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Abstract 
Hashing and Trie tree data structures are among the preeminent data mining techniques consi-
dered for the ideal search. Hashing techniques have the amortized time complexity of O(1). Al-
though in worst case, searching a hash table can take as much as θ(n) time [1]. On the other hand, 
Trie tree data structure is also well renowned data structure. The ideal lookup time for searching 
a string of length m in database of n strings using Trie data structure is O(m) [2]. In the present 
study, we have proposed a novel Prime Box parallel search algorithm for searching a string of 
length m in a dictionary of dynamically increasing size, with a worst case search time complexity 
of O(log2m). We have exploited parallel techniques over this novel algorithm to achieve this 
search time complexity. Also this prime Box search is independent of the total words present in 
the dictionary, which makes it more suitable for dynamic dictionaries with increasing size. 
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1. Introduction 
A static dictionary is a subset of a finite universe with fixed set size, that is the static dictionary can be consid- 
ered as collection of words with bounded size. This limit that bounds the size can be huge. In existing ap- 
proaches, the lexicographical search techniques are used for word look up in dictionaries, that is why the search 
time complexity in case of static dictionary is directly proportional to its size.  

Now consider a dictionary with huge word set and chronically increasing size, that is the size of the word set 
in the dictionary is not fixed. Consider the example of English dictionary that has more than 600,000 words 
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inherited from the language and keeps on increasing. A new word lookup approach that is free from total num-
ber of words is required for such dynamic dictionaries. In present scenario we have many approaches based on 
trie tree data structure and hashing techniques for word lookup in static dictionary. But when it comes to search 
a dynamic dictionary with continuously increasing size, there is not any satisfactory technique yet with promis-
ing results.  

In the present study we have proposed parallel prime box search algorithm that will use a unique combination 
of prime numbers assigned to each word to identify it. Further we have shown that the complexity of this pro-
posed parallel algorithm is O(log2m). The proposed technique depends on the length of the word and is inde-
pendent of the size of the dictionary and therefore best suits the needs of dynamic dictionaries. 

2. Related Work 
An adequate amount of work has been done on the techniques for information retrieval and dictionary search. 
Researchers are working in this field for more than last fifty years. E. Fredkin [3] and D. E. Knuth [4] has pro- 
posed early techniques to read the input character by character. In 1987 J. Aoe and M. Fujikawa proposed how 
to lookup up a word in a morphological dictionaries [5]. Further J. L. Peterson proposed a spelling checker [6], 
and J. Aoe, Y. Yamamoto and R. Shimada proposed an approach in mid 80’s for reading character by character 
input for lexical analysis in compiler or a bibliographic search [7] [8]. In 2009 Georgios Stefanakis also pro- 
posed an implementation of range trie for address lookups [9]. Most of the above work was either based on or 
was related to Trie structure. In Trie structure each node of the trie tree is an array, such that one character from 
each string is stored in an array at each level. A trie tree is presented in Figure 1 for the strings “ace”, “fade”, 
“face” and “fact”. Here each node is represented by an array at different levels [10] [11]. To search a string of 
length m in a trie tree, one has to make m comparisons. One comparison at each level, making its search time as 
O(m). 

The single array representation of trie datastructure is expensive in sense of storage complexity. As storage 
space is directly proportional to the number of nodes. So to overcome this problem a list structure was proposed 
for trie tree [12]. This list structure was implemented using the linked lists for better space usage. Further a 
double array structure for trie tree was proposed [13]. In which two arrays BASE and Check were used to keep 
records of nodes to provide a compact as well as fast access. 

Douglas Comer [14] has also proposed hashing based technique for faster dictionary search. In 2001 Rasmus 
Pagh [15] has proposed minimal perfect hash function with constant query time. Later in 2009 Djamal Belaz-
zougui et al. [16] has also proposed minimal perfect hashing based approaches for searching in a sorted table in 
O(1) query time. A minimal perfect hash function is a bijective function such that if ω is a set of n words {w1, 
w2, w3, ---, wn}. Then the minimal perfect hash function α will map each word of the set ω uniquely in to set 
having index values {0, 1, 2, 3, ---, (n − 1)} [17] [18]. But all this work was done for static dictionaries, which 
are subset of a finite universe with fixed set size. 

