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Abstract 
The mounting escalation of multimedia content in information indexing and retrieval has made a 
high venture for extracting the text from videos. In this paper a new approach has been made us-
ing Stroke Width Transform (SWT) with intuitionistic fuzzy set theory for detecting text from im-
ages. The proposed methodology uses a fuzzy based edge detection method instead of the conven-
tional edge detection methods. The fuzzy inference system is designed for edge detection. The 
edge detection is based on membership degree called hesitation degree and distance measure 
called intuitionistic fuzzy divergence. For text detection, SWT operator is used which tries to cap-
ture only the effectual text features. Geometric features of the text are used to differentiate be-
tween text and non-text regions of the text. The resulting system is tested on ICDAR 2003 dataset 
which produces promising results. 

 
Keywords 
Edge Detection, Fuzzy Inference System, Intuitionistic Fuzzy Divergence, Stroke Width Transform 

 
 

1. Introduction 
Edge detection in image processing is an important task in the field of application of image processing. In this 
paper the two efficient techniques’ image processing and soft computing are combined. Soft computing is a ris-
ing region for tribulations trading with uncertainties. Here fuzzy logic is used to detect the edges of images. 
Edge detection refers to the course of action of discovering pointed irregularities in an image. Soft computing is 
an up-and-coming promising field that includes fuzzy logic, genetic engineering, evolutionary computation and 
neural networks. The uncertainties may be due to noise, complex background, different orientations or intensi-
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ties. In fuzzy set theory, every element is identified with a degree of membership. The degree of non-member- 
ship is equal to one minus the degree of membership. Usually for text detection using SWT [1], the conventional 
canny edge detection is used. In our system we use a fuzzy based edge detection method followed by SWT. In 
the proposed system, the image is segmented into 3 × 3 binary matrices. Initially, we divide the image into divi-
sions by means of a 3 × 3 binary template matrix. Fuzzy inference system is intended to be with eight inputs that 
keep up a correspondence with eight pixels of the template matrix and one output. At the stage in fuzzification, 
the input image is transformed to the fuzzy domain [0 1]. Then the hesitation degree or intuitionistic fuzzy index 
is prognosticated. The utmost value of the divergence value among the sixteen fuzzy rule templates and the 
original image of the identical size is prognosticated. During defuzzification, the edge image is transformed back 
to the image pixel domain in the interval [1 255]. PSNR error metric is prognosticated to compare them with 
canny edge detection method and the proposed fuzzy edge detection method is found to be efficient. SWT is 
used to find the similarity between strokes based on their width. Initial value of each element in SWT is set to 
infinity. Letters in an image are provided with parallel sides and hence we find the edges of the texts using fuzzy. 
Next we calculate the gradient at each edges of the pixel. Letter candidates are then formed and filtering is car-
ried out. The eligible pairs are then integrated together which give the detected text. 

2. Related Work 
The authors in [2] proposed a modified technique using fuzzy logic which is rule based. In [3], a fuzzy based 
technique was designed for detecting edge without setting the threshold value. In [4], the edge of the gray scale 
image is determined using fuzzy logic. This work is demonstrated along with the existing Sobel and prewitt 
edge detector. [5] proposed image edge detection based on soft computing approach which enhances the edge 
detection where the histogram is applied with fuzzy logic. [6] proposed edge detection using fuzzy logic in mat-
lab. This work is based on sixteen rules, which differentiate the target pixel. [7] proposed an edge detection me-
thod without setting threshold value. It utilizes the nominal 2 × 2 visor that skim over the entire image pixel by 
pixel. Fuzzy inference system and traditional edge operators are combined in [8]. In [9], the noise is removed at 
different level of processing. First and second derivative is implemented to FIS resultant image. In [10], heuris-
tic rules were applied and a fuzzy based approach used to fulfill filtering and edge extraction simultaneously. 
Three linear spatial filters and spatial convolution techniques are used in [11]. A fuzzy based edge detection fil-
ter that passes through two stage of process to remove noise from grayscale images are used in [12]. SWT used 
in [13] to identify connected components and an unsupervised clustering to detect the text locations. The 
ICDAR dataset [14] [15] is the standard yardstick for text detection of natural images. In [16], a method which 
identifies texts regardless of its scale, direction, font and size are proposed. The method in [17] is based on cor-
ner points in a text. In [18], a Laplacian approach is used in order to detect text from video that handles text 
from any orientation. Later K-means clustering is achieved over the text. [19] employed a novel stroke like edge 
detection method and a temporal feature in extracting texts. Machine learning technique for scene text detection 
was used in [20]. They tested their system on ICDAR2005 and ICDAR2011 datasets. Maximally stable extremal 
regions (MSERs) are extracted using a pruning algorithm in [21]. A single-link clustering algorithm was pro-
posed for grouping of text candidates. A text classifier was used to detect the text. In [22], a part based tree- 
structured models (TSMs) were proposed for the detection and recognition of text simultaneously. The Viterbi 
algorithm was used to improve the word recognition and the experimental results were conducted on ICDAR- 
2003 dataset. An unsupervised method was used in [23] to detect scene text where the text object was modelled 
as a pictorial structure. Three new character features was proposed. The performance was evaluated on ICDAR 
2003/2005 dataset. In our earlier work [24], we proposed a hybrid approach by combining region and connected 
component (CC) based method where artificial neural network (ANN) was used as the classifier. 

