 2

d
d 1 1
cp T s n s n
T n n

−
=

−
                                  (1) 

which relates the slope of the critical pressure, cp , along the FOPT w.r.t. temperature, T, to entropy densities 
1,2s  and baryon densities 1,2n . Denoting by the label “1” the dilute (confined/hadron) phase and by “2” the 

dense (deconfined/quark-gluon) phase, the slope of the critical pressure curve is positive, d d 0cp T > , for 
larger entropy per baryon in phase “1”, meaning an enthalpic FOPT. In contrast, for larger entropy per baryon in 
phase “2” the critical curve has a negative slope, d d 0cp T <  meaning an entropic FOPT. 

Some guidance for the trajectories of fluid elements is given by the isentropic curves, determined by 
consts n = , when having in mind the adiabatic expansion of matter created in the course of a heavy-ion 

collision as long as the respective fluid element is in a pure phase, “2” or “1”. The details of the transit through 
the two-phase coexistence region depend on the latent heat and other details of the equation of state. With 
respect to investigations of the heavy-ion dynamics (cf. [50]) seeking for imprints of the conjectured QCD 
FOPT and CEP signatures, it seems tempting to clarify in a clear-cut picture the different patterns of isentropes 
being related to a FOPT. 

Our note is organized as follows. In Section 2 we discuss obvious types of isentropic patterns which may 
accompany a FOPT in strongly interacting matter. The pattern classification is put in relation to the entropic and 
enthalpic sub-classes. We see enthalpic transitions either with incoming-only or incoming + outgoing isentropes, 
thus qualifying also the latter one for modeling the QCD deconfinement-confinement transition. Examples based 
on transparent models are presented in Section 3 and Appendix. In Section 4, we summarize.  



F. Wunderlich et al. 
 

 
854 

2. Isentropic Patterns  
We restrict our discussion to the grand canonical description of matter by an equation of state ( ),p T µ  with 
one conserved charge, e.g. baryon number, related to the chemical potential µ . Entropy density and baryon 
density are given by ( ),s T p Tµ = ∂ ∂  and ( ),n T pµ µ= ∂ ∂  and the Gibbs-Duhem relation e p sT nµ+ = +  
holds (e is the energy density). Considering the region 0s >  and 0n > , the isobars constp =  have negative 
slopes in the T-µ diagram upon 

d 0d d pT n sµ
=
= − . We assume locally a FOPT which is signaled by a kinky 

behavior of ( ),p T u  over the T-µ plane, both in T and µ  directions. ( ),p T µ  refers here to stable states; if 
multi-valued regions emerge, the branch with maximum pressure is the stable one. We further assume, for the 
sake of definiteness, the FOPT curve has a negative slope, ( )d d 0cT µ µ < . In fact, ( ) ( )( )1 2d , , 0p T p Tµ µ− =  

on the FOPT curve delivers ( ) ( )1 2 1 2d dcT n n s sµ = − − − , where we suppose 1 2n n<  and 1 2s s< . 
We also recall from the equilibrium conditions 1 2T T= , 1 2µ µ=  and 1 2p p=  on the FOPT curve the 

relation  

( ) 1 1 2 2

1 2

d
d 1 1
cp n s n s

s s
µ
µ

−
=

−
                                  (2) 

which is another form of the Clausius-Clapeyron Equation (1). 
From selected examples we can infer three different patterns of isentropes in the T-µ plane: 
Type IA: Isentropes come in from the phase “2”, enter the critical curve ( )cT µ  and leave it toward the phase 

“1” at lower temperature, see Figure 1, left top panel. According to Clausius-Clapeyron (1) one has 
( )d d 0cp T T > , i.e. a gas-liquid or enthalpic transition in the nomenclature of [49]. 

Type IB: Isentropes come in from the phase “2”, enter the critical curve ( )cT µ  and evolve toward phase “1” 

at higher temperature, see Figure 1 middle top panel. Clausius-Clapeyron tells us for that case ( )d d 0cp T T < , 
i.e. a QCD type or entropic FOPT in the nomenclature of [49]. 

Type II: Isentropes come in from both sides, i.e. phases “1” and “2”, enter the critical curve ( )cT µ  and run 
down on it, see Figure 1, right top panel. According to our experience with a number of models, 2 2 1 1s n s n<  
in a point on the critical curve, i.e. also a gas-liquid type or enthalpic FOPT with ( )d d 0cp T T > . 

