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Abstract 
This is a short review article in which we discuss and summarize the works of various researchers 
over past four decades on Zeeman topology and Zeeman-like topologies, which occur in special 
and general theory of relativity. We also discuss various properties and inter-relationship of these 
topologies. 
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1. Introduction 
In special as well as general theory of relativity, space-time models are usually taken as differentiable manifolds. 
The main reason for representing a space-time as a topological space which is also a differentiable manifold is 
that we need space-time to have a well-defined topological dimension and we can talk about curves and their 
tangent vectors, and neighbourhoods to develop a causal theory of space-time. This is achieved by assuming a 
pseudo-metric structure on a space-time manifold which enables us to define time-like, null and space-like 
vectors and corresponding curves. In general theory of relativity, metric also determines the geometry and cur- 
vature of space-time which represents the gravitational field. In special theory of relativity, Minkowski space M 
is usually given the topology of real 4-dimensional Euclidean space. 

According to Zeeman [1], this topology is not physically reasonable for two reasons: first, the 4-dimensional 
Euclidean topology is locally homogeneous, whereas Minkowski space M is not, because to every point in M, 
there is an associated light cone which separates space-like vectors from time-like vectors. Secondly, the group 
of all homeomorphisms of 4-dimensional Euclidean space is vast and is of no physical significance. So, he 
proposed a new topology for Minkowski space, which is now well-known as Zeeman topology. This is defined 
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as the finest topology on M which induces 3-dimensional Euclidean topology on every space axis and 1-dimen- 
sional Euclidean topology on every time axis. Zeeman proved that this topology has the following physically 
reasonable properties: Firstly, this topology is not locally homogeneous, and light cone through any point can be 
derived from the topology. Secondly, the group of all homeomorphisms of this topology is generated by the 
inhomogeneous Lorentz group and dilatations. 

Zeeman also proved that the topology on a light ray induced from this fine topology is discrete. This means 
that every function on the light cone is continuous, as every function will be continuous if the domain space has 
discrete topology. In quantum field theory also, we face similar difficulties regarding “real” space-time topology, 
where we talk frequently about continuous wave functions and fields, but we really do not know the meaning of 
that because “real” topology of space-time is unknown. However, studies have been dedicated to the topological 
properties of function spaces, such as spaces of quantum fields, but the study of proper space-time topology 
which is the most important space of all Physics, remains incomplete. Here, we need a topology in which known 
quantum quantities such as classical paths on which integrations are to be performed in Feynman’s formalism, 
or Green’s functions are continuous. We note that if a function is continuous on a space with topology T, it will 
be continuous in any refinement of T. 

We also note that Zeeman topology is a refinement of 4E M=  with 4-dimensional Euclidean topology, but 
a function which is continuous in Zeeman topology could be discontinuous in the Euclidean topology. Thus, the 
procedures by which physical quantities such as Green’s functions and S-matrix elements, defined on space-time, 
are transformed by, say, analytic continuation into analogous quantities on 4E , will put constraints on possible 
topologies on space-time. 

On mathematical side, M with Zeeman topology is not a normal topological space , as proved by Dossena [2] 
and hence it can not be a differentiable manifold, since, by definition, a differentiable manifold is Hausdorff and 
paracompact as a topological space, and hence normal. 

After Zeeman published his paper in 1967, it attracted attention of some of the relativists cum mathematicians 
and they proved a number of results which are refinements over Zeeman’s work. Modified results about 
Zeeman- and Zeeman-like topologies were published in the context of both special as well as general theory of 
relativity. Most remarkable are the results by S. Nanda [3]-[5], G. Williams [6], R. Göbel [7] [8], Hawking- 
King-McCarty [9], Malament [10] and Lindstrom [11] proved in 1970’s. S.G. Popvassilev [12] generalized 
some of these results to nR . Around 2005, researchers started gaining renewed interest in this field, and further 
interesting results were published by D.H. Kim [13], G. Dossena [2], G. Agrawal and S. Shrivastava [14] [15], 
G. Agrawal and Soami P. Sinha [16] and R. Low [17]. In fact R. Low extended the results of G. Agrawal and S. 
Shrivastava [14] to any dimension and also to general curved space-times. He used simpler arguments which do 
not require the use of Zeno sequences. We reproduce this proof for the sake of completeness. 

Since Zeeman topology and other fine topologies defined in special and general theory of relativity in above 
works have many interesting properties, we discuss these properties and also discuss inter-relationships among 
these topologies. Most important and remarkable of these results are the results proved by R. Göbel and G. 
Dossena. Göbel proved that the group of all homeomorphisms of a space-time of general relativity with 
Zeeman-like topology is the group of all homothetic transformations. And Dossena proved that the first homo- 
topy group of Zeeman topology for Minkowski space is non-trivial and contains uncountably many subgroups 
isomorphic to Z. In particular, this topology is not simply connected. Lindstrom generalized the results of Göbel 
and gave a sequence of Zeeman-like topologies which are in the ascending order of fineness.Thus, in Section 2, 
we describe Zeeman topology and other fine topologies on Minkowski space and discuss their properties. We 
also discuss t-topology, s-topology and A-topology introduced by Nanda [3]-[5] and studied in details by G. 
Agrawal and S. Shrivastava [14] [15]. In Section 3, we describe path topology of Hawking-King-McCarty 
(HKM topology), and improvements by Malament [10], Fullwood [18] and D.H. Kim [13]. We also discuss 
properties of HKM topology proved recently by R. Low. In Section 4, we describe the work of Göbel on 
Zeeman-like topologies defined on space-time of general relativity and discuss the results proved by him. We 
also remark on the work of other researchers, especially that by Lindstrom [11] and Mashford [19]. 

2. Zeeman- and Zeeman-Like Topologies on Minkowski Space 
2.1. Zeeman Topology 
We begin this section with definition of Zeeman topology as given in Dossena [2]. Let M denote 4-dimensional 
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Minkowski space-time and 0M  denote the associated 4-dimensional real vector space equipped with a non- 
degenerate symmetric bilinear form g of signature (−, +, +, +). In 0M , vector axes are either space-like 
hyperplanes passing through the origin or straight time-like lines passing through the origin. We denote by 0  
the set of vector axes, and the set 0p A+  with p M∈  and 0 0A ∈ , is an axis. We denote the set of axes by 
 . The Zeeman topology, denoted by Z, is by definition, the finest topology on M with the property that it 
induces the affine space natural topology on every axis. M endowed with Z is denoted by ZM . 

A set U is open in ZM  if and only if for every ,A U A∈ ∩  is open in EA . Here, EA  is the set A with 
natural topology i.e. Euclidean topology. As proved in Zeeman [1] and Dossena [2], the homeomorphism group 
of ZM  is generated by the Lorentz group, translations and dilatations.We denote this group by G. 

