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Abstract 
This paper addresses the problem of inference for a multinomial regression model in the presence 
of likelihood monotonicity. This paper proposes translating the multinomial regression problem 
into a conditional logistic regression problem, using existing techniques to reduce this conditional 
logistic regression problem to one with fewer observations and fewer covariates, such that proba-
bilities for the canonical sufficient statistic of interest, conditional on remaining sufficient statis-
tics, are identical, and translating this conditional logistic regression problem back to the multi-
nomial regression setting. This reduced multinomial regression problem does not exhibit mono-
tonicity of its likelihood, and so conventional asymptotic techniques can be used. 
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1. Introduction 
We consider the problem of inference for a multinomial regression model. The sampling distribution of res-
ponses for this model, and, in turn, its likelihood, may be represented exactly by a certain conditional binary re-
gression model. 

Some binary regression models and response variable patterns give rise to likelihood functions that do not 
have a finite maximizer; instead, there exist one or more contrasts of the parameters such that as this contrast is 
increased to infinity, the likelihood continues to increase. For these models and response patterns, maximum li-
kelihood estimators for regression parameters do not exist in the conventional sense, and so monotonicity in the 
likelihood complicates estimation and testing of binary regression parameters. Because of the association be-
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tween binary regression and multinomial regression, multinomial regression methods inherit this difficulty. In 
particular, methods like those suggested by [1], using higher-order asymptotic probability approximations like 
those of [2], are unavailable in these cases, since the methods of [2] use values of the maximized likelihood, 
both with the parameter of interested fixed and allowed to vary, and use the second derivatives of the likelihood 
at these two points. 

[3] provides a method for diagnosing and adjusting for likelihood monotonicity for conditional testing in bi-
nary regression models. This manuscript extends this method to facilitate estimation in multinomial regression, 
for approximate inference, and in particular makes practical the use of the approximation of [2]. 

Section 2.1 reviews binary and multinomial regression models, and relations between these models that let 
one swap back and forth between them. Section 2.2 reviews conditional inference for canonical exponential 
families. Section 2.3 reviews techniques of [3] for performing conditional inference in the presence of likelihood 
monotonicity for binary regression, makes a suggestion for improving the efficiency of this earlier technique, 
and expands on its implication for estimation. Section 2.4 reviews some existing techniques for addressing like-
lihood monotonicity. Section 2.5 develops new techniques for detection of likelihood monotonicity in multi-
nomial regression models, and explores discusses non-uniqueness of maximum likelihood estimates in this case. 
Section 3 applies the techniques of Section 2.5 to some examples. Section 4 presents some conclusions.  

2. Methods and Materials 
This section describes existing methods used in cases of likelihood monotonicity in multinomial models, and 
presents new methods for addressing these challenges.  

2.1. Multinomial and Logistic Regression Models 
Methods will be developed in this manuscript to address both multinomial and binary regression models. In this 
section, relationships between these models are made explicit.  

Consider first the multinomial distribution. Suppose that M multinomial trials are observed; for trial 
{ }1, ,m M∈  , one of mJ  alternatives is observed, with alternative { }1, , mj J∈   having probability  

( ) ( )
1

exp exp .
mJ

mj mj mj mk mk
k

p n n
=

= ∑x xβ β                           (1) 

Here K
mj ∈ℜx  (for ℜ  representing the real numbers and K a positive integer) are covariate vectors asso-

ciated with each of the alternatives, and mjn  are the number of replicates with this covariate pattern. These 
probabilities depend only on on the differences between mjx  and mj′x  for j j′≠ ; without loss of generality 
we will take ( )0, ,0

jmJ
Τ=x  , treating the last category as a baseline. Let { }, 1, ,mW m M=   be independent 

random variables such that [ ] ,m mjW j pP = =  and let 1mjY =  if mW j=  and 0mjY =  if mW j≠ . Then the 
variables mW  are the indices of the selected multinomial outcomes, and mjY  are related indicator variables. 
The likelihood is given by  

( )
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Let mX  be the matrix with mJ  rows and K columns, with row j given by mjx , let ( )1, ,
mm m mJY Y

Τ
=Y  , 

and let ( )1 , , M

ΤΤ Τ=X X X  and ( )1 , , M

ΤΤ Τ=Y Y Y . Then sufficient statistics for β  are  

.Τ=S X Y                                        (3) 

The binary regression model is similar; let { }, 1, ,mV m M=   be independent binomial random variables 
with mass function  
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where K
m

′∈ℜz , and K ′  a positive integer. Sufficient statistics for β  are given by  
Τ=T Z V                                        (6) 

for Z  the M K ′×  matrix with row m equal to mz . 
The binary regression model can be recast as a multinomial regression model. Furthermore, the multinomial 

regression model may be expressed as a conditional binary regression model. Suppose that (1) and (2) hold. Let 
mE  be a matrix with mJ  rows and M columns, such that the entries in column m are all 1, and all other entries  

are 0. Let ( )1, ,
mm m mJY Y

Τ
=Y    

1 1 1

, and ,

m m M

   
   = =   
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X E Y
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with v  defined analogously, and let Τ=T Z V  and Τ=t Z v . 

