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Abstract

In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued
functions and fuzzy-number-valued functions and discuss some of their properties.
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1. Introduction

As it is well known, the Henstock (H) integral for a real function was first defined by Henstock [1] in 1963. The
Henstock (H) integral is a lot powerful and easier than the Lebesgue, Wiener and Richard Phillips Feynman
integrals. Furthermore, it is also equal to the Denjoy and the Perron integrals [1] [2]. In 2000, Congxin Wu and
Zengtai Gong [3] introduced the notion of the Henstock (H) integrals of interval-valued functions and fuzzy-
number-valued functions and obtained a number of their properties. In 2016, Yoon [4] introduced the interval-
valued Henstock-Stieltjes integral on time scales and investigated some properties of these integrals. In 1998,
Lim et al. [5] introduced the notion of the Henstock-Stieltjes (HS) integral of real-valued function which was a
generalization of the Henstock (H) integral and obtained its properties.

In this paper, we tend to introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued
functions and fuzzy-number-valued functions and discuss some of their properties.

The paper is organized as follows. In Section two, we tend to give the preliminary terminology used in the
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present paper. Section three is dedicated to discussing the Henstock-Stieltjes (HS) integral of interval-valued
functions. In Section four, we tend to introduce the Henstock-Stieltjes (HS) integral of fuzzy-number-valued
functions. The last section provides conclusions.

2. Preliminaries

Definition 2.1 [1] [2] Let &': [a, b] — R" be a positive real-valued function. P = {[XH, xi];a;}in:l is called a &
fine division, if the subsequent conditions are satisfied:

1) a=X, <X <X, <--<X,=b,

2) & E[Xi—l'xi]c(gi -6(&).4 +5(§i)>(i =12,---,n).

For brevity, we write P:{[u,v];cf}, wherever [u,v] denotes a typical interval in P and & is that the
associated point of [u,v].

Definition 2.2 [1] [2] A real-valued function f(t) is called Henstock (H) integrable to A on [a,b] if for

each & >0, there exists a function &(t)>0 such that for any &fine division P ={[ui,vi];§i}:_1 of [a,b],
we have )

gf(;)(vi—ui)—A<g. )

b
where the sum )" is understood to be over P, we write (H )jf (t)dt=A,and feH][a,b].

Definition 2.3 [5] Let a:[a,b] >R be an increasing function. A real-valued function f:[a,b]—>R is
Henstock-Stieltjes (HS) integrable to | € R with respect to « on [a,b] if for each &> 0, there exists a

n

function &(t) >0, such that for any &fine division P ={[u,v,];&}  we have

>t (&) () -ar(w)] -1 <e @

b
We write (HS)[f(t)de=1,and feHS,[ab].

Lemma 2.1 [5] Let a:[a,b]—>R be an increasing function and let f, g are Henstock-Stieltjes (HS)
integrable with respectto o on [a,b].If aeC'[a,b] and f <g almosteverywhere on [a,b], then

.?fda < -nga. ?3)

3. The Henstock-Stieltjes (HS) Integrals of Interval-Valued Functions

Definition 3.1 [3] Let I, :{I :[I‘, I*]: I is the closed bounded interval on the real line R}.

For A,Belg,wedefine A<B ifandonlyif A-<B™ and A" <B*, A+B=C ifandonly if
C =A+B and C'=A"+B",and A-B={a-b:aeAbeB}, wherever
(A-B) =min{A"-B",A"-B",A"-B",A"-B"} and (A-B)"=max{A -B",A -B",A"-B",A"-B'|.
Define d(A,B)= max(|A’ - B’|, A" -B* ) as the distance between intervals A and B.

Definition 3.2 [3] Let F:[a,b]—I; be an interval-valued function. 1, € I, for each &> 0 there exists
a &(t)>0 such that for any &ine division P = {[u v];gﬁ}H we have

d(ZF(;)(vi—ui),loj<g, @
i=1

b
then F(t) is called the Henstock (H) integrable over [a,b] and write (IH)IF (t)dt=1,. Also, we write
F(t)elH[ab]. a
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Definition 3.3 Let «:[a,b] > R be an increasing function. An interval-valued function F:[a,b]— I is
Henstock-Stieltjes (HS) integrable to 1, € I; with respect to o on [a,b], if for each ¢ >0 there exists a
S(t)>0 such that for any & fine division P ={[u;,v,];&}.,we have

d[éF (gﬁ)[a(vi)—a(ui)],loj<g. ©)

We write (IHS)TF(t)dozzl0 and F(t)elHS,[a,b].