 

 
Figure 1. Schematic representation of isentropes (lines with arrows indicating the expansion path) for the FOPT 
types IA (left panels, consts n = ), IB (middle panels, consts n = ) and II (right panels, 1 1 2 2s n s n> ) in the 
T-µ plane (upper row) and the T-n plane (lower row). States in “1” (see text) are left/below the phase border line 
(fat curves in the upper row), while states in “2” are right/above. The green areas in the lower row depict a part of 
the two-phase coexistence regions for the respective types. Note that the coexistence regions (green areas) can 
appear in quite different shapes.                                                                    
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The direction of isentropes is such to describe expansion, i.e. both temperature and density drop in pure 
phases. Type I is related to in-out (or going-through) isentropes, while type II has incoming-only. A prominent 
example for type II is the van der Waals equation of state, cf. [51] and Figure 1 in [52]. We emphasize the local 
character of our consideration, that is the restriction to the vicinity of a T-µ point on the presumed phase 
boundary. These patterns translate directly into the T-n plane, see bottom row of Figure 1, where one verifies 
that dropping temperatures along isentropes in pure phases imply in fact dropping densities, too, i.e. proper  
expansion. Types IA and IB are delineated by 1 1 2 2s n s n= , resulting in ( ) constcp T = . Types IA and II 

share as common feature flatter isobars than the critical curve ( )cT µ ; for type IB, the critical curve is flatter 
than the isobars. For the moment being we do not see the need to study further fine details, e.g. slopes and 
relative slopes of isentropes near the critical curve. 

We would like to emphasize that also models of type IA could serve as an illustration of the possible structure 
of the phase diagram, despite they belong to the gas-liquid transition type: Suppose ( )1 00cn T n→ > , where 0n  

is the nuclear saturation density and 1
cn  denotes the density of phase “1” at the critical curve, then nothing  

seems to speak against the scenario with an expanding and cooling fluid element initially in phase “2”, which 
traverses the confinement transition region (two-phase coexistence) and arrives in the hadronic world of phase 
“1”. That means, if “2” is a deconfined state, then both IA and IB allow for a graceful exit into the pure 
(hadronic) phase “1”, while II ends locally in a two-phase mixture of “1 + 2” for adiabatic expansion dynamics, 
i.e. some part of matter remains in the deconfined state “2”, e.g. as quark nuggets, contrary to our present 
expectations and in agreement with the failure of previous searches for them [53]-[57], (see however [58] [59] 
for considering them as candidates of dark matter). Whether realistic models can be designed to do so (cf. [60] 
for a recent attempt), in agreement with serving for two-solar mass neutron stars, is a question beyond the 
schematic phenomenological approaches. Anyhow, type IA supplements the considerations favored in [48] 
[49].  

3. Examples  
We are going to present a few examples for the above discussed transition types. For that, we select the 
quark-meson model1 (cf. [63] for a description of the setting used here2) with linearized meson field 
fluctuations3 and show that only shifting the nucleon/quark vacuum mass parameter qm  relative to the critical 
chemical potential at zero temperature 0

cµ  is sufficient to switch from IA to II. The latter one is to a large 
extent determined by the product of the sigma mass parameter mσ  and the (classical) vacuum expectation  
value of the sigma field 

0σ . We are fully aware of the shortcomings of such a model w.r.t. proper account of  

nuclear matter properties at low temperatures and QCD thermodynamics at high temperatures, as discussed in 
[48]. But in view of the pertinent complexity of the QCD degrees of freedom in the strong coupling regime such 
a model with chiral symmetry breaking and restoration may give some glimpses of what is conceivable, in 
principle. 

Also our model for the type IB (cf. Appendix) has, at best, illustrative character: It is a two-phase 
construction with states in “2” modeled by the extrapolation of weakly interacting quarks and gluons, 
supplemented by an effective bag constant to account for some non-perturbative aspects, and states in “1” 
referring to thermal light-meson (pion) excitations and nucleons in some mean field approximation including a 
realistic incompressibility modulus. 

Figure 2 exhibits the isobars constp =  over the T-µ plane for two parameter sets (see figure caption for the 
values) of the quark-meson model in linearized fluctuations approximation [63] [65]-[67]. These patterns look 
fairly similar at a first glance. The isobars are flatter than the phase border line (fat white curve). The CEP  

 

 

1We chose this since in the chiral limit it obeys the same symmetries (an ( ) ( ) ( )4 2 2O SU SU×  [61]) as QCD [62] putting both into the 
same universality class and thus rendering the model a good prototype for studying the properties of the QCD chiral transition. 
2In a nutshell, the employed model, also coined linear sigma model, is based on a doublett of quark degrees of freedom, an iso-scalar sigma 
field and an iso-triplett pion field with standard coupling among these fields.  
3According to our experience with numerical evaluations, the account of linearized meson field fluctuations modifies significantly the results 
of the mean field approximation. (For the inclusion of the complete fluctuations spectrum within the functional renormalization group ap-
proach, see [64].) In particular, the fluctuating meson degrees of freedom deliver explicit contributions to the pressure. 