Amihood Amir et al. in 1994 has proposed a dynamic dictionary matching technique with search time com-
plexity of O((n + tocc) log |Di|). Where tocc is total occurrences of the word in the text [19]. In 2014, Chouvalit 
Khancome and V. Boonjing have also proposed an inverted list based dynamic dictionary searching algorithm 
for the lookup in linear time [20]. 

 

 
Figure 1. An example of a trie tree. .                                                                        
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In this paper we have proposed a novel approach for searching dynamic dictionaries in O(log2 m) time. The 
new approach is independent of the size of the dictionary and therefore well suites the dynamic dictionary search 

3. Proposed Approach 
Here in prime box algorithm we will use a unique number assigned as key to each word, which is further used as 
array index to find that word. This approach of lookup puts the prime box algorithm in a category of directly 
addressed array lookup. Consider a scenario where you are looking for a word in a dictionary. Now to assign a 
unique key to that searched word we have to take help of prime box. This is an “m × 26” table of prime numbers, 
where each prime number appears only once. Here m is the length of longest word present in the dictionary or 
the database. Let us assume the largest word present in the dictionary is of length three characters. Then our 
prime box will look like as presented in Table 1. 

To calculate a unique key for a word the prime numbers associated with each character at different levels 
from the prime box table are multiplied. To calculate the key for the word “AIM”. The prime number associated 
with “A” at level 1, prime number associated with “I” at level 2 and the prime number associated with “M” at 
level 3 in the prime box table will be multiplied together. The prime number for “A” in the table is “2”, for “I” it 
is “149” and for “M” the value is “313”. So the unique key for the word “AIM” can be calculated as “2 × 149 × 
313”, which is equal to “93274”. As these keys only have prime factors, this ensures that the key values will be 
unique for each word. Further using these key values as the array indices the associated words will be saved at 
particular locations in array to create a word data structure. Then the direct addressing lookup scheme will be 
used to find out the word using the same key value. 

Proposed Parallel Prime Box Algorithm: Searching in O(log2m) Time 
In multiprocessor environment we can easily employ the parallel computing techniques over the independent for 
loops of the proposed algorithm. The FOR loops below do not have any dependent instruction or variable between 
them. This makes it possible to easily apply the parallel techniques over them to enhance the performance. 
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In Loop 1, Loop 2, Loop 3 and Loop 4, it can be seen clearly that the FOR loop will be working in parallel for 
calculating the Unique_Prime_Index value. Actually for all the alphabets present in the given word of size 'm', 
distinct “m” prime numbers will be picked from the prime box and multiplied together in parallel to obtain the 
Unique_Prime_Index value. This Unique _Prime_Index value will be used further as array index for fetching the 
value at that location. If that value is one then the word is present otherwise it is absent.  

4. Complexity of the Algorithm 
As the above parallel algorithm advances. The index value for the word to be searched will be calculated by 
available processors in steps as shown below in Figure 2. Here the proposed algorithm is implemented using the 
conceptual balanced binary tree designing technique, usually recognized as recursion tree [21]. 

As the conceptual balanced binary tree model is followed, the total number of nodes in the tree can be ex-
pressed as, 

( )2 1 1hn = + −                                       (1) 

here, h is the height of the tree. 
Also the total number of leaf nodes in a balanced binary tree can be expressed as, 

2hL =                                           (2) 
where, h is the height of the tree. 

As there will be m prime numbers to be multiplied, each belonging to an alphabet in the word. And multipli-
cation is a binary associative operation. So there will be (m/2) nodes in the tree at the leaf level.  

