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Abstract 
This paper proposes a generalization of the MoM-GEC method [1] needed for studying planar 
structures excited with a source located at perpendicular plan relative to circuit plan. A general 
formulation is detailed to allow modeling excitation of a planar structure with one or more 
sources located in plans other than the circuit plan. The numerical approach elaborated is based 
on the definition of new admittance operators and rotational transformations describing the tran-
sition from one plan to another. To validate this approach, we consider the case of a single source 
located in the perpendicular plan to the circuit. 
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1. Introduction 
Studying of microwave planar circuits is based on EM characterization of the structure via determination of 
electrical (E) and magnetic (H) fields and the electric current density J using Maxwell equations. To solve these 
equations, iterative methods are used (FDTD [2] [3] and FEM [4] [5]) providing accurate results but requiring a 
relatively heavy calculation time [6]. To overcome this disadvantage, integral methods have been proposed. 
Integral equations introduce an excitation term in the integral formulation of an electromagnetic problem that 
needs to establish an appropriate mathematical model: source model [7]. 

As the source is the knowledge of an electromagnetic field distribution on a circuit surface independently of 
the load, one distinguishes two source models: localized source modal [8] [9] and extended source modal [6] [7] 
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defined in the perpendicular plan to the circuit. The source can be considered as a discontinuity causing the cre-
ation of higher order modes at the border source/circuit [10]-[15]. This discontinuity can be corrected by using a 
coupling quadripole [8] [16]-[18]. That generates an additional computing time. Considering the fundamental 
mode of the access line can be an optimized solution which allows us to have a perfect adaptation between 
source and circuit [19] [20].  

Localized source remains a theoretical and relatively simple model to describe studied structure. Such model, 
is not fully consistent with actual excitations located in another plan than the circuit which favors the extended 
source, hence the importance of our study.  

Our goal is to develop an exact source method based on MoM-GEC method for studying planar structures ex-
cited by sources located in any other plan. We first establish a general formulation for the case of N sources. We 
verify, then the accuracy of the hypothesis of sources simplification: localized planar sources. 

3D extension of MoM-GEC method has not been really focused on in previous work. Related work mainly 
includes Hamdi et al. work in [13]. However, this work focused on input impedance and scattering matrix eval-
uation rather than a full EM characterization. In our study, we define new admittance operators to bind excita-
tion sources to electrical quantities defined in the circuit plan and thus help calculate EM fields accurately. We 
also introduce a new rotational transformation describing the transition from one plan to another. The determi-
nation of these operators is important because it allows us to perform three-dimensional calculation while keep-
ing homogeneous the MoM-GEC method (decomposition of operators on the TE and TM modes). 

In this paper, input impedance, current density and electric field distribution are evaluated and discussed in 
the case of a single vertical source. Results are compared to commercial software HFSS and CST. A couple of 
structures are studied: microstrip short-circuited line and microstrip open circuit line as an application. 

This paper is organized as follows: we start presenting the new approach in the case of N sources by exposing 
the general formulation of integral equations to determine the admittance matrix. Then, we detail the formula-
tion and the determination of input admittance ( iny ) in the case of a single extended source located at the per-
pendicular plan to circuit. In Section 4, we focus on determining admittance operators. Finally, in Section 5 we 
present different simulations results obtained for the two studied structures.  

2. New Formulation of MoM-GEC Method for 3D Structures 
In this section, we introduce and explain the general formulation for 3D structures by considering the case of 
N-ports (N sources) located at perpendicular plans to the circuit. Figure 1 shows the general structure excited by  
 

 
Figure 1. Planar structure with N discontinuities (N sources).                                          
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voltage sources ( 01 02 0, , , NE E E ). The electromagnetic analysis of this structure consists in solving an integral 
equation expressing the boundary conditions of electromagnetic fields of sources and circuit plans. This equa-
tion has the following form: 

( ) .L f g=                                     (1) 

where L is an integro-differential operator, g is the excitation source and f is the unknown to be determined.  
In this work, L is an admittance operator, f is the electric field E tangential to the circuit plan and g represents 

the excitation sources. The method consists in solving this equation by the Galerkin method (a variety of the 
MoM method) to determine the electric field E and deduce the input admittance inY  matrix 

The circuit is printed on a dielectric substrate of relative dielectric constant rε  with a thickness h. N trans-
mission lines feed the structure defining N discontinuities. Each transmission line is excited with a vertical port. 
Discontinuities at port level is overcome by considering fundamental mode of the transmission line. 