F. Wunderlich et al. 
 

 
856 

 
Figure 2. Contour plots of scaled pressure CEPp p  (i.e. isobars, top row) and entropy per baryon s n  (i.e. isentropes, 
bottom row) for FOPTs of type IA (left column) and type II (right column) over the T-µ plane. Equation of state from the 
quark-meson model with linearized fluctuations applying the parameters 

0
90 MeVσ =  (expectation value of the sigma 

field in vacuum, as indicated by the label 0), ,0 138 MeVmπ =  (pion mass) as well as either ,0 1284.4 MeVmσ =  (sigma 

mass), ,0 390 MeVqm =  (quark mass) (left column) or ,0 700 MeVmσ = , ,0 360 MeVqm =  (right column). The pressure is 

scaled by the pressure at the critical end point, i.e. with 8 42.38 10 MeVCEPp = ×  (left) and 8 48.59 10 MeVCEPp = ×  (right), 

respectively. The arrow in the bottom left plot points to a state where the density at 0T =  is equal to 3
0 0.17 fmn −= . On 

the bottom right plot this point is located at the phase boundary.                                                    
 

coordinates are ( ) ( ) ( )( ), 97 MeV , 377.5 MeVCEP CEPT µ =    for the parameter set depicted on the left panels 

and ( ) ( )( )98 MeV , 216.5 MeV   on the right ones. (Note that we use actually quark chemical potential qµ   

and net quark density qn .) One must not consider these values as predictions of the CEP location since the 
proper account of fluctuations can significantly change them. Furthermore, the inclusion of some gluon 
dynamics, e.g. via a coupling to the Polyakov loop, thermal gluon fluctuations as well as extending the invoked 
hadron species can also cause substantial changes of the CEP coordinates. 

Despite of the apparently marginal differences of the isobar patterns, the isentropes are drastically different. In 
the left bottom panel of Figure 2, type IA isentropes are seen which mean incoming from phase “2” and 
outgoing into phase “1” whenever they meet the critical curve. In contrast, the right bottom panel in Figure 2 
displays a type II FOPT with incoming-only isentropes into the critical curve. 

Figure 3 exhibits the isentropes in pure phases “2” and “1” over the T-n plane. This presentation verifies that 
both the temperature and the density drop along the isentropes in pure phases. One can infer directly from the 
bottom panels of Figure 2 the above claim w.r.t. outgoing isentropes from the low-density phase border curve  
( )1n T  for type IA, see left panel of Figure 3, while for type II (right panel) only incoming isentropes appear 

(isentropes with 5s n >  enter the two-phase region at smaller densities which are not displayed). 



F. Wunderlich et al. 
 

 
857 

 
Figure 3. As Figure 2 but for the isentropes in the T-n plane for pure phases only. The difference in s/n between two 
adjacent isentropes is 0.2 and the thick blue isentropes are labeled with their respective s/n. The two-phase coexistence 
regions are depicted as green areas with the CEP (black bullet) on top. The dashed grey curves enclose the regions in T-µ 
space displayed in Figure 2, i.e. the gray regions correspond to regions outside. The densities are scaled by the nuclear 
saturation density 3

0 0.17 fmn −= .                                                                             
 

Consistent to the Clausius-Clapeyron Equation (1), the critical pressure as a function of the temperature is 
increasing, see Figure 4. The inclined numbers at the top axis depict the (critical) chemical potential values  
corresponding to the temperature given at the lower axis thus highlighting the shape of ( )cp µ  which is 
actually decreasing in agreement with (2). 

We mention that the employed minimum set-up of the quark-meson model does not allow for type IB 
transitions since thermal gluon fluctuations are not included, i.e. the number of effective degrees of freedom 
accounting for thermal fluctuations is too small. One may, however, easily construct two-phase models with a 
high-temperature quark-gluon phase and a low-temperature hadron phase. Figure 5 in the Appendix presents 
such an example. Without fine tuning, such models do not display a CEP at 0µ > , instead the constructed 
phase border curve continues form the T axis down to the µ  axis. Reference [68] provides an example of 
enforcing a CEP at 0µ >  to obtain also a type IB transition. 