Physically speaking, the Zeeman topology MZ is defined as the finest topology on a space-time such that its 
induced topology on world lines of freely falling test particles with positive rest mass, and on space-like 
hypersurfaces, is locally Euclidean. Zeeman topology is not as nice as manifold topology, e.g. it is not a normal 
topological space. On the other hand it has many physically interesting properties: The Zeeman topology does 
not provide any geometric information along a light ray. Mathematically the topology induced by the Zeeman 
topology on a light cone is discrete. Secondly, there are many unphysical world lines, e.g. bad trips (cf Penrose 
[20]). 

2.2. t-Topology, s-Topology and A-Topology 
If we interpret continuity of a world line with respect to Zeeman topology, world lines are automatically phy- 
sically realistic, namely, piecewise geodesics which are future directed and time-like with finitely many edges. 
Hence a world line is the orbit of a freely falling test particle within the gravitational field with a finite number 
of collisions. This result is a well known basic assumption for a kinetic theory in general relativity (cf Ehlers 
[21]). 

Moreover if we allow the Zeeman topology to depend on a gravitational field as well as on the Maxwell field, 
it is possible to derive the corresponding result for charged particles as we discuss below. 

In addition to above discussion, we also note that the group of all homeomorphisms of a space-time with its 
manifold topology is neither of interest for physics nor for mathematics since it is vast and it reflects no 
information of space-time. However, the group of all homeomorphisms of a space-time M with respect to its 
Zeeman topology ZM  coincides with its group of all homothetic transformations, i.e. homeomorphisms are 
isometries or isometries upto a constant factor. Thus homeomorphisms are proper symmetry transformations of 
the space-time. As proved in Zeeman [1], for a Minkowski space, the homothetic transformations are Lorentz 
transformations or dilatations of Minkowski space. Hence the homeomorphism group of Minkowski space under 
Zeeman topology is its Weyl group, which is generated by Lorentz transformations and linear dilatations. 

After Zeeman published his paper in 1967, the first paper by other researcher on this topic was that of S. 
Nanda [3] in 1971 followed by another one in 1972 [4]. Nanda [3] proved one of the Zeeman’s conjecture that 
the group of homeomorphisms of the finest topology on Minkowski space which induces three dimensional 
Euclidean topology on every space-like plane is the group G. To prove this conjecture, Nanda, like Zeeman, 
studied chronology preserving and causality preserving mappings and used the notion of Zeno sequences. He 
defines two topologies, space topology and s-topology with a fine distinction that space topology is strictly finer 
than s-topology. We recall definitions of these topologies as it would facilitate us to understand other work on 
fine topologies and compare it with the work of Nanda and Zeeman. As noted above, the space topology on M is 
defined as the finest topology with respect to which the induced topology on every space-like hyperplane is 
Euclidean. Let SM  and EM  denote Minkowski space M equipped with space topology and Euclidean 
topology. Then space topology is finer than Euclidean topology and hence Hausdorff. 

Let ( ) 2 2 2 2
0 1 2 3Q x x x x x= − − −  where ( )0 1 2 3, , ,x x x x x M= ∈ . Then ( )Q x  denotes the Minkowski qua- 

dratic form. We denote by ( )NC x , ( )TC x  and ( )SC x  the following cones at x: 
Light cone or null cone at x : ( ) ( ){ }/ 0NC x y Q y x= − = , 

Time-like cone at ( ) ( ){ }: / or 0Tx C x y y x Q y x= = − > , 

Space-like cone at ( ) ( ){ }: / or 0Sx C x y y x Q y x= = − < . 
Let ( ) ( ) ( )NT N TC x C x C x= ∪ . 
Furthermore, let ( )EN x  denote Euclidean  -neighbourhood of x given by ( ) ( ){ }/ ,EN x y x yρ= <  , ρ  
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being the Euclidean metric, and let 
( ) ( ) ( )s E SN x N x C x= ∩  . 

Then the topology generated by the family ( ){ }/ 0sN x >   of local neighbourhoods at x which induces three 
dimensional Euclidean topology on every space-like hyperplane is s-topology as defined by Nanda, and we 
denote Minkowski space with this topology by Ms. Then SM  is strictly finer than sM . After proving a series 
of lemmas about chronology preserving homeomorphisms, Nanda [3] proves that the group of homeomorphisms 
of SM  is G. In the subsequent paper, Nanda [4] defines t-topology in a similar way: 

Let ( ) ( ) ( )t E TN x N x C x= ∩  . 
Then t-topology is defined as the topology which has the family ( ){ }/ 0tN x >   as a local base of neigh- 

bourhoods at each point x of M. M equipped with this topology is denoted by tM . In [4], Nanda proves another 
version of Zeeman’s conjecture, namely that the group of homeomorphisms of tM  is the group G (Theorem 1 
[4]). Furthermore, he also proves that the group of homeomorphisms of sM  is also group G (Theorem 2 [4]). 
If M and M ′  are Minkowski spaces, (or space-times of general relativity) then the mapping :f M M ′→  
with the property that both f and 1f −  preserve chronological order is known in the literature as chronal 
isomorphism (cf. P.S. Joshi [22]) Similarly, if both f and 1f −  preserve causal order, then f is called causal 
isomorphism or simply a causal map. Such maps are extensively studied in the literature as cone preserving 
mappings (see for example, Garcia-Parrado and Senovilla [23] and S. Janardhan and R.V. Saraykar [24], and 
references therein). 

Williams [6] studies other Zeeman-like topologies on the Minkowski space and derives homeomorphism 
groups for these topologies. We summarize below the results proved by Williams. It is interesting to note that 

1C  subgroup of homeomorphism group of some of these fine topologies is the same as G. 
Here EM  is M with natural topology as above and so are ( )NC x , ( )TC x  and ( )SC x . Let iFM  denote 

the set of finest topologies such that the restrictions of the identity mapping of EM  onto each iFM  to time- 
like and space-like lines are homeomorphisms. Williams proves that there is a unique such finest topology. M 
with this topology is denoted by FM . The fine topology FM  is defined as follows : 

Topology FM  is the topology on M generated by the local base of open neighbourhoods  
( ){ }, , 0FN x x M∈ >   at x. Here ( )EN x  is defined as 

( ) ( ) ( )F E STN x N x C x= ∩   where ( ) ( ) ( )ST S TC x C x C x= ∪ . 

He further proves that the group of homeomorphisms of MF is the conformal group of Minkowski space. This 
is in fact the group generated by the Lorentz group, translations and dilatations, and thus, it is the same as G. 

Williams further describes two more fine topologies for M and describes their homeomorphism groups. The 
first of these topologies is TM . A physically significant topology for M is the finest topology such that the 
restrictions of the identity mapping of EM  onto iFM  to time-like lines are homeomorphisms. In this topo- 
logy the relative topology along space-like lines is discrete. TM  is Minkowski space with this fine topology. 
Group of 1C -homeomorphisms of TM  is the conformal group which is again same as G. 