To characterize this discontinuity, we used the formalism of admittance operator and assume that excitation 
sources are totally independent and completely decoupled (electromagnetic coupling) for each other [21] [22]. It 
would be necessary to determine with precision the fundamental mode of the attachment lines to ensure good 
adaptation. 

The electromagnetic quantities in source plans (from P1 to PN) and planar circuit (c) are expressed in follow-
ing relations (Equation (2)): 

01 11 01 1 0 1,

0 1 01 0 ,

0 1 01 0 ,

,1 01 , 0 ,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

N N c

i i iN N i c

N N NN N N c

c c N N c c

J Y E Y E Y E

J Y E Y E Y E

J Y E Y E Y E

J Y E Y E Y E

 = + + +




= + + +


 = + + +


= + + +













                      (2) 

where: 
oiJ  (i = 1 to N): current density of the source (i). 
oiE  (i = 1 to N): Electric field of the source (i). 

îjY  (i = 1 to N + 1, j = 1 to N + 1): Admittance operators with the (N + 1)th plan is the circuit plan. 
E and J are the electric field and the current density defined in the circuit plan. 
The admittance operators îjY  define the relationship between the electric fields of TE and TM modes from 

the jth plan and the current density generated by these modes on the ith plan provided that all sources k # j are 
switched off and the circuit plan is metallized. These îjY  can be determined by applying the superposition 
theorem to the Equation (2) and decomposing these operators on a homogeneous basis (TE and TM) associated 
to each plan defining the different electromagnetic quantities. 

If ( )( )j
mnf  and ( )( )ipqf  are a decomposition orthonormal basis of the electric field and current density de-

fined on the plans i and j, then for; 1, ,i N=   and   1, ,j N=  , îjY  can be expressed as follows: 

( ) ( ), ,,
,

ˆ .
TE TM TE TMi jTE TM

ij pq mn pq mn
mn pq

Y f y f= ∑∑                         (3) 

For modeling the electric field E of the circuit plan, we choose test functions of electric field type iϕ . The 
test functions are assumed to be virtual sources defined in the circuit plan. On this basis, the electric field is 
written as follows: 

1
.

K

k k
k

E x ϕ
=

= ∑                                    (4) 

With ( )1, ,kx k K=   are the projections of the field E in the test functions basis and K is the number of test 
functions necessary to reach convergence. 
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Test functions satisfy the boundary conditions of the circuit plan. They are zero on the metal and non-zero on 
the dielectric. And conversely, the current density J defined on the circuit plan is zero on the dielectric and non- 
zero on the metal. Therefore, the test function kϕ  and the current density J satisfy the following relationship: 

0.k Jϕ =                                    (5) 

The application of the Galerkin method to the Equation (2) involves projecting the first N equations respec-
tively on the unitary sources functions from 01e  to 0Ne , which gives us a first sub system. Also, we project 
the (N + 1)th equation on the various test functions which gives us a second sub system. 

We suppose that: 0 0 0i i iE V e=  and 0 0 0i i iJ I j= . 
With 0 0 1.i ie j =  
Considering the orthonormalization relationships verified by these unitary sources: (where ijδ  is the dirac 

function) and the relationship between current density and test functions, we obtain the following matrix rela-
tionship: 

01 11 1 01

0 1 0

.
N

N N NN N

I y y V

I y y V

     
     =     
          



    



                          (6) 

With: 
1 .ij ij i jy Y C A B−= −                                (7) 

0 0
ˆ .ij i ij jY e Y e=                                 (8) 

( ) 1, 1
ˆ, .i N N kA i k Yϕ ϕ+ +=                              (9) 

( ) ( )0 1, 0 0
1 1

ˆ ; 1, ,
K K

n j N n n n n
n n

B j V Y e V B j j Nϕ +
= =

= − = − =∑ ∑ 
                (10) 

( ) ( )0 0 1, 0
1 1

ˆ ; 1, ,
K K

n n N n i n n
n n

C i V e Y V C i i Nϕ+
= =

= − = − =∑ ∑ 
                 (11) 