The focus of the present note is on the isentropes relevant for the expansion dynamics in relativistic heavy-ion 
collisions. As emphasized, e.g. in [40] and references therein, analog considerations are useful for discussing the 
impact of peculiarities of the QCD phase diagram in core-collapse supernova explosions. There, one has to 
consider adiabatic paths along compression with proper leptonic contributions including also trapped neutrinos. 
For a first orientation, the pressure as a function of the energy density at suitable values of the entropy per 
baryon is to be analyzed to figure out whether the FOPT effects in iso-spin symmetric matter translate into 
modifications of neutron star configurations (with β  stability, no trapped neutrinos) such as the occurrence of 
a third stable island (cf. [28]), nowadays often refered to as twin configurations [29]-[31] [37] [69]-[74], or 
modify the core collapse dynamics (with trapped neutrinos) toward proto-neutron stars or even black holes such 
as discussed in [40] [42] and references therein. We leave according investigations to separate dedicated 
analyses.  

4. Conclusions and Summary  
In summary we discuss options for modeling a hypothetical first-order phase transition which is related to a 
critical end point in a strongly interacting medium. Guided by the expectation that the QCD cross-over (as 
remnant of the transition of massless 2 + 1 flavor QCD, cf. [21]) at a temperature of about 150 MeV at small 
chemical potential turns, at the critical point at large chemical potential, into a first-order transition we consider 
scenarios where initially deconfined matter can evolve completely into confined (hadronic) matter. We 
emphasize that both enthalpic and entropic phase transitions are consistent with such an expectation provided a  
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Figure 4. The critical pressure ( )cp T  as a function of temperature for FOPTs of type IA (left panel) and II (right panel). 
The numbers on the upper axis are the critical chemical potentials (in MeV) corresponding to the temperatures on the lower 
axis. Equation of state and critical pressures CEPp  as described in the caption of Figure 2.                              

 

 
Figure 5. Isobars (left top panel) and the critical pressure cp  as a function of temperature (right top panel) as well as 
isentropes, both over the T-µ plane (left bottom) and over the T-n plane (right bottom) for the two-phase model of type IB 
FOPT, based on Equations (3-7). As in Figure 3, the coexistence region is depicted as green area. Our calculations do not 
map out completely the T-µ plane, thus leaving some uncharted regions in white in the left column and the bottom right 
panel.                                                                                                   
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graceful exit from the deconfined state into pure hadron matter is possible upon adiabatic expansion. At low 
temperature, the low density part of the two-phase coexistence region must be at larger densities than nuclear 
matter at saturation (for isospin symmetric nuclear matter). This implies that the pattern of isentropes must “go 
through” the phase border curve to be conform with the envisaged scenario. In contrast, the van der Waals type 
transition is of a different kind as it has locally incoming isentropes only. Obviously, more complicated phase 
border curves may allow for mixtures of the mentioned types. Our discussion also completely ignores flavor- 
locked color superconducting phases which are expected at larger densities. 

Our discussion is based on equilibrium thermodynamics, and the medium is assumed to obey one conserved 
charge—the baryon density. Accounting for more conserved charges, e.g. related to isospin, strangeness, electric 
charge etc., complicates the picture. Transient states related to under saturated or over saturated gluons [75] or 
under saturated quark state occupation [76] give rise to many interesting phenomena beyond our discussion. 

The lacking of ab intio information from first-principle calculations of QCD thermodynamics lets many 
options still be conceivable. This makes the concerted experimental hunt for signals of the critical end point and 
the related first-order transition so important.  
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Appendix 
A two-phase model for type IB  

The constructed FOPT is based on the extrapolation of a hadron equation of state with pressure  

2
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to be calculated from  
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The temperature ( )ˆ,BT n s  follows self consistently from  

( )ˆ,
ˆ
BW n s

T
s

∂
=

∂
                                    (6) 

and the baryo-chemical potential is then ˆB BW p n Tsµ = + − . We utilize the nucleon mass 938 MeVNm = , 
the nucleon binding energy bind 16 MeVW = − , nuclear incompressibility coefficient 235 MeVK =  and  
saturation density 3

0 0.17 fmn −= .4 The equation of state in the high temperature phase is defined by the 
extrapolation of a quark-gluon equation of state from leading-order weak-coupling (cf. [78] for advanced 
calculations) supplemented by a bag constant B  

2 2
4 4 2 2 4

2 2
π 7 π 1 116 ,
90 8 90 24 48πq B Bp T f T T Bµ µ

 
= + + + − 

 
                  (7) 

where we employ for the number of effective quark degrees of freedom 2.5 3 2 2 30qf = × × × =  and 

( )4235 MeVB = . These branches are matched by the above mentioned Gibbs criteria for equilibrium, 1 2p p= , 

1 2T T= , 1 2µ µ= . The resulting isobars, the critical pressure ( )cp T  as well as isentropes, both over the T-µ 
and the T-n-planes are exhibited in Figure 5. 

 
 

 
 
 
 
 

 

 

4This is a model in the spirit of [77] for nuclear matter and pions.  
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