Theorem 3.1 Let «:[a,b] > R be an increasing function. If F(t)e IHS, [a,b], then there exists a unique
integral value.

b b
Proof Let the integral value is not unique and let A =(IHS) [F (t)da and A, =(IHS)[F(t)da.If >0

is given. Then there existsa &(t)>0 such that for any & fine division P = {[u vil; fi}in:l , We have

o[ SF (@ atn)-a()] A <4, Q
d[iznl:F(;)[a(vi)—a(ui)],A2j<§ @)

(A ) = SF (@) a()-au)] A J+d [ SF (@) [ev)-a(u)] 4
<S4as

Since forall &>0, thereexistsa &(t)>0 asabovethen A =A,. O
Theorem 3.2 Let o [a,b — R be an increasing function. Then an interval-valued function
F(t)eIHS,[a,b] iff F(t),F"(t)eHS,[ab] and
b

(IHS) [F (t)da {(HS)TF-(t)da,(Hs)TF* (t)da}. (8)

a a a

Proof If F(t)eIHS, [a,b], by Definition 3.3 there exists a unique interval number I, = [IO’, Io*} with the
property, forany &>0 thereexistsa &(t)>0 such that for any & fine division P = {[ui V& }in:l , We have

d(gF(é)[a(vi)—a(ui)],I0J<g, ©)

that is

SF@)e)-aw)]] -k

max{
i

{zlp (é)[a(vi)—a(ui)]T 1

] <é&. (10)

Since a(v;)—-a(u;)>0 for 1<i<n, we have

SF (&) -a()]-1s < (11)
‘iznl:F*(.fi)[a(vi)—a(ui)J— I7|<e. (12)
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Therefore, by Definition 2.3 we can obtain F~(t),F*(t)e HS,[a,b] and

b

ly =(HS) [F~(t)da, (13)

:(HS)_TF*(t)da. (14)

Conversely, let F~(t)e HS,[a,b], then there exists a unique H,eR with the property, given &>0
there existsa &, (t)>0 such that for any &, -fine division P ={[u,,v;]; fl}inl,we have

<é&. (15)

’(g‘i)[a(vi)—a(ui)]—Hl

It is similar to find &, (t)>0 such that for any &, -fine division P ={[u,,v,]; fl}inl , we have

(&) a(w)-a(u)]-H,

If F~(t)<F'(t), then H,<H, We define 5(t)=min(s(t),,(t)) and I,=[H, H,], then for any
& fine division P —{[u,,v,] fl}i we have

d[;F ((,ﬁ)[a(vi)—a(ui)],loj<g. an

Hence F:[a,b]— I, is Henstock-Stieltjes (HS) integrable with respectto o on [a,b]. O
Theorem 3.3 If F,GelHS,[a,b] and B,y €R. Then
i) BF+7GelHS,[ab] and

<e&. (16)

b
(IHS) j BF +7G)da = p(IHS) dea+y (IHS) dea (18)
i) Let F(t)=G(t) almosteverywhere on [a,b]. Then

(1HS) [F (t)da = (IHS) G (t)dar (19)

a

Proof i) If F,GelHS,[a,b], then F~,F*,G",G" e HS[a,b] by Theorem 3.2. Hence
BF +yG ™, BF +yG",BF" +yG", fF" +yG" e HS, [a,b].
HIf >0 and y >0, then

(HS)[(BF +7G) da =(HS)[(BF +yG")da

® —
D —— T

B(HS) jF da +y(HS) jG da

ﬂ( (1HS J.Fdaj +7/( IHS J.GdaJ

( B(IHS) dea+y (IHS JGdaJ .

2)If f<0 and y <0, then
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(HS)[(BF +7G) da =(HS)[(BF" +yG")da

® —y
» —_—

=ﬁ(Hs)jF*da+y(Hs)TG*da

_ ﬁ((IHS)i‘FdaI +;/[(IHS)j:Gda]

+

:(ﬁ(le)TFdaw(le)dea] .
3)If >0 and y<0, (or #<0 and y>0),then
(HS)T(ﬂF+yG)*da=(Hs)T(ﬁFf+7G+)da
B(HS) jF da +y(HS) jG da
ﬂ( IHS J.Fdaj +7/( IHS J'Gdaj
( B(IHS dea+y (IHS deaJ .

Similarly, for four cases above we have

HS)T(/;F +7G) da :(ﬁ(le)TFdaw(le)TGdaI. (20)
Hence by Theorem 3.2 SF +yG e IHS, [a,b] and

(IHS)T(ﬂF +yG)da=ﬂ(|Hs)TFda+y(|Hs)TGda. (1)
ii) The proof is similar to Theorem 2.8 in [5]. O

Theorem 3.4 Let F elHS, [a,c] andlet FelIHS, [c,b]. Then FelHS,[a,b] and
b c b
(IHs)[F t)da=(|Hs)jF(t)da+(|Hs)jF(t)da. (22)

Proof If FelIHS,[a,c] and F e IHS,[c,b], then by Theorem3.2 F~,F" eHS,[a,c] and
F~,F"eHS,[c,b]. "Hence F~,F'eHS [a b] and

(HS)_[F’da :(HS)_[F’da+(HS)_TF’da
:[(IHS)TFda+(IHS)j'Fda)_.

b c b +
Similarly, (HS)IF*da=[(IHS)IFda+(IHS)IFdaj . Hence by Theorem 3.2 F e IHS, [a,b] and

(IHS)j‘Fda=(IHS)dea+(IHS)j‘Fda. (23)
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Theorem 35 Let a:[ab] >R be an increasing function such that a eC'([a,b]). If F(t)<G(t)
nearly everywhere on [a,b] and F,GeIHS,[a,b], then