The determination of the admittance matrix ( ) , 1, ,ij i j N
y

= 
 involves calculating of the different admittance op-

erators îjY . In order to model the electric field E, it is enough to determine the coefficients of test functions kx . 
The vector ( )1, , , , t

k KX x x x=    is written in the following form (Equation (12)): 
1

0i i
i

X V A B−= −∑                                  (12) 

In this section, we presented a general formulation of the problem by taking the case of N vertical sources. By 
applying the Galerkin method, we determined the admittance matrix binding current density and E field. This 
matrix is characterized by new admittance operators describing the transition from one plan to another. To vali-
date our approach, we develop in this paper the case of a single vertical source that is the subject of the next sec-
tion. 

3. Single Vertical Source Case 
The vertical source located at perpendicular plan to the circuit is the most used excitation source in real condi-
tions. We focus now on the study of a single vertical source located at the perpendicular plan to the circuit. We 
start presenting the studied structures. Then, we detail the determination of the admittance operators. 

3.1. Studied Structures 
To validate our method, we consider two structures: a micro-strip short-circuited line Figure 2(a) and a micro-
strip open circuit line Figure 2(b). The choice of the first structure is argued by the fact that the estimated theo-
retical impedance of this structure is known which allows us to validate the obtained input impedance. The  
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(a) 

 
(b) 

Figure 2. Studied structures: (a) Microstrip short-circuited line; (b) Microstrip open circuit line.              
 
second structure allows us to verify the boundary conditions and to ensure the validity of the numerical ap-
proach. 

Table 1 and Table 2 illustrate the dimensions of the two structures enclosed in a box. 
With: 1rε =  and freq = 3.5 GHz, 
lp: length of the microstrip line, 
ls: length of the dielectric substrate, 
lb: length of the box, 
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Table 1. Microstrip short-circuited line dimensions.                                                    

 Length Width Height 

Line lp = λ/2 2 mm 40pw λ= ≈  - 

Dielectric substrate ls = λ/2 12.7 mm 7a λ= ≈  0 1.27 mm 70h λ= ≈  

Box lb = λ/2 12.7 mm 7a λ= ≈  11.43 mm 2 15h λ= ≈  

 
Table 2. Microstrip open circuit line dimensions.                                                    

 Length Width Height 

Line lp = λ/2 2 mm 40w λ= ≈  - 

Dielectric substrate ls = λ 12.7 mm 7a λ= ≈  0 1.27 mm 70h λ= ≈  

Box lb = λ 12.7 mm 7a λ= ≈  11.43 mm 2 15h λ= ≈  

 
wp: width of the microstrip, 
a: width of the box/dielectric substrate, 
h0: thickness of the dielectric substrate, 
h: thickness of the box. 
By using the generalized equivalent circuit method, we can model each of the two structures of the Figure 2 

with the following equivalent circuit (Figure 3). 
The circuit is excited by a single source of electric field type. This source is defined by a unitary function
( )1 ,e x y , such as: 1 1, 1e j =  and 1j  is the current density associated to ( )1 ,e x y  at the plan (xoy). The 

unitary source 1e  and the dual current 1j  are written as follows: 

1 .d

d d

E
e

E J
=                                 (13) 

1 .d

d d

J
j

E J
=                                 (14) 

With: dE  is the electric field of the straight section and dJ  is the dual current density 

.d d= ∧J H z                                  (15) 

To determine the electric field dE , we calculate the fundamental E field of a microstrip line having infinite 
length [13] [19] [20]. 

3.2. The Input Admittance of a Discontinuity Port 
Using the formulation of the source method developed in the Section 2, the current densities of the source and 
the circuit are associated to the corresponding electric fields by the admittance operators: 

1 11 1 12 2

2 21 1 22 2

ˆ ˆ

ˆ ˆ

J Y E Y E

J Y E Y E

 = +


= +

                            (16) 

Applying the same procedure in (2), the Galerkin method is used to solve Equation (16) while taking into ac-
count the boundary conditions of electromagnetic fields on the circuit plan. The first step in the Galerkin method 
is to define test functions ( ) 1, ,i i K

ϕ
= 

 to model the electric field 2E  (Equation (17)).  