So, ( )2L m=                                      (3) 

Now using expression (2) and (3) the expression (1) can be modified and rewritten as, 

2 2 1h hn = + −  
or, 2 1n L= ⋅ −  

or, ( )2 2 1n m= ⋅ −   

or, 1n m= −                                      (4) 
 

 
Figure 2. Diagram showing parallel computation process for array index.                                           

 
Table 1. Prime Box for maximum word length of three characters.                                                 

 A B C D E F G H I J K L M N - - X Y Z 

1 2 3 5 7 11 13 17 19 23 29 31 37 41 43 - - 89 97 101 

2 103 107 109 113 127 131 137 139 149 151 157 163 167 173 - - 229 233 239 

3 241 251 257 263 269 271 277 281 283 293 307 311 313 317 - - 283 389 397 

Prime[2]Prime[1] Prime[m] Prime_
Index

X = Prime[1] *
Prime[2]

Prime_Index = 
Prime[m] *

Prime_Index

Prime_Index = X *
Prime_Index
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Using expression (1) and (4), We conclude that, 

( )12 1 1h m+ − = −   

or, ( )12h m+ =                                      (5) 

Now taking log of both sides of the expression (5), 

( ) ( )1
2 2log 2 logh m+ =  

or, ( ) ( ) ( )2 21 log 2 logh m+ ⋅ =  

or, ( )21 logh m+ =  

or, ( )2log 1h m= −                                    (6) 

Here, the height of the tree represents the total time needed for performing calculation. As height of the tree 
represents the total number of steps required for calculation and each step is performed in a unit time. Hence we 
can say that the time complexity for loop 3 in part 2 of the proposed algorithm is O(log2m) using O(m) proces-
sors. Here m is length of the input word. Also it is easy to see that the remaining steps in part 2 will take unit 
time. Hence making the overall search time complexity of the algorithm in part 2 as O(log2m). 

In case of loop 1, the operation performed in the inner loop will only take unit time. Which will make the 
overall time complexity of the loop 1 as O(1) using O(MV) processors [22]. Here M is length of the longest word 
present in the language set and V is total number of alphabets in the language set. 

Like loop 3, loop 2 in part 1 of the algorithm will also take O(log2m) time using O(m) processors [22]. Now 
considering the time complexity of the loop 2 in part 1 and acknowledging the fact that other operations that are 
outside the loop 2 in part 1 will take only unit time. We can state that the overall time complexity for building 
the datastructure in part 1 is also O(log2m). 

Now, for the deletion algorithm in part 3. The loop 4 will have the time complexity of O(log2m) using O(m) 
processors, as we have shown above for similar cases. The remaining steps of the part 3 will be executed in O(1) 
time. Hence for this part also the overall time complexity will be O(log2m). 

Hence, we can state that the proposed Prime Box algorithm can be solved in O(log2m) time using at least 
O(m/log2m) processors [22]. Now it is also clear that by using this parallel approach we have improved the time 
complexity of the algorithm to O(log2m). Which in the case of sequential approach would have been O(m).  

5. Proving Correctness of the Search Algorithm 
We will use mathematical Induction to prove the correctness of this search algorithm. We have to start from 
loop 3 in part 2 of the proposed algorithm. First we have to prove the precondition, that is searching a word of 
unit length. When the length of the input word is one. The for loop will run for only one time and then terminate. 
In the run only one step will be evaluated in unit time. In which two operands the Unique_Prime_Index with 
value one and the prime number from the prime box will be multiplied with each other to get the unique array 
index for the word. Hence the overall time taken will be of the order O(1) for the loop 3 in this case. Also each 
step in the algorithm that are outside loop 3 will be evaluated in unit time. Hence we can state that we can search 
a word of unit length in O(1) time. This can again be verified, as we know that the overall search time complex-
ity is O(log2m). The value of operands here are two. So the overall time complexity for this precondition will be 
O(log22) or O(1). 