Following the argument in Nanda [3], though it can be proved that TM  is strictly finer than t-topology, 
homeomorphism groups of both these topologies are the same and their topological properties are also similar. 
Second of these topologies is LM . LM  is the unique finest topology such that the restrictions of the identity 
mapping of EM  onto LM  to straight lines are homeomorphisms. Also, there exists a unique such finest 
topology and that it is strictly finer than EM . It is weaker than the two previous topologies discussed here. The 
line sequence introduced here is however a Zeno sequence and any homeomorphic image of I must be piecewise 
linear. (Here I is the closed unit interval.) Thus the group of 1C  homeomorphisms of LM  does preserve 
straight lines and is thus a subgroup of the projective group on 4R . In fact, group of 1C -homeomorphisms of 

LM  is the projective group which is generated by full linear group and translations. Thus it coincides with 
homeomorphism group of EM . This work resembles the work of S. Nanda [3]-[5]. In fact, in the third paper 
[5], Nanda defines yet another fine topology on the Minkowski space, called A-topology and derives its 
homeomorphism group. He also compares his results with those of Williams. The A-topology is defined as 
follows: 

Definition 2.1. A-topology: The A-topology on M is defined to be the finest topology on M with respect to 
which the induced topology on every time-like line and light-like line is one-dimensional Euclidean and the in- 
duced topology on every space-like hyperplane is three-dimensional Euclidean. 
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Thus A-topology is strictly finer than the Euclidean topology. 

2.3. Williams MF Topology and Other Topologies 
The topology FM  suggested by Williams on Minkowski space is characterized by the property that the in- 
duced topology on time-like and space-like lines is Euclidean and that it is the finest such topology on M having 
this property. This topology differs significantly from the A-topology (or from Zeeman’s fine topology) in its 
group of homeomorphisms. Williams has proved that the 1C -subgroup of homeomorphisms of this topology is 
G. Without the 1C -condition, the result may not be valid. Nanda proves, by using Zeno sequence method, that 
the group of homeomorphisms of A-topology is also same as G. Furthermore, as remarked by Nanda [5], if 

: Ff I M→  is a continuous map, then ( )f I  is a connected union of time-like and (or) space-like intervals. 
This is in contrast with the result for A-topology where ( )f I  is a connected union of finite number of time- 
like and (or) null intervals. If, however, f is assumed to be order-preserving, then it follows that ( )f I  is a 
connected union of time-like intervals representing the path of an inertial particle under a finite number of colli- 
sions. This excludes the path of photons. Thus A-topology is significantly different from William’s topology in 
this respect. 

Popvassilev [12] generalized the concept of Zeeman-like fine topologies to nR  and proved that these 
topologies are non-regular. Since these topologies are Hausdorff, it follows that they are not normal. This pro- 
perty was proved by Dossena [2] in a different way by using Urysohn Lemma. 

S. Nanda and H.K. Panda [25] define yet another topology on Minkowski space. This is a non-Euclidean 
topology, namely order topology generated by the positive cone at origin and its translates. They prove that it is 
non-compact, non-Hausdorff but path-wise connected. Moreover, it has the property that every loop based at a 
point is homotopic to the constant loop at that point. Thus, this topology is simply-connected. This is contrary to 
the non-simply connected nature of ZM , tM  and sM . 

2.4. Contributions by Dossena, Agrawal and Shrivastava 
We now discuss the work of Dossena [2] and G. Agrawal and S. Shrivastava [14] [15] where many interesting 
topological properties of ZM , tM  and sM  have been proved, including non-simply connectedness when 
restricted to two dimensional Minkowski space. 

As defined in the begining of this section, Dossena presents Zeeman topology ZM  in the language of affine 
spaces and proves that Zeeman topology is separable, non-first countable and non-trivial. We discuss below the 
results proved by Dossena in some details, especially for two dimensional Minkowski space. 

For two dimensional Minkowski space with topologies EM  and ZM , Dossena gives characterization of 
the sets MΣ ⊆  on which EM  and ZM  induce the same topology. i.e. E ZM MΣ∩ = Σ∩ . To prove this, 
he uses the concept of Zeno sequences. Furthermore, in this two dimensional case, he gives characterization of 
compact subsets of ZM . We summarize these results below: 

Lemma 2.1. A compact subset of ZM  is compact in EM . 
Lemma 2.2. Let X be a Hausdorff topological space and let ( )n n N

x
∈

 be a sequence of distinct points of X 
converging to x. Then x is the unique limit point for the set { }n n N

x
∈

. In particular, every jx  is an isolated point 
for { }n n N

x
∈

. 
Lemma 2.3. Every Zeno sequence admits a subsequence whose image is a non closed, discrete subset of 
EM , closed in ZM . 

Theorem 2.4. A compact subset K of ZM  contains no images of Zeno sequences. 
This is true for A-topology also, as proved by Nanda [5]. 
Theorem 2.5. For a subset K M⊂ , the following are equivalent: 
1) K is compact in ZM . 
2) K is compact in EM  and contains no completed images of Zeno sequences. 
3) K is covered by a finite family ( ) 1, ,j j J

A
= 

 of axes such that for each 1, ,j J=   the set jA K∩  is 
compact in E

jA . 
We now discuss countability properties of ZM . 
We choose an orthonormal frame of reference ( )( )0, ,

, i i k
o e

= 

. Then every p M∈  is identified by its coor-  
dinates { }

0, ,

i

i k
p

= 

, such that 0
k i

iip o p e
=

= +∑ . 
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Clearly EM  is separable (so are all finite-dimensional affine spaces endowed with their natural topology). A 
countable dense subset Q of EM  can be constructed by choosing an orthonormal frame of reference and 
defining Q as the set of points in M with rational coordinates. 

Then we have the following proposition: 
Proposition 2.6. For every orthonormal frame of reference, the above-mentioned set Q is also dense in ZM . 

Thus ZM  is separable. 
Corollary 2.7. The cardinality of the set ( ),ZM R  of all real continuous functions on ZM  is at most 

equal to 02χ , where 0χ  is the cardinality of Natural numbers. 
Proposition 2.8. ZM  is not first countable at any point. 
Zeeman [1] has sketched the proof of the result that ZM  is not normal. As noted earlier, Dossena gives 

another proof of the same result using Urysohn lemma. Thus, we have: 
Theorem 2.9. ZM  is not normal and hence not metrizable. 
For a path-connected topological space X, ( )1 Xπ  denotes the fundamental group or first homotopy group of 

X. The following is the most remarkable result proved by Dossena: 
Theorem 2.10. ( )1

ZMπ  is nontrivial and possesses uncountably many subgroups isomorphic to Z. In 
particular, ZM  is not simply connected. For details of proofs we refer the reader to Dosssena [2]. 

A topological study of the n-dimensional Minkowski space, nM , with t-topology, denoted by tM , has been 
carried out by G. Agrawal and S. Shrivastava [14]. Path-topology defined by Hawking, King and Mc Carthy [9] 
on a space-time of general relativity will be discussed in Section 3. If we restrict this topology to four dimen- 
sional Minkowski space, then it comes out to be identical with t-topology. Non-simply connectedness of tM , 
compact sets of tM , and subsets of M that have the same subspace topologies induced from the Euclidean and 
t-topologies are also discussed in this paper. 

t-topology for four dimensional Minkowski space has been defined above. Similar definition follows for nM  
also. Thus U M⊂  is open with respect to t-topology if and only if for each x U∈  there exists some ( )tN x  
such that ( )tN x U⊂ . 