2
1

.
K

i i
i

E xϕ
=

= ∑                                 (17) 

The test functions ( ) 1, ,i i K
ϕ

= 
 should verify the boundary conditions imposed by the presence of metal in the  
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Figure 3. Equivalent circuit of the studied structure.       

 
plan (xoz) (Equation (18)). 

( )
( ) ( )

( ) ( )

2 1 π
cos

2
, ; 0, ,

2 22 1 π
sin

2

x

k

z

k z
E x

l a w a wx z x a
k z

E x
l

ϕ

 − 
  

− +      = ∈       − 
 
 

             (18) 

where: 
xE  and zE  are the electrical field components in circuit plan ( cE ) 
2e  and 2j  are defined in two complementary areas: the insulating areas and the metallic area. 

The second step is to project the Equation (1) of the System (16) on the unitary function 1e  and the Equa-
tion (2) on the various test functions to obtain the input admittance iny : 

11
11 1 1

1

.in
Iy Y C A B
J

−= = −                                (19) 

With: 

11 1 11 1
ˆ .Y e Y e=                                   (20) 

( )1 1 12
ˆ .iC i e Y ϕ=                                  (21) 

( ) 22
ˆ, .i jA i j Yϕ ϕ=                                 (22) 

( ) 21 1
ˆ .iB i Y eϕ=                                  (23) 

To calculate the input admittance, we must determine the different admittance operators: 11 12 22
ˆ ˆ ˆ, ,Y Y Y  and 

21Ŷ which will be the object of the next section. 

4. Admittance Operators 
To calculate the different operators, we need to impose some conditions, namely: 

The 11Ŷ  and 21Ŷ  operators are determined by considering: 1 0E ≠  and 2 0E =  (metallization of circuit 
plan).  

Similarly, the 22Ŷ  and 12Ŷ  operators are calculated by considering 2 0E ≠  and 1 0E =  (metallization 
of source plan).  

This procedure is ensured after establishing in each plan (xoy) and (xoz) a basis of TE and TM mode func-
tions satisfying the boundary conditions and allowing the decomposition of operators îjY . 

We explain in the next two paragraphs the determination method of the operators 11Ŷ  and 21Ŷ . The two oth-
ers operators will be determined in the same manner.  

To have an equation system containing only the two operators 11Ŷ  and 21Ŷ , we must metalize the circuit 
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plan while taking 2 0E = . So, the Equation (16) becomes: 

1 11 1

2 21 1

ˆ

ˆ

J Y E

J Y E

 =


=

                                  (24) 

Hence the circuit plan split the structure into two homogeneous areas separated by an electric wall. In the 
straight section of each guide, basis functions ( ),mnf x y  ( , 1, ,m n N=  ) are defined by the TE and TM modes 
of the wall guide EEEE (E: Electric), relative to a propagation direction along the normal to this section plan.  

The mode functions TE and TM in the plan (xoy) are given by the Equation (25) and Equation (26): 

( )

π πcos sin
,

π πsin cos

mn
i iTE

mn

mn
i

n m x n y
h a h

f x y
m m x n y
a a h

ξ

ξ

   −   
   = 

  −       

                        (25) 

( )

π πcos sin
,

π πsin cos

mn
iTM

mn

mn
i i

m m x n y
a a h

f x y
n m x n y
h a h

ξ

ξ

   
   

   = 
  −       

                        (26) 

With:  

22

2 .mn
mn

i
i

t

m nah
a h

ξ =
    +        

                              (27) 

2; if , 0
1; if | 0

mn

mn

t m n
t m n

= ≠
 = =

 

The propagation constant of the mode ( ),mnf x y  is mnγ , such that: 
22

2 2
0

π π .mn i
i

m n
a h

γ ω ε µ
  = + −  

   
                              (28) 

0

0 0 0

; , for : 0
; , for : 0

i r i

i i

h h h y
h h y h

ε ε ε
ε ε
= = − − ≤ ≤

 = = < ≤
 

4.1. Determination of the 1̂1Y  Operator 
The decomposition of the 11Ŷ  operator on the TE and TM mode functions ( ), ,TE TM

mnf x y  of the box is relative 
to the propagation constant ( mnγ ), defined as follows: 

, , ,
11 11,
ˆ .TE TM TE TM TE TM

mn mn mn
mn

Y f y f= ∑                              (29) 

With: 
11,
TE

mny  and 11,
TM

mny  are the admittance of TE and TM modes brought from the short circuit (z = l) to the source 
plan (z = 0). 