Now we will prove that the above search algorithm will also work for some word of length (K + 1). As the 
word has length of (K + 1). So the number of leaf nodes in the conceptual balanced binary tree will be (K + 1)/2, 
because multiplication is binary associative operation. Now using expression (2) and (3) the expression (1) can 
be modified and rewritten as, 

2 2 1h hn = + −  
or, 2 1n L= ⋅ −  

or, ( )( )2 1 2 1n K= ⋅ + −   
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or, n K=                                        (7) 

Using expression (1) and (7), We conclude that, 

( )12 1h K+ − =   

or, ( )12 1h K+ = +                                    (8) 

Now taking log of both sides of the expression (8), 

( ) ( )1
2 2log 2 log 1h K+ = +  

or, ( ) ( ) ( )2 21 log 2 log 1h K+ ⋅ = +  

or, ( )21 log 1h K+ = +  

or, ( )2log 1 1h K= + −                                   (9) 

The for loop in loop 3 of part 2 will finally terminate after iterating for (K + 1) times, as (K + 1) is the length 
of the given input. Now, concluding from expression (9), we can say that time complexity in this case is log2(K 
+ 1). We also know that here length of the word m = (K + 1). So again we have proven that the time complexity 
for the loop 3 in part 2 is O(log2m). Further it is easy to see that the remaining steps of the search algorithm will 
be finished in O(1) time. Resulting in the overall time complexity of the search algorithm as O(log2m). So we 
can see that a word of (K + 1) length can be searched in log2(m) time. 

Hence by mathematical induction it is proved that for any given word of length m, we can search it in a time 
of O(log2m). 

6. Applying Parallel Prime Box Algorithm 
The Proposed algorithm has three parts. First is building the data structure, where insertion of words takes place, 
second is the search algorithm and third part is associated with the deletion of word from the datastructure. We 
can also update any word from the data structure if required. Actually this datastructure updating requires two 
functions working consecutively. First doing the deletion and then inserting the new word. We will see the 
working of the algorithm step by step starting with the insertion of the word “an”. 

Before we start first in loop 1 the Prime box data structure is created that is a Two dimensional m x 26 array 
of unique prime numbers stored in it. 

6.1. Building the Datastructure: Inserting the Word “an” 
Now we enter loop 2. Here a prime number for each alphabet of the word is retrieved from the prime box data-
structure and multiplied together to obtain the Unique_Prime_Index value. Then at that index in Location array 
we mark its entry true.  

Here, using the prime box datastructure mentioned in Table 1. We will get the prime values for “a” as 2 and 
for “n” as 173. Then these values will be multiplied to get a Unique_Prime_Index value for the word “an” as 
346. Then we set its entry true by marking Location [346] = 1 (See Figure 3). 

6.2. Search Algorithm: Searching the Word “an” 
We enter loop 3. Here a prime number for each alphabet of the word is retrieved from the prime box datastruc-
ture and multiplied together to obtain the Unique_Prime_Index value. Then we check at that index in Location 
array whether it is true or not. If it is true then we return that word is present otherwise we return false. 

Here, using the prime box datastructure mentioned in Table 1. We will get the prime values for “a” as 2 and 
for “n” as 173. Then these values will be multiplied to get a Unique_Prime_Index value for the word “an” as 
346. Then we check the entry at Location [346]. If it is “1” then return that the word is present otherwise return 
false (See Figure 4). 
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Figure 3. Building the datastructure: Inserting the word “an”.                                              

 

 
Figure 4. Search Algorithm: Searching the word “an”.                                                 

6.3. Deletion Algorithm: Deleting the Word “an” 
We enter loop 4. Here a prime number for each alphabet of the word is retrieved from the prime box datastruc-
ture and multiplied together to obtain the Unique_Prime_Index value. Then at that index in Location array we 
mark its entry False.  

Here, using the prime box datastructure mentioned in Table 1. We will get the prime values for “a” as 2 and 
for “n” as 173. Then these values will be multiplied to get a Unique_Prime_Index value for the word “an” as 
346. Then we set its entry false by marking Location [346] = 0 (See Figure 5). 