It thus follows that ( )EN x  and ( )tN x  are open in M with t-topology, ( )EN x  is open in M with Eucli-  
dean topology, while ( )tN x  is not open in M with Euclidean topology. Hence ( ){ }/ , 0tN x x M∈ >   is a  

basis for the t-topology and the t-topology is strictly finer than the Euclidean topology on M. 
s-topology can be defined similarly on nR . 
Summarizing, we have the following: 
The collection ( ){ }/ , 0tN x x M∈ >   being a basis for the path topology on four-dimensional Minkowski 

space, the path topology on four-dimensional Minkowski space is same as the t-topology. It thus follows that the 
four-dimensional Minkowski space with t-topology is Hausdorff, path connected, separable, first countable, not 
second countable, not countably compact, not Lindelof, not regular, not normal and hence is not compact, not 
locally compact, not paracompact, not mertizable, and not locally n-Euclidean. 

2.5. Other Works 
Other works on Zeeman-like topologies include that of Struchiner and Rosa [26] and Domiaty [27] [28]: 

Struchiner and Rosa [26] study Zeeman topology in Kaluza-Klein and Gauge theories. They generalize the 
notion of Zeeman topology by using the projection theorem of Kaluza-Klein theories, and this remains valid for 
any gauge fields. Here, the authors consider differential geometric frame work of fiber bundles and define Zee- 
man topology in the total space of fiber bundle. From this, they obtain a topology in the base manifold for which 
the continuous curves correspond to motions of charged particles in the base manifold. It would be interesting to 
see the generalizations of typical gauge theoretical ideas when the space-time has such a topology. 

Domiaty [27] [28] considers yet another topology on Lorentz manifolds. This topology is in a certain sense 
the space-like version of an analogous result for the Hawking-King-McCarthy path topology which has been 
discussed below. The space topology is the finest topology on a Lorentz manifold, which induces the manifold 
topology on every space-like hypersurface. As proved in these papers, its geometric significance comes from the 
fact that its full homeomorphism group is the group of all conformal diffeomorphisms.  

Finally, we remark that even though Zeeman topology on Minkowski space has several advantages over the 
standard topology, it has some drawbacks also. These are as follows: 

1) A three dimensional section of simultaneity has no meaning in terms of physically possible experiments. 
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Also, the use of straight time like lines in defining ZM  suggests that ZM  from the beginning has been 
equipped with information involving inertial observers, so that occurrence of linear structure is not surprising.  

2) The isometry and conformal groups of ZM  are physically significant but same thing is not clear about 
homothecy group of ZM . 

3) The set of ZM -continuous paths does not incorporate accelerating particles moving under forces in 
curved lines. 

4) ZM  is not first countable and hence it is difficult to handle. 
Keeping these drawbacks in mind, Hawking, King and Mc Carthy [9] defined another topology called path 

topology on a space-time of general relativity. We now discuss, below, this topology and its properties. We also 
discuss other related topologies as studied by Kim [13] and Low [17] and their inter-relationships with HKM 
topology. 

3. Path Topology of Hawking, King and Mc Carthy (HKM) and Other Related  
Topologies 

Here, we consider a space-time of general relativity which is assumed to be connected, Hausdorff, paracompact, 
C∞  real four-dimensional manifold V without boundary, with a C∞ -Lorentz metric and associated pseudo- 
Riemannian connection. V is also assumed to be time-orientable i.e. V admits a non-vanishing time-like vector 
field. 

The path topology   of V is defined as follows: 
  is the finest topology satisfying the requirement that the induced topology on every time-like curve 

coincides with the topology induced from  , where   is the given manifold topology on V. 
Thus if a set E V⊂  is  -open, for every time-like curve γ , there is an O∈  with E Oγ γ∩ = ∩ . 

Conversely, if E satisfies this condition, it is  -open and   is the largest collection of such sets. Obviously, 
if O∈ , then O∈ . 

HKM show that   is strictly finer than  , but however   is not comparable to Zeeman topology. 
Let ( )pT V  denote the tangent space of p V∈  and ( ): pexp T V V→  be the exponential mapping. Then 

there is an open neighbourhood N of the origin of ( )pT V  such that ( )U exp N=  is an open convex neigh- 
bourhood of p V∈ . Let 0>  be sufficiently small so that the Euclidean open ball B of radius  , with centre 
at origin, is contained in N. Then ( ) ( ),uB p exp B= . For any open set V, define  
( ) ( ) ( ), , , ,C p V I p V I p V+ −= ∪  ( ) ( ) { }, ,K p V C p V p= ∪  and for an open convex normal neighbourhood U 

of p, define ( ) ( ) ( ), , ,u uL p B p K p U= ∩  . ( ( ),uB p expB= ). Then we have the following : 
Proposition 3.1. Sets of the form ( ) ( ), ,K p K p U  and ( ),uL p   are  -open. 

( ),K p U  is not open in the manifold topology   because ( ),p K p U∈  has no  -nbd contained in 
( ),K p U . Thus   is strictly finer than  . 
Theorem 3.2. ( ),uL p   forms a basis for the topology  . 
This property has no analogue in the finer topologies  .  -continuous paths are characterized as follows: 
Theorem 3.3. A path : F Vγ →  is  -continuous if and only if it is a Feynman Path. 
Theorem 3.4.   is first countable and separable.   is Hausdorff, path connected and locally path con- 

nected and hence locally connected. However,   is not regular, normal, locally compact or paracompact. 
Furthermore, HKM determine the group of  -homeomorphisms and prove that it is the group of smooth 

conformal diffeomorphisms. 
To begin with, they prove the following: 
Proposition 3.5.  -homeomorphisms h take time-like curves to time-like curves. 
This has been proved for strongly causal space-times. It is done by singling out a subclass of  -continuous 

curves which coincides with time-like curves.  
After proving a series of results, HKM prove the following important theorem: 
Theorem 3.6. A  -homeomorphism h is a smooth conformal diffeomorphism. This leads to the description 

of  -homeomorphisms of M. 
Theorem 3.7. The group of  -homeomorphisms of M coincides with the group of smooth conformal diffe- 

omorphisms of M. 
Finally, HKM give an example of a manifold for which the group of smooth conformal diffeomorphisms is 

strictly larger than the homothecy group. We note here that for Minkowski space, the two groups are equal. 