2.2. Conditional Inference 
The model for T  given by (4)-(5) represents a canonical exponential family, and so inference on some com-
ponents of β  (without loss of generality, 1, , Iβ β ) may be performed by considering the sampling distribu-
tion of 1, , IT T  conditional on 1, ,I KT T ′+  . Let ( ),IQ tβ  represent the probability mass function for this con-
ditional distribution. The probability mass function for S  of (3), evaluated at s , is exactly the same as  

( ) [ ]1 1 1 1, , | , , ,I I I I K KQ T t T t T t T tP ′ ′+ += = = = =t  β
β

 

for ( )1, , , Mn n Τ=t s  . Note here the conditioning event for the larger model is expressed in terms of sample 
sizes in the smaller model. Furthermore, one can relate probabilities calculated with the regression parameters 
set to zero, to the probabilities for a general parameter vector β , by  
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When 1I = , define the confidence interval for one of the regression parameters (without loss of generality 
1β ) with nominal coverage 1 α−  for ( )0,1α ∈ , by  

( ) ( ) ( )
1 1

1 1

1 1 2 2, | , , , , , , , .
2 2K K

s t s t
t Q s t t Q s t tβ β

α αα β
≤ ≥
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  

∑ ∑                   (9) 

Then ( )1,T α  has coverage probability at least 1 α− , and can be used as a 1 α−  confidence interval. In 
fact, the coverage ( )

1 1 1,P Tβ β α∈    may be strictly greater than 1 α− , and more precise intervals with at  
least 1 α−  coverage may be constructed as ( )1,T α∗ , for  

( )
1

*
1 1 1min | , 1 .TP

β
α α β α α β∗  = ∈ ≥ − ∀   
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The cumulative probabilities implicit in (9) may be approximated as  

( ) ( ) ( )( )
1

1

,1 2, , , 1 1 1 ,K
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Q s t tβ ω φ ω ζ ω
≥

≈ −Φ + −∑                       (11) 

for Φ  and φ  the standard normal distribution function respectively, ( ) ( )( )ˆ2ω = − 

 β β , for ( ) β  the  
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logarithm of the likelihood (in the multinomial regression case, given by (2)), β̂  maximizing ( ) β , with data 
adjusted for continuity so that 1t  is reduced by half, β  maximizing ( ) β , with 1β  fixed at its null value,  

and ( ) ( )( ) ( )( )1 1 1
ˆ ˆdet detζ β β −′′ ′′= − 

 β β , with 1−′′  the matrix of second derivatives of   with respect to 

all but the first component of the argument [2]. 
Similar techniques may be applied to the multinomial regression model, with S  of (3) replacing T  of (6). 

Denote the conditional sample space by  

1 1
| .

M M

mj m mj m j
m m

z v j I z v s j I
= =

 = ∀ ≤ = ∀ > 
 
∑ ∑                         (12) 

2.3. Infinite Estimates 
This section reviews and clarifies techniques for inference in the presence of monotonicity in the logistic regres-
sion likelihood (4) given by [3], who built on results of [4]-[6], and [7]. Choose K∈ℜλ . Let  

( ){ }| lim 0 ,K

a
a

→∞
= ∈ℜ + >u u  λ

 
for   the logistic regression likelihood of (4) [3], building on the results of [4], determines which observations 
correspond to extreme fitted probabilities by maximizing the total number of positive entries in both ρ  and 
σ  subject to constraints outlined in the next theorem.  

Theorem 1. Suppose that random vectors V  arise from the model (4) and (5), and matrix Z  is of full rank. 
Then − 0  is exactly the set of vectors  

( ) ( )
1T T ,
−

= −u Z Z Z σ ρ                                (13) 

with ρ  and σ  column vectors such that ≠σ ρ  and such that  
0, 0 ,j j jσ ρ≥ ≥ ∀                                   (14) 

( ) ( ) ( )
1T T T T 0, and ,
− ⊥− − = − =t Z Z Z n Zσ ρ σ σ ρ 0                    (15) 

where T=T Z V  are the sufficient statistics associated with β , t  is the observed value of this vector T , 
and ⊥Z  is a matrix with M rows and rank M K ′− , such that Τ ⊥ =Z Z 0 .  