7. Results 
We have implemented the parallel approaches using C# and executed the code to get the data for different words 
with varying word length from the English dictionary. The column 'word' has the searched words and  another 
column 'search time' has the respective listing of the time taken by the algorithm to search those words. Here we 
have not mentioned any fixed database size or total number of words in the dictionary, as our novel approach is 
independent of the total size. 

With our current implementation in C#. It is only possible to lookup a word till word size of four. As increas-
ing the size further will create the index values that are outside the current range of the arrays defined in C#. 
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We can see the data obtained after executing the code for Prime Box algorithm in Table 2 (See Table 2). The 
plot for the search time is logarithmic graph, with another curved line for C*log2m as its upper bound (See Fig-
ure 6). This confirms that the time complexity for the proposed parallel algorithm is O(log2m). 

Eventually after analyzing the graph for the insertion time (See Figure 7) and deletion time (See Figure 8) of 
the algorithm. It is clear that the graph for C*log2(m) is the upper bound over both the graphs of insertion time 
and deletion time. This justifies their O(log2m) time complexity. 

Further we have implemented the Trie search algorithm in C#. The search time values for Trie algorithm to-
gether with the search time values for Prime Box algorithm are presented in Table 3 (See Table 3). We have 
considered Trie algorithm for comparison with the proposed algorithm as Trie algorithm is also free from the 
total number of words present in the dictionary and hence is also suitable for dynamic dictionary search. In the 
plots for both the algorithms (See Figure 9). The Trie algorithm has a linear graph with positive slope justifying 
its O(m) time complexity and Prime Box algorithm has a logarithmic curve justifying its O(log2m) time com-
plexity. It is clearly visible from the graphs in Figure 9 (See Figure 9) that the proposed Prime Box algorithm is 
more efficient than Trie search algorithm because of its smaller search time. 

 

 
Figure 5. Deletion Algorithm: Deleting the word “an”.                                        

 

 
Figure 6. Graph for search time of prime box Algorithm: Search time is O(lg m).                         



A. Pandey et al. 

 
142 

 
Figure 7. Graph for insertion time of prime box Algorithm: Insertion time is O (lg m).              

 

 
Figure 8. Graph for deletion time of prime box Algorithm: Deletion time is O (lg m).                 

 

 
Figure 9. Comparing search time graphs for TRIE and prime box parallel search Algorithm.           
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Table 2. Search times for both sequential and parallel approaches.                                                  

Insertion Using Prime Box Algorithm Search Using Prime Box Algorithm Deletion Using Prime Box Algorithm 

Word Search Time 
(microseconds) 

C*lg(m) 
For C = 0.3 Word Search Time 

(microseconds) 
C*lg(m) 

For C = 0.3 Word Search Time 
(microseconds) 