R. Saraykar, S. Janardhan 
 

 
634 

For more details and proofs, we refer the reader to HKM [9]. 
Malament [10] improved the results of [9] in the sense that the condition of strong causality is no longer 

necessary. We now discuss briefly the work of Malament [10]: 
Main result of this paper is the following: 
Suppose we consider two space-times ( ),V g  and ( ),V g′ ′  and a bijection :f V V ′→ , where both f and 
1f −  preserve continuous time-like curves. This means, if : I Vγ →  is a continuous time-like curve in ( ),V g  

then :f I Vγ ′→  is a continuous time-like curve in ( ),V g′ ′ . Similar condition holds for 1f − . Then f must 
be homeomorphism. Thus the class of continuous time-like curves in a space-time determines its topology. By 
Hawking’s theorem, f will then be a smooth conformal isometry. 

Brief summary of the proof is as follows: 
If f preserves all continuous curves, then f would be continuous. Given any sequence { }np  converging to p, 

one could find a continuous curve “threading” all the np  in sequence and then p. Its image would have to be a 
continuous curve threading all the ( )nf p  in sequence and then ( )f p . Hence { }( )nf p  would converge to 
( )f p . Under the hypotheses under consideration, this construction can only be applied to sequence { }np  

which converge chronologically to p. The problem is with those sequences { }np  which converge to p but are 
locally space-like related to p. 

The idea to overcome this difficulty is as follows: 
To show that f is continuous at p, one proves that one may assume that f is continuous over a `nice-looking’ 

region near p. Then one uses continuous null geodesic segments in this region to characterize the convergence of 
points to p. This then leads one to the required result because continuous null geodesics in this region are 
necessarily preserved by f. For technical details, we refer the reader to Malament [10]. HKM-topology is an 
improvement over Zeeman topologies in the sense that it removes many unpleasant features of those topologies. 

Fullwood [18] modified the HKM topology and defined a new topology   as follows : 
q p  if and only if ( )q I p+∈ . Then ( )p I q−∈  and p q . We denote ( ) ( )I q I q+ −∪  by ( )I q . 

Then, define ( ) ( ) ( ) { }, ,p q r I p I q I r q+ −= ∩ ∩ ∪  for p q r   in V. 
Now, let { }: , , for some inB B p q r p q r V= =   . 
Then,   forms a base for a topology which is denoted by  . 
Fullwood proves that if the space-time V is future and past distinguishing, then the topology   coincides 

with HKM  -topology. More precisely, he proves the following theorem: 
Theorem 3.8. The following three conditions are equivalent upon a space-time manifold:  
1) =   i.e., the topology   is equivalent to the Path topology; 2) the distinguishing condition holds on 

V, and 3) V is  -Hausdorff. 
Do-Hyung Kim [13] proved that the path topology of Hawking, King, and McCarthy can be extended to the 

causal completion of a globally hyperbolic Lorentzian manifold. The suggested topology   is defined only in 
terms of chronological structures and   is finer than the extended Alexandrov topology denoted by  . It is 
also shown that a  -homeomorphism induces a conformal isomorphism and a homeomorphism in  . Let V  
denote causal completion of V. Then   is defined on V  as follows: 

Definition 3.1. U V⊂  is  -closed if every time-like sequence that converges has a limit in U and 
W V⊂  is  -open if its complement is  -closed. 

Proposition 3.9. The above family of open sets define a new topology   on V . 
Proposition 3.10. The topology   on V  is finer than the extended Alexandrov topology   on V . 
Since   is finer than   and   is Hausdorff, it can be concluded that   is a Hausdorff topology on 

V . 
Corollary 3.11. ( )I γ−  is also an end point of a time-like curve ( ): ,a b Vγ →  in  -topology. 
The construction of  -topology on the causal completion extends the  -topology on V by use of the se- 

quential convergence. 
Furthermore, Kim studies homeomorphisms with respect to topology  . To understand the results in this 

direction, let V and N be two space-times and let V  and N  be their causal completions. Then we have the 
following definition: 

Definition 3.2. A bijection :f V N→  is a chronological isomorphism if ( ) ( )x y f x f y⇔   and 
antichronological isomorphism if ( ) ( )x y f y f x⇔  . Likewise, a bijection :f V N→  is a causal 
isomorphism if ( ) ( )x y f x f y≤ ⇔ ≤  and anticausal isomorphism if ( ) ( )x y f y f x≤ ⇔ ≤ . A bijection 
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:f V N→  is a conformal isomorphism if f is both (anti) chronological isomorphism and (anti) causal 
isomorphism. In a Lorentzian manifold, it is known that the causal isomorphism and the chronological isomor- 
phism are equivalent. The topology   is defined only in terms of chronological relations and so any chro- 
nological isomorphism :f V N→  induces a  -homeomorphism. The chronological isomorphism has the 
same effects on the  -topology.We also have the following: 

Proposition 3.12. If V and N are globally hyperbolic and :f V N→  is either a chronological isomorphism 
or an antichronological isomorphism, then f is an  -homeomorphism. 

Theorem 3.13. If :f V N→  is a  -homeomorphism, then f is either a chronological isomorphism or an 
antichronological isomorphism. 

Theorem 3.14. If :f V N→  is a  -homeomorphism, then f is a conformal isomorphism. 
Since   is finer than  , by combining proposition 3.8 and theorem 3.9, we have the following theorem. 
Theorem 3.15. A  -homeomorphism induces an  -homeomorphism. 
Also if :f V N→  is a  -homeomorphism, then f is a conformal isomorphism. If, in addition, both V and 

N are strongly causal, the manifold topologies are the same as the Alexandrov topologies since the Alexandrov 
topology is defined only in terms of a chronological relation. In other words, a  -homeomorphism induces an 
 -homeomorphism. By the above theorem, this is indeed the case in the path topology of the causal completion. 
Thus, the extended Alexandrov topology is natural to the causal completion. The  -topology mentioned here 
is that defined in Fullwood [18], and the causal completion of space-times mentioned in the discussion above is 
in the sense of Budic and Sachs [29]. 

Such bijective mappings have also been studied by Domiaty [27] [28]. These mappings are defined in such a 
manner that they leave the class of space-like paths invariant. Homeomorphisms with respect to S-topology 
defined by Nanda [4] are called S-homeomorphisms. Domiaty proved that if ( ),V g  and ( ),V g′ ′  are Lorentz 
manifolds and if :f V V ′→  is a bijection, then f is a S-homeomorphism if and only if f and 1f −  preserve 
space-like paths. Furthermore, after proving a series of lemmas, he proves that if f and 1f −  preserve space-like 
paths,then f is a manifold-homeomorphism (V-homeomorphism). There is a substantial literature on causality- 
preserving maps (causal maps) or cone-preserving maps in special as well as general theory of relativity. See, 
for example, a review article by Sujatha Janardhan and R.V. Saraykar [24] and references therein. If we denote 
homeomorphisms with respect to path-topology (HKM-topology) by  -homeomorphisms, then every S- 
homeomorphism is a  -homeomorphism. Since (ref. Kim [13]) a  -homeomorphism is a smooth conformal 
diffeomorphism, it follows, by combining results of Domiaty and Kim, that every S-homeomorphism is also a 
smooth conformal diffeomorphism. (This has been noted by Domiaty [27] [28] Theorem 2.) This result im- 
proves the result by Göbel [7] which was proved for strongly causal Lorentz manifolds. 