Furthermore, the conditional probabilities are the same as those arising if observations with positive entries in 
σ  or ρ  are omitted, and collinear covariates among columns 1, ,I K+   removed.  

The matrix ⊥Z  may be constructed from the QR decomposition of Z . Inference on components of β  for 
(4) may be performed conditionally, even when maximum likelihood estimates fail to exist, and hence (11) 
cannot be used [3].  

2.4. Other Approaches 
Suppose that there exists a vector u  such that  

0 if 1, 0 if 0,mj mj mj mjY YΤ Τ≥ = ≤ =u x u x                          (16) 

with strict inequality holding in place of at least one of the inequalities. Then the likelihood ( )L a+ uλ , defined 
in (2), is a strictly increasing function of a for any K∈ℜλ , and so no finite maximizer of L exists. This lack of 
a finite maximizer leads to difficulties with maximum likelihood estimation and inference. This section reviews 
some existing approaches. 

Bias-correction is possible for maximum likelihood estimators [8], and may be employed in this type of citua-
tion [9]. Estimates with this correction applied are the same as those maximizing the posterior density of the pa-
rameters under the invariant prior of [10], in which the likelihood function is multiplied by the square root of the 
determinant of the information matrix; this is equivalent to maximizing a penalized likelihood. That is, if 
( ) ( )( )log L= β β , for ( )L β  as in (2), then the approach of [8] suggests maximizing  
( ) ( ) ( )† 12det .′′= −  β β β  These estimates are always finite. A similar approach is possible in the case of 

proportional hazards regression, which also gives advantages for testing [11]. 
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Standard errors may be calculated from the second derivative of the unpenalized log likelihood [8]; one could 
also calculate standard errors from the second derivative of the penalized log likelihood [11]. This second ap-
proach is used in this manuscript for comparison purposes, and so the asymptotic confidence intervals consi-
dered below for 1β  is  

( ) ( )( )11
1 2 for argmax .zαβ ± =  

 β β β† †                         (17) 

Here the superscript 11 on †
  represents component 11 of the inverse second derivative matrix of   with 

respect to β . 
The approach using Jeffreys’ prior to penalize the likelihood has some disadvantages. The union of all possi-

ble confidence intervals resulting as the penalized estimator plus or minus a multiple of the standard error has a 
finite range, and so the confidence region procedure as described above has vanishing coverage probability for 
large values of the regression parameter.  

2.5. Estimation 
We investigate the behavior of maximum likelihood estimates in the multinomial regression model (2). Max-
imizers for both the original likelihood and for the likelihood of the distribution of sufficient statistics of interest 
(6) or (3) conditional on the remaining canonical sufficient statistics are considered. Conditional probabilities 
arising from the logistic regression model (4) are of form (2), and so may also be handled as below. 

Consider the occurrence of infinite estimates for model (2). Denote the sample space for the S  of (3) by  . 
For a canonical exponential family with finite support, the maximizer of the likelihood associated with a data 
point s  exists if and only if ( )hull∈s  , where ( )hull ⋅  represents the convex hull of its argument, and the 
superscript   represents the interior of the set it modifies ([12], Theorem 9.4). The following two corollaries 
may be used to determine if the finite maximizers of (2) exist, in terms of the observed sufficient statistic s  of 
(3). The first is a corollary to ([12], Theorem 9.4).  

Corollary 1. Unique finite maximizers of the likelihood given in (2) exist if and only if X  is of rank at least 
K, and the maximizer of c  subject to  

{ }
1 1 1

, 1 1, , .
m mJ JM

mj mj mj
m j j

m Mα α
= = =

= = ∀ ∈∑∑ ∑s x                          (18) 

{ } { }1, , , 1, ,mj mc m M j Jα ≥ ∀ ∈ ∈                            (19) 

is greater than zero.  
Proof. If X  is not of full rank, then multiple parameter values give the same value of Xβ , and maximizers 

cannot be unique.  
Suppose that X  is of full rank. The set   is defined from (3) as the set of multiples of rows of X , with 

the multipliers taken from { }0,1 , with the sum of indicators associated with a fixed m equal to 1. Let  
( ) ( ){ }| 18 and 19 hold, 0c= ≥s , and let ( ) ( ){ }| 18 and 19 hold, 0c+ = >s . The convex hull of   is  

given by  . By the theorem of [12], a finite estimator at the data point s  exists if and only if ( )hull∈s  . 
In this case, the interior is defined in terms of the topology of the subset of Kℜ  containing s  subject to (18). 
The proof is complete when one shows that ( )hull+ =   . Suppose that ( )hull∈s  . Let α  achieve the 
maximum as described in the statement of the corrolary. Choose m and j such that mjα  is as small as any com-
ponent of α . There exists jj ≠′ , mj J′ ≤ , such that 1mj mJα ′ ≥ . Let γ  be the vector configured like α , 
consisting of all zeros except for 1 in the ,m j  place and -1 in the ,m j′  place. There exists 0>  such that 
− ∈s Xγ  . Hence α  may be chosen so that all components of α − γ  are non-negative, and, in particular, 