C*lg(m) 
For C = 0.3 

a 0.1477 0 a 0.1505 0 a 0.1476 0 

i 0.1468 0 i 0.1481 0 i 0.1491 0 

o 0.1465 0 o 0.1487 0 o 0.1481 0 

an 0.1928 0.3 an 0.195 0.3 an 0.1924 0.3 

as 0.1911 0.3 as 0.1971 0.3 as 0.1902 0.3 

at 0.1915 0.3 at 0.1967 0.3 at 0.1988 0.3 

be 0.1962 0.3 be 0.1962 0.3 be 0.1915 0.3 

by 0.1984 0.3 by 0.195 0.3 by 0.1971 0.3 

do 0.1954 0.3 do 0.1941 0.3 do 0.1947 0.3 

go 0.1928 0.3 go 0.1984 0.3 go 0.1963 0.3 

he 0.1962 0.3 he 0.1958 0.3 he 0.1972 0.3 

if 0.1941 0.3 if 0.1967 0.3 if 0.1935 0.3 

in 0.1962 0.3 in 0.1984 0.3 in 0.1954 0.3 

is 0.1924 0.3 is 0.1979 0.3 is 0.1928 0.3 

you 0.2364 0.475489 you 0.2343 0.475489 you 0.2202 0.475489 

all 0.2245 0.475489 all 0.242 0.475489 all 0.2322 0.475489 

any 0.2351 0.475489 any 0.237 0.475489 any 0.2364 0.475489 

can 0.2351 0.475489 can 0.2356 0.475489 can 0.221 0.475489 

her 0.2347 0.475489 her 0.2344 0.475489 her 0.2279 0.475489 

was 0.2262 0.475489 was 0.2357 0.475489 was 0.2266 0.475489 

one 0.2283 0.475489 one 0.2337 0.475489 one 0.2364 0.475489 

our 0.2236 0.475489 our 0.2332 0.475489 our 0.239 0.475489 

get 0.2381 0.475489 get 0.2345 0.475489 get 0.2309 0.475489 

army 0.2275 0.6 army 0.2465 0.6 army 0.2283 0.6 

atom 0.224 0.6 atom 0.2457 0.6 atom 0.233 0.6 

aunt 0.2249 0.6 aunt 0.2445 0.6 aunt 0.236 0.6 

aura 0.2283 0.6 aura 0.2465 0.6 aura 0.2347 0.6 

auto 0.221 0.6 auto 0.2442 0.6 auto 0.2253 0.6 

bait 0.231 0.6 bait 0.2452 0.6 bait 0.2334 0.6 

bank 0.2266 0.6 bank 0.2449 0.6 bank 0.2236 0.6 
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Table 3. Comparing search time of TRIE with prime box algorithm.                                                 

TRIE Search Prime Box Parallel Search 
Word Search Time (Seconds) Word Search Time (miliseconds) 

a 0.0063 a 0.001505 
i 0.0059 i 0.001481 
o 0.0061 o 0.001487 
an 0.0075 an 0.00195 
as 0.0074 as 0.001971 
at 0.0073 at 0.001967 
be 0.0074 be 0.001962 
by 0.0074 by 0.00195 
do 0.0076 do 0.001941 
go 0.0072 go 0.001984 
he 0.0074 he 0.001958 
if 0.0073 if 0.001967 
in 0.007 in 0.001984 
is 0.0069 is 0.001979 
it 0.0071 it 0.001994 

me 0.0073 me 0.001992 
my 0.0074 my 0.001945 
or 0.0075 or 0.001958 
ox 0.0074 ox 0.001945 
so 0.0078 so 0.001971 
to 0.0076 to 0.001988 
up 0.0072 up 0.001992 
we 0.0075 we 0.001954 
the 0.0086 the 0.002329 
and 0.0084 and 0.002323 
for 0.0085 for 0.002324 
are 0.0084 are 0.002323 
but 0.0083 but 0.002326 
not 0.0086 not 0.002342 
you 0.0085 you 0.002321 
all 0.0087 all 0.002313 
any 0.0084 any 0.002345 
can 0.0086 can 0.002336 
her 0.0085 her 0.002324 
was 0.0083 was 0.002347 
one 0.0084 one 0.002337 
our 0.0082 our 0.002342 
get 0.0086 get 0.002325 

abed 0.0095 abed 0.002404 
acme 0.0096 acme 0.002462 
agar 0.0098 agar 0.002416 
also 0.0096 also 0.002469 
area 0.0097 area 0.002404 
army 0.0098 army 0.002465 
atom 0.0098 atom 0.002457 
aunt 0.0097 aunt 0.002445 
aura 0.0098 aura 0.002465 
auto 0.0097 auto 0.002442 
bait 0.0096 bait 0.002452 
bank 0.0097 bank 0.002449 
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8. Conclusions 
Analyzing data and graphs provided, it is inferred that it is possible to lookup a word in a dynamic dictionary in 
O(log2m) time using the prime box parallel search algorithm. Unlike any other algorithm, this approach is inde-
pendent of the total number of words present in the dictionary and hence well suits the need for searching a dy-
namic dictionary with increasing size. 

Our main emphasis while designing this algorithm was to minimize the time complexity. Hence as future 
work, still there is scope for further improvement in the algorithm in terms of its space complexity. 
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