More recently Huang [30] proved the result: Let ( ),V g  be a strongly causal space-time, dim 3V ≥ . Let 
:f V V→  be a bijection such that images and pre-images of null geodesics (as point sets) are null geodesics. 

Then f is a homeomorphism and hence by Hawking’s theorem, a conformal transformation. This generalizes the 
result proved by Jan Peleska [31]. Define a local distance function on convex normal neighbourhoods by 
( ) ( )1 1, ,p pp q g exp q exp qφ − −=  Then every homeomorphism f which locally preserves these functions is an 

isometry. If ( ),V g  has indefinite signature and f locally preserves distance zero, then it is a conformal 
diffeomorphism. 

The physical meaning of the condition used in this theorem is that images and pre-images of paths which 
photons travel between emission and absorption should again be such paths. 

Coming to the topological properties of Zeeman-like topologies on Minkowski space M again, we note the 
Theorem proved by Dossena, namely, two dimensional Minkowski space is not simply connected. Its first 
homotopy group contains uncountably many subgroups isomorphic to Z.G. Agrawal and S. Shrivastava [13] 
proved similar result for t-topology. Both these proofs use the notion of Zeno sequences introduced by Zeeman. 
Robert Low [17] recently gave a proof for the same result for n-dimensional Minkowski space with Zeeman 
topology without using Zeno sequences. For the sake of completeness, we reproduce the proof of this important 
theorem below. 

Theorem 3.16. A space-time V, equipped with the path topology is not simply connected or locally simply 
connected. Furthermore, no two closed continuous curves in V with distinct images are homotopic. 

Proof: Let 1c  and 2c  be curves in V with distinct images, let :h I I V× →  such that ( )0,.h  is 1c  and 
( )1,.h  is 2c , and let T be some time-like two-plane and π  be the associated projection such that the pro- 

jections of 1c  and 2c  to T are distinct. Now neither of 1ocπ  nor 2ocπ  can be space-filling, for then we 
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already have an open set in T containing infinitely many points in some space-like surface and in the image of 
ohπ . R. Low then considers the intersection of this open set with some surface of constant time and argues to 

conclude that there must be some point x in T round which 1c  and 2c  have different winding numbers. Since 
1c  and 2c  are closed curves in T, x has an open neighbourhood in T which lies in the image of ohπ , and 

again we obtain a contradiction. Hence, if 1c  and 2c  are closed continuous maps from 1S  to V with distinct 
images, then 1c  and 2c  are not homotopic in the path topology. Moreover the fundamental group of V with 
the path topology is as large as possible, since two continuous loops are only homotopic if one is a re-para- 
meterisation of the other. Also, the above result is true in case of a general Lorentz manifold. The general 
space-time V can be embeded in a pseudo-Euclidean space of appropriate dimension, and arguing as above, by 
projecting to some suitable time-like plane in the pseudo-Euclidean space, we can obtain the same result. 

Here, it will not be out of place to mention that Sorkin and Woolgar [32] introduced the concept of K- 
causality with the aim that it should be possible to derive the causal structure from order relation and topological 
structure. Some results in this direction were proved by S. Janardhan and R.V. Saraykar [33]. Later, after a good 
deal of efforts, Minguzzi [34] proved that Stable causality is equivalent to K-causality. In the description of 
path-topology above, if analogously, if we replace a time-like curve by a K-causal curve which is compact, 
connected and linearly ordered, then we can define K-causal topology on V , denoted by   as follows: 

We specify closed sets of   as follows: 
F  is a  -closed subset of V if F Fγ γ∩ = ∩  for some closed F V⊆ , in the manifold topology and   

is the finest such topology. If F is closed in V, with respect to  , then F is closed with respect to   also. 
Thus   is finer than  . For a detailed discussion of K-causal curves in K-causal space-time, we refer the 
reader to S. Janardhan and R.V. Saraykar [31] and Minguzzi [32] and references therein. 

4. Zeeman-Like Topologies in General Relativity 
In this section, we describe and discuss the work of Göbel [7] [8], Lindstrom [11] and others on Zeeman-like 
topologies defined on a space-time of general relativity. In particular, Göbel [7] has proved the result that two 
space-times are homeomorphic with respect to its Zeeman topology if and only if they are isometric. This shows 
that it is possible to determine the metric of a space-time from its Zeeman topology. 

We start with definitions of Zeeman topologies as given by Göbel [7] and discuss their main properties. 
Let ( ),V   denote a differentiable manifold with an underlying manifold topology  . The most general 

setting for Zeeman topologies is the following: 
Let Σ  be a set of subsets of V. Then a subset X V⊂  belongs to ( ),Z Z= Σ   iff X Y∩  is open within 

the topological space ( ), YY Y=   with its induced topology Y , for all Y ∈Σ . -------(  )  
Then ( ),V Z  is the space V provided with the Zeeman topology ( ),Z Z= Σ   generated by ( ),Σ  . Thus 

the topology Z is the finest topology   on V such that Y Y=   for all Y ∈Σ . 
On Minkowski space this topology coincides with the topology Z defined by Zeeman mentioned above, for 

two specially chosen systems Σ  which are significant for special relativity. Since  -open subset of V always 
satisfies condition (  ), Z is always finer than  . 

Further Göbel defines a Special system ( ),Σ = Γ ∆  of V as follows: 
( ),Σ = Γ ∆  is called a special system of V if there is a locally finite covering   of V by neighbourhoods U, 

such that UU∈
Γ = Γ
 

 and UU∈
∆ = ∆
 

 where { }/U X X UΓ = ∈Γ ⊂  and { }/U X X U∆ = ∈∆ ⊆  have 
the following properties: 

1) If X ∈Σ = Γ∪∆ , then X is a closed subset of V. 
2) If ,U VX Y∈Γ ∈Γ  and X Y∩ = ∞  then X V Y U∩ = ∩  for all ,U V ∈ . (Here A  denotes car- 

dinality of A)  
3) If ,p q U∈ ∈  and ( ) { }, / ,U Up q X p q XΓ = ∈Γ ∈  is infinite, then p q= . 
4) We have 1X Y∩ ≤  for all X ∈Γ  and Y ∈∆ . -------------(   ) 
With this definition, the following results follow: 
Proposition 4.1. Let Σ  be a special system of V and [ ]: 0,1f V→  be a 1-1 map which is Γ -directed at 