( )11, .cothTE mn
mn mny l

j
γ γ
ωµ

=                                 (30) 
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( )11, coth .TM i
mn mn

mn

jy lωε γ
γ

=                             (31) 

4.2. Determination of the 2̂1Y  Operator 
The operator 21Ŷ  describes the transition of the plan (xoy) to the plan (xoz). So that, from the field generated in 
the plan (xoy), we find the current density in the other plan. Therefore, we must determine the field created in 
the whole structure. 

In fact, knowing the electric field in the source plan (xoy) which is decomposed on the mode functions
( ), ,TE TM

mnf x y  we deduce the field created in the whole structure. For the components of ( ), , ,TE TM
mnf x y z  on the  

axes (ox) and (oy), we use the following relationship: ( ) ( ) ( )( )
( )

, , sinh
, , , .

sinh
mnTE TM TE TM

mn mn
mn

l z
f x y z f x y

l
γ

γ
−

=  

The third component of ( ), , ,TE TM
mnf x y z  on the axis (oz) is deduced it from the Gauss Maxwell equation 

( ( ) 0div =E ). 
Equation (32) presents the relationship binding the operator 21Ŷ  to the current density 2J  (ofthe plan P2 

(xoz)) and the electric field E1 (of the plan P1 (xoy)).  

2 21 1
ˆ .J Y E=                                  (32) 

To describe the operator 21Ŷ , we define a second basis of the TE and TM modes functions pqg  (EEEE wall 
box) which satisfy the boundary conditions for the current density in the plan (xoz) and describes the current 

2J  on this basis (Equation (33)). 

( )2 , .pq pq pq
pq pq

J J x z I g= =∑ ∑                            (33) 

Similarly, we can describe the field E1 on the basis of mode functions mnf  as follows (Equation (34)): 

( ) ( )1 , , , , .mn mn mn
mn mn

E E x y z e f x y z= =∑ ∑                       (34) 

Using the Equation (34), we can express the current 2J  using the basis functions mnf  (Equation (35)). 

2 21 21
ˆ ˆ .mn mn mn

mn mn
J Y E e Y f= =∑ ∑                          (35) 

By identification (Equation (33) and Equation (35)), the current 2J  could be expressed as follows: 

2 21
ˆ .mn pq mn pq

pq mn
J e g Y f g= ∑∑                           (36) 

Using Equation (33) and the fact that mnf  is an orthonormal basis, Equation (36) becomes: 

2 21 1
ˆ .pq pq mn mn

pq mn
J g g Y f f E= ∑∑                         (37) 

From the Expression (37), we deduce the expression of the 21Ŷ  operator 

21
ˆ .pq mn mn

pq mn
Y g y f= ∑∑                              (38) 

With: 

21
ˆ .mn pq mny g Y f=                                 (39) 

We define 21 21
ˆ ˆ

mnR Y f=  as a new operator permits the passage of the plan P1 to the plan P2. To deduce this 
new operator, we establish an expression for the current density in the plan (xoz) while using Maxwell equations. 
Applying the Maxwell-Faraday equation, the current density has the following expression (Equation (40)): 
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( )1 .J
jωµ
−

= ∧ ∧E y∇                                 (40) 

By substituting the expression of E1 (Equation (34)) in the expression of J  (Equation (40)), we obtain: 

( ) ( ) ( )( )
( )

( ) ( )
0

sinh,,
sinh1
, ,, ,

mnyx

mn
mn

mn yz

y

l zf x yf x y
y x l

e
j f x y zf x y z

y z

γ
γ

ωµ

=

 −∂ ∂
−   ∂ ∂−   =  ∂∂ − ∂ ∂ 

∑J                 (41) 

By identification between Equations (36) and (41), we can deduce the expression of the new operator 21R̂  
based on a rotational transformation (Equation (42)). 

( ) ( ) ( )( )
( )

( ) ( )21 21

0

sinh,,
sinh1ˆ ˆ
, ,, ,

mnyx

mn
mn

yz

y

l zf x yf x y
y x l

R Y f
j f x y zf x y z

y z

γ
γ

ωµ

=

 −∂ ∂
−   ∂ ∂−   = =  ∂∂ − ∂ ∂ 

              (42) 

After expressing the different operators and transformations, the next section will be dedicated to numerical 
results for two chosen structures and make some comparisons to validate our new approach. 