(1HS) [F (t)dar < (IHS) [G (t)dar (24)

a

Proof Let F(t)<G(t) nearly everywhereon [a,b] and F,GeIHS,[a,b]. Then
F,F',G",G"eHS,[ab] and F <G, F+ <G"* nearly everywhere on [a,b].By Lemma2.1
b

(HS) jF (t)da <(HS)[G™ (t)da and Hs)jF t)de <(HS) jG da. Hence

(IHS)j'F (t)das(le)TG(t)da, (25)

by Theorem 3.2. O
Theorem 3.6 Let F,G e IHS,[a,b] and d(F,G) is Lebesgue-Stieltjes (LS) integrable on [a,b]. Then

d( (IHS) dea (IHS) dea] Ls)jd (F.G)da (26)
Proof By definition of distance,

d [(IHS)EFda,(IHS)j:Gdaj

= Mmax

[(HS)iFdaJ —[(HS)iGdaJ

— max ‘(HS)Z(F- -G )da (HS)E(F* -G")da

[(HS)EFdaI —((Hs)zeolaz]+ J

J (27)

< max (LS)_T|F‘—G‘|da,(LS)_T F'-G* da]
s(LS)jzmax(|F’—G’|,F G'|)da
(Ls)[d (F.6)d

4. The Henstock-Stieltjes (HS) Integral of Fuzzy-Number-Valued Functions

Definition 4.1 [6]-[8] If AeF(R) is a fuzzy subset on R . If for any 1€[0,1], A :[A;,A;J and
A =¢, wherever A, :{t : A(t)zl}, then A is called a fuzzy number. If A satisfy the following
conditions: 1) convex, 2) normal, 3) upper semi-continuous, 4) has the compact support, then A is called a
compact fuzzy number.

Let R denote the set of all fuzzy numbers and R® denote the set of all compact fuzzy numbers.

Definition 4.2 [6] Let A BeR,wedefine A<B ifandonlyif A <B, forall 1(0,1], A+B=C if
andonlyif A, +B,=C, forany A€ (0, 1] A-B=D ifandonlyif A - BA =D, forany 4e(0,1].

For A BeRS, D(A B) = supd( B,) is called the distance between A and B.

Lemma 4.1 [9] If a mapgitg H [01 —lg, A—>H(4)=[m,,n,], satisfies [mﬂl,nil]j[mlz,nlJ
when 4 <A4,, then
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A= [JAH(2)eR (28)

and

A =H (4), (29)

(n+1)

Definition 4.3 [3] Let F:[a,b]—>R and let the interval-valued function F,(t)= [F;j (t),F; (t] is
Henstock (H) integrable on [a,b] forany A€(0,1], then F(t) is called Henstock (H) integrable on [a,b]
and the integral value is defined by

where ﬂn:{l— L }1.

b

ﬁ(IH)_fFA (t)dt

2¢(01] a

=4 (H)TFldt,(H)j'F;dt}.

2e(01]

T
SN—
m'—.U

Th
—
—

We write F (t)e FH [a,b]. i

Definition 4.4 Let «:[a,b] >R be an increasing function and let F :[a,b]— R. If the interval-valued
function F,(t)= LF{ (t) [ (t); is Henstock-Stieltjes (HS) integrable with respect to « on [a,b] for any
2¢€(0,1], then (t) is called Henstock-Stieltjes (HS) integrable with respect to « on [a,b] and the
integral value is defined by

(FHS T (IHS)_TFA (t)da

ﬂ.e(O,l]

b b
= ﬂ{(HS)J'FAda,(HS)J'F;da}.
2€(01] a a

We write F(t)e FHS, [a,b].
Theorem 4.1 F € FHS .[a.b], then

(
{(FHS)TIE (t)da} :ri](le)jFAn (t)da, (30)

where 4, = 1—L A
(n+1)

Proof Let H:(0,1]— I, bedefinedby H(1)= {HS [F; (t)dar,( HS)IF }

Since F; (t) and F;(t) areincreasing and decreasing on A respectlvely, therefore, when 0< 4, < 4, <1,
we have F_(t)<F_(t), F;(t)>F;(t), on [a,b]. From Theorem 3.5 we have

{(Hs)iﬁl(t)d T'ﬂ } {HS)I - (t)da, (H ):[F;Z(t)da}. (31)

a a

From Theorem 3.2 and Lemma 4.1 we have

(FHs)Tlf (t)yda= | l{(HS)TFida,(HS)TF;da} eR (32)
a 2€(0.] a a
and ¥ 1e(0,1], {(FHS T } ﬁ |Hs)j’ (t)da, wherever l”:{l_(nil)}' 0
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Using Theorem 4.1 and the properties of (IHS) integral, we are able to get the properties of (FHS)

integral, for example, 1) the linear, 2) monotone, 3) interval additive properties of (FHS) integral.

5. Conclusion

In this paper, we proposed the definition of the Henstock-Stieltjes (HS) integrals of interval-valued functions
and fuzzy-number-valued functions and investigated some properties of those integrals.
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