[ ]( )0,1p f∈ . Then f is a piecewise Γ -curve at p if f is continuous at p with respect to the Zeeman topology Z. 
(A curve f is called Γ -directed at [ ]( )0,1p f∈  if there is a neighbourhood U of p defined by (   ) such  

that if [ ]( )0,1p q U f≠ ∈ ∩ , then ( ),U p q φΓ ≠ . f is called a piecewise Γ -curve at ( )p f a=  if there are  
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,b c  with 0 1b a c≤ < < ≤  such that [ ]( ),f b a X⊆  and [ ]( ),f a c Y⊆  for some , UX Y ∈Γ ). 
Proposition 4.2. If Σ  is a special system of V and f is a Z-continuous curve which is Γ -directed at each 

point [ ]( )0,1p f∈ , then f is a piecewise Γ -curve. 
This implies the following: 
Proposition 4.3. For a manifold ( ),V   with an affine connection, following two statements are equivalent: 
1) the curve f is a piecewise geodesic i.e. f is a broken geodesic line with a finite number of edges. 
2) the 1-1 map [ ]: 0,1f V→  is continuous with respect to the Zeeman topology Z. 
Göbel then restricts Zeeman topology on a space-time and studies Zeeman topology by incorporating 

electromagnetic fields. To state the results proved by Göbel in this situation, we need to understand certain 
notations: 

Let V denote a space-time for general relativity and F be a given electromagnetic field on V. An electric 
charge pq  of a test particle p has its absolute value bounded by a number depending on F, and mass pm  of 
this particle ( 0pm > ) is bounded by a number depending on the gravitational field. Since the charge-spectrum 
Q and mass spectrum W are discrete, there are finitely many possible values pq Q∈  and pm W∈  for test 
par- ticles p. We assume the presence of charge free test particles so that O Q∈ . If Q = 0, we allow the mass 
spectrum W to be arbitrarily 0> . Under these conditions, there are covering   and   which are locally 
finite, so that there are only finitely many world lines of freely falling test particles in U ∈  from p U∈  to 
q U∈  if p q≠ . For U ∈ , let m

qUΓ  be the set of all world lines of freely falling test particles and let U∆  
be all closed space-like 1C -hypersurfaces of V . (Here W ∈  such that there is one and only one 
( )U W ∈  which contains the closure W  of W.) The corresponding system W

QΣ  is then a special system of 
W. Then the following result holds: 

Proposition 4.4. If V is a space-time with a given external electro-magnetic field F and a world line f, the 
following statements are equivalent:  

1) f is continuous with respect to the Zeeman topology ( ),W
QZ Σ  . 

2) f is a chain of finitely many connected world lines of freely falling charged test particles. 
If F = 0, then Z-continuous world lines are future directed time-like piecewise geodesic lines. For simplicity, 

we denote ( ),W
QZ Σ   by RZ . Then open sets with respect to RZ  are described as follows: 

A subset Y of V is open with respect to RZ  iff Y U∩  is open in ( ), UU   for the following subsets U of 
V: 

(I) U is an arbitrary closed space-like hypersurface contained in a simple region of V. 
(II) U is the world line of an arbitrary charged test particle p freely falling in the gravitational and the electro- 

magnetic field within a simple region of V. 
If Q = 0, then condition (II) is equivalent to  
(II)’ U is an arbitrary time-like geodesic in a simple region of V.  
If U is a simple neighbourhood of p then let ( ) ( )( ) { }* \ UU p U p p= ∪ . 

Lemma 4.5. The set ( )*U p  defined above is a ( ),W
QZ τ∑ -neighbourhood of p. 

Göbel then proves an important result that 
Proposition 4.6. The topology induced by RZ  on a light cone is discrete. 
Thus we do not have any geometric information along a light ray. 
The main theorem of Göbel [7] is the following (which he proves in the last section of his paper). 
Theorem 4.7. Let h be a mapping from space-time V onto a space-time V ′ . The following are equivalent: 
1) h is a homeomorphism with respect to Zeeman topology Z.  
2) h is a homothetic transformation. 
Unusual property of Zeeman topology is that homeomorphism characteristic of h implies its differentiability 

as well as its “linearity”, since h is an isometric map “up to scaling”. Thus we can state this property in the 
following forms: 

Theorem 4.8. The space-times V and V ′  are homeomorphic with respect to Zeeman topology if and only if 
they are isometric (up to a constant positive factor). 

Theorem 4.9. The group of all homeomorphisms with respect to the Zeeman topology coincides with the 
group of all homothetic transformations of space-time V onto itself. 

Thus Zeeman topology contains all information about the metric. 
We again note here that (locally) causal maps defined by Göbel [7] in Section 2 and described in Section 5 are 
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similar to causal maps of García-Parrado and Senovilla [23], and subsequently similar to K-causal maps des- 
cribed and studied by Sujatha Janardhan and R.V. Saraykar [31]. 

As far as Minkowski space-time is concerned, Zeeman [1] has suggested other topologies on it. Göbel gene- 
ralized some of the results which hold for these topologies. Following remarks are in order about these topo- 
logies: 

Remark 1. The topology 1Z  defined by Zeeman is now well-known as t-topology studied by Nanda [4]. The 
induced topology on any space axis is discrete. Under this topology, Göbel has generalized this result as 
follows: 

Theorem 4.10. Let ( )1: ,f I V Z→  be a continuous map of the unit interval I into V (endowed with 1Z - 
topology). If f is strictly order preserving, i.e. x y<  implies ( ) ( )f x f y<  (i.e. the vector ( ) ( )f y f x−  is 
time like), then the image ( )f I  is a piecewise linear path, consisting of a number of intervals along time axis.  

Further, this topology has a physically attractive feature as follows: 
If :f I V→  be an embedding (not necessarily order preserving), then ( )f I  is a piecewise linear path 

along time axes, zig-zagging with respect to time orientation like the Feynman track of an electron. 
Hawking, King and Mc Carthy [9] has defined Feynman path mathematically precisely as follows:  
Let ( ),K p U  denote ( ) ( ) { }, ,I p U I p U p+ −∪ ∪  where U denotes an open convex normal neighbourhood 

of p. A path : I Vγ →  is a Feynman path if γ  is continuous and for each 0t I∈ , there is an open connected 
neighbourhood U of 0t , and an open convex normal neighbourhood U of ( )0p tγ=  such that  
( ) ( ),U K p Uγ ⊆ . 
A locally one-one Feynman path is then a Feynman track mentioned above. 
Let G denote the group of automorphisms of V given by  
1) the Lorentz group of all linear maps leaving quadratic form Q invariant  
2) translations and  
3) dilatations. 
Every element of G either preserves or reverses the partial ordering “<” mentioned above. These features have 

been studied in details by Nanda, Dossena and Kim. 
Remark 2. The topology 2Z  defined by Zeeman is well-known as s-topology studied by Nanda [3] [4]. The 

induced topology on any time axis is discrete. Homeomorphism group of this topology was determined by 
Nanda thus proving another version of Zeeman conjecture. Topological properties of t-topology and s-topology 
have been studied by G. Agrawal and S. Shrivastava [14] [15] as mentioned in Section 2. 