5. Numerical Results 
The new numerical approach is based on the definition of several admittance operators used to describe the pas-
sage from one plan to another. The implementation of these operators require several large-sized matrices ma-
nipulation and cpu-consuming integral calculations. In our case, using development environments dedicated to 
numerical calculations such as MATLAB is not suitable, lacks of fast hybrid symbolic/numeric calculation and 
has no built-in cache support neither save-points concept (we cannot resume calculation when needed). 

There are several alternatives, namely programming languages: C, C++ and Java. In literature, several re-
searchers recommended JAVA for scientific treatment [23]-[25] due to its robustness, automatic memory man-
agement and portability.  

In our research laboratory SYS’COM, DrTaha Ben Salah has developed during his research work a TMWLib 
library (for Tiny MicroWave Library) [26]. This library is based on Java/Scala programming languages, is fully 
modular, feature rich and scalable. Also, it enables fast hybrid symbolic/numerical calculation and cache/save- 
point concept. 

We applied our modelling approach to both structures: microstrip short-circuited line and microstrip open 
circuit line. We used the microstrip short-circuited line as a reference structure to compare obtained input im-
pedance with theoretical input impedance of this structure. We also deduce for these structures some electro-
magnetic characteristics (current density J and electric field E) to verify the boundary conditions. 

5.1. Input Admittance of Microstrip Short-Circuited Line 
The chosen studied structure to validate the obtained input impedance is a microstrip short-circuited line. This 
structure must respect two approximations. First, the structure is considered as a transmission line submitted to 
the line’s fundamental mode (characterized by its propagation constant βg). Then, the line length L should be 
large enough to assume that higher order modes reflected at the short circuit are attenuated before reaching ex-
citation source. The expected value of the theoretical input admittance is given by the Equation (43). 

( )cothth
iny j lβ= −                                   (43) 

With β  is the propagation constant of the fundamental mode. 
Figure 4 illustrates the simulation result of the input impedance iny  given by Equation (20) and that of the 

theoretical input impedance of a line short circuited. The iny  curve is evaluated at convergence with 11 test  
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Figure 4. Comparison between the calculated and theoretical input admittance for microstrip 
short-circuited line.                                                                 

 
functions (trigonometric type), 94,000 TE and TM mode functions mnf  (on source plan) and 68,900 TE and 
TM modes functions pqg  (on circuit plan).  

We observe that the two curves of the input impedance are very close with a relative error lower than 1%. 
This confirms the validity of our numerical approach and the perfect adaptation between source and circuit. In 
fact, among the parameters affecting the consistency of results precision of the fundamental mode taken as exci-
tation source has the higher effect. 

With X is the length l of the microstrip line. 

5.2. Electromagnetic Characteristics of Microstrip Short-Circuited Line 
In this section, we present some electromagnetic characteristics (current density and electric field) for a micro-
strip short-circuited line. We also compare the obtained results to the results found with two commercial soft-
ware HFSS and CST. 

Figure 5 illustrates shapes of the current density (HFSS, CST and MoM-GEC’3D). We observe that the three 
curves have the same variation of the current which satisfies the boundary conditions. This result is very consis-
tent with excepted values for a short-circuited line for the specified dimensions. 

Figure 6 and Figure 7 illustrate the shape of the electric field Ey along the propagation direction (oy). We 
note that the electric field satisfies the boundary conditions. It is maximum at the source and presents a fast at-
tenuation at source/line discontinuity. The result with the new approach MOM-GEC’3D contains small attenua-
tion that tend to cancel due to the Gibbs effect. HFSS gives a less step attenuation at source/line discontinuity; 
whereas CST’s result has the best consistency 

Figure 8 allows to verify the boundary conditions for the electric field Ex. The two figures obtained with CST 
and MoM-GEC’3D confirms results alignment. 

5.3. Electromagnetic Characteristics of Microstrip Open Circuit Line 
In this section, we present results of current density and electric field for a microstrip open circuit line to vali-
date our numerical approach. 
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(a)                                  (b)                                 (c) 

Figure 5. Current density comparison between: (a) HFSS; (b) CST and (c) MoM-GEC’3D.                         
 