3. Methodology 
An RGB image is taken as input. The original image is changed into gray scale image and converted in a fuzzy 
domain (0, 1) using fuzzy rules. Hesitation degree is prognosticated with the help of membership degree and 
non-membership degree for edge detection. Then, the divergence value is predicted and defuzzification method 
is implied. The stroke width at every pixel is extracted. Connected components are formed considering the 
stroke width of two neighboring pixels. Letter candidates are then grouped together which gives the detected 
text. The overall architecture of the proposed system is shown in Figure 1. 
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Figure 1. Overall workflow.                                               

3.1. Intuitionistic Fuzzy Index 
Fuzzy sets are sets with boundaries which are not accurate. The input pixels are separated into fuzzy sets expli-
citly black and white whereas the output pixel is separated into three fuzzy sets specifically black, white and 
edge. The membership in a fuzzy set is a matter of degree. If the fuzzy set is A and the relevant object is X, the 
proposition “X is a member of A” may be true or false. A fuzzy set can be represented as: 

( ){ }, ;AA X X X Eµ= ∈                                   (1) 

where E is defined as the pervasive values, and [ ]: 0,1A Eµ →  where Aµ  defines the degree of membership. 
An intuitionistic fuzzy set (IFS) A is an entity of the outline:  

( ) ( ){ }, ;A AA VX X X Eµ= ∈                                 (2) 

where E is the pervasive set, and 

[ ] [ ]: 0,1 : 0,1A AE V Eµ → →                                 (3) 

The above equation defines the membership and non-membership degree respectively 

( ) ( ) ( ) ( ) ( )( )0 1 and 1 ,A A A A AX V X X X V Xµ π µ< + < = −                  (4) 

The above equation is called the hesitation series. 

3.2. Divergence Value 
The maximum of the divergence value between the 16 fuzzy rule template and the original image of the same 
size is prognosticated. The fuzzy template is considered as a mask of 3 × 3 and then it is slide over the fuzzy 
matrix. The divergence of 3 × 3 matrixes is prognosticating with fuzzy rule template 1 to 16. Then the minimum 
element of the matrix for all 16 fuzzy rule templates is predicted. The divergence value is predicted as follows: 

( ) ) ( ) ( )(
( ) ( ) ( ) ( )

2 1 exp 1 exp

2 1 exp 1 exp

i i i i i

i i i i i i i i

D X X X X

X Y X Y Y X Y X

 = − − ∗ − + ∗ − 
+ − − + ∗ − − + ∗ −  

                  (5) 

where i iX A t= − , i i i iY p t p A= −  and ( )( )min mini i im n d= . Here Di is the divergence with original image 
matrix and fuzzy rule template i where i varies from 1 to 16, A is the original image in 3 × 3 matrix, ti is the 
fuzzy template , piti is the intuitionistic fuzzy index. 