Remark 3. The topology 3Z  defined by Zeeman is same as Williams Topology FM . As proved by 
Williams [6], this topology possesses the following properties: 

1) It is not locally homogeneous and the light cone through any point can be deduced from it. 
2) The group of all homeomorphisms with respect to 3Z  is generated by inhomogeneous Lorentz group and 

dilatations. 
3) It induces the 3-dimensional Euclidean topology on every space axis and the 1-dimensional Euclidean 

topology on every time axis. 
For the proof of these properties, we refer the reader to Williams [6] and Zeeman [1]. However, this topology 

does not satisfy the theorem mentioned above. Nevertheless, the group of homeomorphisms of ( )3,V Z  is G. 
Thus although ( )3,V Z  has a countable base of neighbourhoods for each point, it is physically less attractive 
than Z. Such topologies can also be described on a general space-time following Göbel’s method. 

Ulf Lindstrom [11] re-examined the separating topology studied in earlier works. Using methods and ideas in 
papers by Göbel, Hawking, King and McCarthy, he introduced a new class of topologies { }nmS . The topology 
{ }nmS  is the finest which induces Euclidean topology on time-like nC - and space-like mC -curves. A relation 
between { }nmS  and some topologies studied by Göbel is derived—For an arbitrary space-time the group of 
homeomorphisms is shown to be the smooth conformal diffeomorphism group. The restriction to strongly causal 
space-times employed in earlier work is no longer necessary. We note that Lindstrom topology reduces to 
Williams 1C  topology FM  for 1m n= =  on Minkowski space. Group of 1C  homeomorphisms is 1C  
conformal diffeomorphisms as noted in Section 2. 

Finally, we add a comment about the work of Mashford [19]: As is well-known, a space-time in the general 
theory of relativity is a Lorentz manifold modeled on 4-dimensional Euclidean space, which is locally a Min- 
kowski space. Mashford [19] constructs a tangent bundle whose base space is not a Lorentz manifold, but is a 
set Y of events which is equipped with an acyclic signal relation ~→  and the ~→  structure of Y is locally 
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that of Minkowski space with Zeeman topology. Moreover, the piecing together maps are smooth in an appro- 
priate sense. The parent space E is the tangent bundle TY of Y. Mashford then proves that this bundle has, as 
structure group, the group of linear causal automorphisms of Minkowski space, which coincides with the group 
G of Lorentz transformations along with translations and dilatations which has been discussed in Section 2. 

5. Conclusions 
In this article, we have given a short review of Zeeman- and Zeeman-like fine topologies on Minkowski space 
and space-time of general relativity. We have avoided giving detailed proofs of the results mentioned, otherwise 
the article would have become lengthy. To the best of our knowledge, we have reviewed most of the research 
work which appeared on this topic since the first paper was published by Zeeman in 1967. To get a consolidated 
view about definitions and the main properties of these topologies like their homeomorphism groups and 
topological properties, we give two tables summarizing definitions and their properties: 

Definitions and properties of fine topologies on Minkowski space refer Table 1 and fine topologies on 
space-times of general relativity refer Table 2. Whereas fine topologies have interesting topological properties 
and their homeomorphism groups are physically useful, however it is true that manifold structure is not 
compatible with fine topologies. This is because, topologically, a manifold is second countable, Hausdorff and 
paracompact, and hence normal and metrizable, whereas fine topologies are not, in general, normal (and hence 
not metrizable). Moreover, it is also true that unless differential structure is there, we can not define notions of 
connection and curvature and hence fine topologies may not be useful in discussing Einstein field equations in 
general theory of relativity. Finally, we would like to refer to a paper by A. Heathcote [35], where it has been 
argued that the suggestions for replacement of manifold topology with fine topology misrepresent the 
significance of the manifold topology and overstate the necessity for a finer topology. He claims to have given a 
 
Table 1. Definitions and properties of fine topologies on Minkowski space.                                              

Sr. No Fine topology Homeomorphism group Topological properties 

1 

Zeeman topology ZM  (1967): Finest  
topology which induces three dimensional 

Euclidean topology on every space-axis and 
one dimensional Euclidean topology on every 

time-axis 

G = Lorentz group with  
translations and dilatations 

Dossena (2007): neither locally 
compact nor Lindelof, not normal, 
separable but not first countable, 
path-connected but not simply  

connected 

2 
s-topology sM : Nanda (1971): Finest 

topology which induces three dimensional 
Euclidean topology on every space-like 

hypersurface 

G 

G.Agrawal and S. Shrivastava 
(2012): separable, first countable, 
path-connected, not regular, not 

metrizable, not second countable, 
noncompact, and non-Lindelof, not 

simply connected 

3 
t-topology tM : Nanda (1972): Finest  

topology which induces one dimensional 
Euclidean topology on every time-like line 

G 

G.Agrawal and S. Shrivastava 
(2009): separable, first countable, 
path-connected, not regular, not 

metrizable, not second countable, not 
locally compact, not simply  

connected 

4 

A-topology AM : Nanda (1979): Finest  
topology which induces one dimensional 

Euclidean topology on every time-like line 
and light-like line and three dimensional 
Euclidean topology on every space-like 

hypersurface 

G 

G.Agrawal and Soami Pyari Sinha 
(2014): separable, not first  
countable, connected and 

path-connected, not normal, not 
metrizable, Not comparable with 
t-topology nor with s-topology 

5 
Fine topologies FM  by Williams (1974): 

Finest topology which induces one  
dimensional Euclidean topology on every 

time-like line and space-like line 

Conformal group of Minkowski 
space whose 1C  subgroup is G 

Hausdorff, separable, first countable, 
but not regular and hence not  

metrizable 

6 
LM : Finest topology which induces one 

dimensional Euclidean topology on every 
straight line 

1C  homeomorphisms form  
projective group generated by full 

linear group and translations 

Weaker than FM  and TM , 
Hausdorff, separable and first  

countable, not regular and hence not 
metrizable 
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Table 2. Fine topologies on space-times of general relativity.                                                         

Sr. No Fine topology on space-time of GR Diffeomorphism Group Topological properties 

1 HKM-path topology described by 
Hawking-King-McCarty (1976) Conformal diffeomorphisms 

Hausdorff, path connected and 
locally path connected, first 
countable, separable, but not 
normal or locally compact 

2 Extended HKM-topology (Kim, 2006) Conformal isomorphism group Finer than Alexandrov topology 

3 S-topology on Lorentz manifolds  
(Domiaty, 1985) Conformal C∞ -diffeomorphisms 

Hausdorff, first countable and 
separable, not regular and hence 
not metrizable, path connected 

and locally path connected 

4 Zeeman -like fine topology in general  
relativity described by Göbel (1976) 

Homeomorphism group with respect to 
Zeeman-like topology is the group of all 

homothetic transformations of V 
Strongly causal space-times 

5 

Lindstrom (1978): Finest topology nmS  that 
induces the topology as a submanifold on 
time-like nC -curves and on space-like  

mC -curves 

Group of Conformal  
C∞ -diffeomorphisms or group of all  

homothetic transformations of V 

Space-time need not be strongly 
causal 

 
realist view of space-time topology. Other philosophical issues about space-time have been discussed by D. 
Dieks and M. Redel in two volumes [36] [37]. 
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