 
Figure 6. Electrical Field Ey comparison between: (a) HFSS; (b) CST and (c) MoM-GEC’3D: section along axis (ox).   

 

 
(a)                                  (b)                                 (c) 

Figure 7. Electrical Field Ey comparison between: (a) HFSS; (b) MoM-GEC’3D and (c) CST: 2D view.                 
 

Figure 9 and Figure 10 present the current density. We note that the three results obtained with MoM- 
GEC’3D, HFSS and CST are very consistent. At convergence MoM-GEC’3D and CST present better results 
when considering EM symmetry of the structure (along ox axis). Besides, line width is small when compared to  
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(a)                                               (b) 

Figure 8. Electrical Field Ex comparison betweenMoM-GEC’3D and CST.                                      
 

 
(a)                                  (b)                                 (c) 

Figure 9. Current density Jy comparison between: (a) MoM-GEC’3D; (b) HFSS and (c) CST.                      
 

 
Figure 10. Current density Jy comparison between MoM-GEC’3D and CST: section along (ox) axis.                      

 
wavelength, variations along (x) should not be relevant, which is the case of (a). Still CST have some important 
variation (at the center of the line). Moreover, a better attenuation (Figure 10) is remarkable with small Gibbs 
effect lead us to conclude that new approach gives more rigorous results. 

Figure 11 and Figure 12 illustrate that the electric field for the 3 simulation results verify the boundary con-
ditions. We note also that the curve of MOM-GEC’3D contains small attenuation due to Gibbs effect. We may 
add an artificial additional term to compensate this effect and reduce numerical errors. Figure 12 gives even 
better confirmation of result validation as one can appreciate good attenuation of numerical results of Ey away 
from source and magnetic wall (line edge). Again, MoM-GEC’3D gives better results but still very similar to  
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Figure 11. Electrical Field Ey section along (oy): comparison between MOM-GEC’3D, CST and HFSS.                      
 

 
(a)                                  (b)                                 (c) 

Figure 12. Electrical Field Ey comparison between (a) MOM-GEC’3D, (b) HFSS and (c) CST.                           
 
CST while HFSS gives a little more fuzzy results. All of three results still consistent with boundary conditions 
though. 

Similarly, the electric field component Ex verifies the boundary conditions for the result obtained with 
MOM-GEC’3D and CST while CST, for this case, presents a better boundary conditions. This may be explained 
with the forced usage of (y) based test functions (in order to validate more generic approach) whereas line width 
is too small relatively to wavelength, so that Gibbs effect remains a little substantial (Figure 13). 

The different simulations made for short circuit and open circuit demonstrates the accuracy of our new ap-
proach. This was approved by the verification of the boundary conditions and comparison with two commercial 
simulation software HFSS and CST. 

6. Conclusions 
In this paper, we present a new formulation of the source method to characterize discontinuities in planar cir-
cuits. A new definition of the excitation source is introduced to overcome the discontinuity problem at the 
source/circuit transition. We expose a general formulation of the source method, by determining the Input ad-
mittance matrix of N-port discontinuity in a planar circuit. To validate our approach, we considered the case of a 
single vertical source. We detailed the determination of the various operators and rotational transformations re-
quired to calculate the input impedance. In the last part of our work, we presented and interpreted some results 
in the case of a microstrip short-circuited line and microstrip open circuit line. 

The numerical results obtained using this approach were compared to results obtained by both commercial 
software HFSS and CST. Our results show a concordance and consistency with those obtained using HFSS and 
CST, with even better results in most cases. 

We also demonstrated that considering the fundamental mode of the access line to circuit as the excitation 
source gives us a perfect adaptation between the source and the circuit. 

This new approach can be applied to any type and number of excitation sources (coaxial cable at perpendicu-
lar plan [27] or coaxial line located in the ground plan, etc). The originality of this work lies mainly in the new  
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(a)                                        (b) 

Figure 13. Electrical Field Ex comparison between MGEC and CST: 2D view.                  
 
definition of the source in the integral analysis and the determination of admittance operators to link the elec-
tromagnetic quantities of sources and magnitudes of the circuit, which are defined in vertical plans. 
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