In an image of size M × M with L distinct gray levels having probabilities 0 1 1, , , Lp p p − , and the exponen-
tial entropy is defined as 
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where n = M and , 0,1, 2, , 1i j M= − , and ( )A ijaµ  is the membership degree of the (i,j)th pixel aij in the im-
age A and 

( ) ( )
( )

0 if 0.5

1 if 0.5

A ij
A ij

A ij

a
a

a

µ
µ

µ

 ≤= 
>

                                (7) 

If A and B are two images then the membership degrees at (i,j) pixels for the images A and B is given by the 
following Equation (8). Based on entropy of fuzzy, the divergence between images A and B due to m1(A) and 
m1(B) may be given as 

( ) ( ) ( )
( ) ( )

( )( ) ( )( )
( ) ( )

2 2
2 2

1
0 0

1 1
,

2

n n A ij B ijA ij B ij

i j A ij B ij A ij B ij

a ba b
D A B

a b a b

µ µµ µ

µ µ µ µ= =

 − + −+ = + + − −
  

∑∑                  (8) 

Similarly, the divergence of B against A is: 

( ) ( ) ( ) ( )( ) ( )( )2 2
2 2

1
0 0

1 1
,

2 2

n n A ij B ijA ij B ij

i j

a ba b
D B A

µ µµ µ

= =

 
− + −+ = + 

  

∑∑                (9) 

So the total divergence between the pixels aij and bij of the images A and B due to m1(A) and m1(B) is given in 
Equation (10). 

( ) ( ) ( )
( ) ( )
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          (10) 

Likewise, the total divergence between the pixels aij and bij of the images A and B due to m2(A) and m2(B) is 

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( )( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )( )

2 2

2
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2 2
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a b
Div m A B b a

a b

a b a a b b

a b b a

µ µ
π π

µ µ

µ µ µ µ µ µ

µ µ π π

= =

 += −    +
 − + − + +  + −  − − −   

∑∑
   (11) 

Thus the overall intuitionistic fuzzy divergence IFD between the images A and B is defined as 

( ) ( ) ( )1 2, , ,IFD A B m A B m A B= +                               (12) 

The above Equation (12) gives the total divergence between the pixels aij and bij of the images A and B due to 
m1(A) & m1(B) and m2(A) & m2(B). The text detection is based on the IFD. 

3.3. Fuzzy Inference Rules 
The inference rules are based on the weight of the eight neighborhood gray level pixels. These rules encompass 
the capability to haul out the edges in the developed gray image competently. The consequential image has the 
form of black and the white regions. The input which undergoes a process of fuzzification and the output which 

RETRACTED



A. Thilagavathy, A. Chilambuchelvan 
 

 
364 

follows the process of defuzzification pixel is ranged from 0 - 255. Finally the black, white and edge are de-
tected. The following rules will decide the output pixels range of three decisions—white , black or edge fuzzy 
set. Figure 2 represents the rules for fuzzy inference system. The values of a & b are chosen using trial and error 
method. 

4. Text Detection 
Stroke Width Transform SWT is used to calculate the width of the most likely stroke containing the pixel. The 
stroke-width variance is determined and should not be too large or too small. The variance of the stroke-width is 
set based on trial and error basis. The stroke width is the key parameter in forming the letter candidates. Con-
nected component algorithm is used for grouping the text. The SWT Detector can detect letters of different lan-
guages like English, Hebrew, and Arabic etc. The text can be of varying sizes, different orientation. The SWT 
can also detect handwritten text. The algorithm depicting the overall process for detecting text is given below. 
 

Algorithm 1 Overview of the process followed for detecting text 

Pre-process the input image I through conversion to gray scale G to obtain O 
Generate fuzzy rules FR and fuzzy domain conversion on O  
Detect the edge E on O based on FR by hesitation degree H and divergence value D 
for i = 1 to ELEMENTS do 
Calculate swt S on edge detected image E  
Generate connected components CC after grouping and filtering the components by SWT   
end for 

5. Evaluation and Discussion 
The ICDAR dataset [14] [15] is the standard yardstick for text detection of natural images. The ICDAR dataset 
consists of 258 images in the training set and 251 images in the test set. The images in the dataset are in 
full-color and it varies in size from 307 × 93 to 1280 × 960 pixels. We follow [1] for the evaluation of the pro-
posed system. Our method is compared with respect to f-measure. The f-measure is in turn a combination of two 
other measures: precision and recall. Ground truth boxes called targets is made available in the dataset. The 
output which contains the bounding boxes (the green rectangles in Figure 6) for the correctly detected words are 
called estimate. The intersection area over the minimum bounding box area of both rectangles is called the 
match pm  between the two rectangles. The best match ( );m r R  for a rectangle r among a set of rectangles R 
is defined as 

( ) )({ }0 0;; |max pm r R m r r r R= ∈                             (13) 

The definitions for precision and recall are taken from [1]. 

( )Precision
,m

e er E r T
E

∈
= ∑  

( )Recall
,m

t tr T r E
T

∈
= ∑                                  (14) 

where T is the set of ground-truth and E is the set of estimated rectangles. Two more metric for performance 
evaluation is taken from [25] namely, Character-Recall (CR) and Word-Recall (WR). The CR is defined as the 
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Figure 2. Rules for fuzzy inference system.                                         
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ratio of number of characters detected to the total number of characters. 

no.of characters detectedCR
total no.of characters

=                                    (15) 

WR is defined as the ratio of the number of words detected to the total number of words. 

no.of words detectedWR
total no.of words

=                                      (16) 

In [25], five experiments were done and the CR ranges from 58.7% to 64.9% and WR ranges from 77.4% to 
85.6%. In ICDAR 2003 competitions [15], the WR rate for the best performing system was 52%. In [1] Word 
Recall rate is 79.04%. For our system WR rate is 82% and CR is 63%. The result shows that fuzzy is more effi-
cient than other edge detectors. For example: the canny operator cannot differentiate between real and unreal 
edges. So, it leads to low performance. But, in fuzzy edge detector it reduces noises in images and it improves 
blurred pixels to detect the edges of letters. 

The smudge image pixel is improved by applying different threshold values to images. Therefore, fuzzy edge 
detector detects edges perfectly. Figure 3 illustrates the comparison between canny edge detector and our pro-
posed fuzzy edge detector. For the performance evaluation of our system, we first highlight the fuzzy detector 
output on the input image. Our fuzzy detector is evaluated based on the PSNR metric and is compared against 
the canny edge detector. We are comparing with canny edge detector because most of the algorithms [1] use 
canny edge detector along with SWT. 

From Figure 3 it can be observed that the obscure, blurred, slanting, inclined texts are veraciously succoured 
by the fuzzy edge detector. To assess the quality of the edge detected image PSNR value is taken as a metric to 
compare the quality of the image. 

The PSNR is given by the following, 

2

10PSNR 10 log
MSE

R 
=  

 
                                  (17) 

where, R is the pixel range, MSE is the mean square error. 
The PSNR value is prognosticated for the original image across canny and proposed fuzzy edge detector. The 

PSNR block computes the peak signal-to-noise ratio between two images and is represented in decibels. The 
higher value of the PSNR, better the quality of the reconstructed image. From the PSNR calculation it is seen 
that fuzzy edge image has the higher PSNR value compared to canny edge detector. So this proves that the pro-
posed Fuzzy edge detection method performs well. We performed PSNR calculation for almost 256 images 
which are procured from ICDAR 2003 dataset. In Figure 4, the higher peaks denotes better edge detection in 
fuzzy than canny edge detector. We then perform SWT technique on the image obtained from the fuzzy edge 
detector. Our system was able to detect text in many exigent scenarios such as non homogeneous background, 
shadowy & blurry images, slanting text, inclined text, non horizontal text, curved text, fonts of varying size. The 
examples shown in Figure 5 are taken from the ICDAR 2003 dataset. We have less false negatives in Figure 5. 
Figure 5 shows the results of our system on complex scenarios such as shadowy text, text overlapped on another 
text, text with small font size, non-horizontal text, and text with big font size. Green rectangles depict the text 
detected. Figure 6 depicts the cases of fancy fonts where the green rectangles in (a)-(g) depict the text detected 
and (h)-(n) depicts the finally detected text based on our algorithm. Figure 7 depicts the examples of complex 
scenarios which include shadowy text, text overlapped on another text as well as text with small font, non-   
horizontal text and text with big font. 

Figure 8 shows the results of failure cases. The failure for the text detection were due to too much blur in the 
text, text that is not clear, text with too small a font size and text with too much curve. We also tested our system 
on cute80 dataset [26]. The dataset contains 80 images exclusively of curved text. The example results of our 
system on cute80 dataset are shown in Figure 9. The performance of our system on cute80 dataset is as follows: 
Precision 67% and Recall 68%. 

Performance comparison of text detection algorithms are provided in Table 1 which gives the comparisons of 
precision, recall used by various algorithms which were tested on the ICDAR dataset. We have compared our 
system with other algorithms where the results are evaluated based on the ICDAR dataset. 
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(a)                    (b)                     (c)                   (d) 

Figure 3. Comparison output of canny and fuzzy edge. (a) (c) Canny edge detection output; (b) (d) 
Fuzzy based edge detection output.                                                              

 

 
Figure 4. PSNR calculation.                                    
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Figure 5. Examples of text detection results based on our algorithm. Green rectangles depict the text 
detected.                                                                                  

 

 
(a)                     (b)                     (c)                     (d) 

 
(e)                     (f)                    (g) 

 
(h)                   (i)                    (j)                   (k) 

 
(l)                     (m)                     (n) 

Figure 6. (a)-(g) Examples of fancy fonts detection. Green rectangles depict the text detected; (h)-(n) 
Finally detected text of our algorithm.                                                           
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(a)                      (b)                      (c)                      (d) 

 
(e)                      (f)                       (g)                      (h) 

Figure 7. Examples of complex scenarios. (a) Shadowy text; (b) Text overlapped on another text as well as text with small 
font; (c) Non-horizontal text; (d) Text with big font. Green rectangles depict the text detected; (e)-(h) Finally detected text of 
our algorithm.                                                                                              

 

 
(a)                 (b)                  (c)                (d)               (e)               (f) 

Figure 8. Examples of failure cases. (a) Too much blur text; (b) False positive; (c) Text that is not clear; (d) Too small font; 
(e) Transparent text; (f) Too much curved text.                                                                       
 

 
 

 
 

 
Figure 9. Examples of curved text detection. Samples are taken from cute 80 dataset [26].                                   
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Table 1. Performance comparison of text detection algorithms.                                

Algorithm Precision Recall 

Our system 0.81 0.72 

Boris Epshtein [1] 0.73 0.60 

Hinnerk Becker 0.62 0.67 

Alex Chen 0.60 0.60 

Qiang Zhu 0.33 0.40 

Jisoo Kim 0.22 0.28 

Nobuo Ezaki 0.18 0.36 

Ashida 0.55 0.46 

HWDavid 0.44 0.46 

Wolf 0.30 0.44 

Todoran 0.19 0.18 

Full 0.1 0.06 

6. Conclusion 
In this paper we presented a new approach for text detection using fuzzy edge detection along with Stroke Width 
Transform (SWT). We first highlight the fuzzy detector output on the input image. It can be observed that the 
obscure, blurred, slanting, inclined texts are veraciously succoured by the fuzzy edge detector. Our fuzzy detec-
tor is evaluated based on the PSNR metric and is compared against the canny edge detector. We are comparing 
with canny edge detector because most of the algorithms use canny edge detector along with SWT. We then 
perform SWT technique on the image obtained from the fuzzy edge detector. We test our system on ICDAR 
2003 dataset. Our system was able to detect text in many exigent scenarios such as non-homogeneous back-
ground, shadowy & blurry images, and text with fancy font, slanting text, inclined text, non-horizontal text, 
curved text, fonts of varying size. Our system is evaluated along with precision, recall with the following me-
trics: character recall and word recall. We also tested our system on cute80 dataset. The dataset contains 80 im-
ages exclusively of curved text. For our system WR rate is 82% and CR is 63% which demonstrate good poten-
tial in detecting text from images. 
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