0mjα ≥ > . Hence +∈s  .  
Now take +∈s  , let α  and c be as defined in (19), and choose any vector v . Since X  is of full rank, 

v  is expressible as =v Xγ , for ( )111 1 1, , , , , ,
MJ M MJγ γ γ γ

Τ
=   β . Since ( )0, ,0

mmJ
Τ=x   for all m, γ  

can be selected such that 1 1mJ
mjj γ= =∑  for all m. Let ( )2max mjc γ= . Then ( )hull− ∈s v  .  

One may determine whether such a c exists by maximizing c over non-negative c and 11, ,
MMJα α  satisfy-
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ing (18) and (19), and checking to see if the maximum is greater than zero. The above maximization may be 
done via the simplex algorithm. If ∈s  , then (18) and (19) are satisfied by the vector α  with zeros in each 
component except that corresponding to s ; this realization makes optimization of c more efficient. If the opti-
mization indicates that such a positive c exists, the maximizer of (2) may be determined using Fisher scoring. 

The second corollary follows directly from Theorem 1.  
Corollary 2. Suppose that the random vector Y  arises from the multinomial regression model (1) and (2). 

Use (7) to construct the implied conditional logistic regression model, and Theorem 1 to reduce the model to 
one with finite maximum likelihood estimates. Then standard asymptotic methods for conditional inference on 
model parameters of interest, including normal theory techniques and those of [1], can be used for testing and 
estimation.  

If either Corollary 1 or Corollary 2 indicates that finite maximum likelihood estimators do not exist, one 
might look for estimators in the extended real numbers { },ℜ = −∞ ∞ ℜ . In certain highly--structured cases, 
for example, when the sample space for certain stratified rank--based tests is embedded in a canonical exponen-
tial family [13], unique maximizers in Kℜ  can be show to exist. In general, unique estimators are known to 
exist in the extended real number only in the case when 1K = , since the profile likelihood obtained by setting 
one of the parameters to ±∞  will correspond to the likelihood of a similar model, with one parameter, and one 
or more observations, deleted. This reduced regression model need not be of full rank, and so the profile like-
lihood need not have a unique maximizer. The second example, in Section 3, involves a sample space containing 
points for which (conditional) maximum likelihood estimates cannot be extended unambiguously, even if al-
lowing infinite values for some components. 

[9] motivates the penalized likelihood approach for estimation in order to reduce biases of estimators. Since 
the standard approach to estimation in this case allows for infinite estimators, expectations of the conventional 
estimators do not exist, and so bias is an inappropriate criterion for our estimator. In what follows, the median 
bias (that is, the difference between the median of the sampling distribution of the estimator, minus the true val-
ue of the parameter) is used to assess quality of estimation.  

3. Results 
The following date reflects the results of a randomized clinical trial testing the effectiveness of a screening pro-
cedure designed to reduce hepatitis transmission in blood transfusions [9] [14]. The clinical trial was divided in-
to two time periods. The data may be summarized as in Table 1 [9]. Hepatitis outcome is modeled as a function 
of period ( 0S =  for early, and 1S =  for late), screening treatment ( 0T =  for standard, and 1T =  for the 
new method), and the interaction between period and treatment ( S T× ). The model also contains an intercept 
term (I). We treat the response as unordered categories. 

A log linear model is used, implying a comparison between each of the two hepatitis categories and the third 
no-disease baseline category. Each of these comparisons involves parameters for I, S, T, and S T× , for a total 
of 8 parameters. This model is saturated, in that there are as many parameters as there are potential table proba-
bilities. In our case, 4588M = , 3mJ =  for all m, and 8q = .  

The lack of any Hepatitis C cases among the treated individuals in the early period gives rise to infinite esti-
mate for the T and S T×  parameters in the comparison between Hepatitis C and healthy subjects. 

In this simple case, closed-form maximizers of (2) under the alternative hypothesis exists, since the alternative 
hypothesis may be viewed as a saturated model for a 2 2 3× ×  table. No closed-form maximizers of (2) exist 
under the null hypothesis, since this model is equivalent to the model with no three-way interactions.  

The sampling distribution of the sufficient statistics is available in under the hypothesis that all six S, T, and  
 

Table 1. Hepatitis data. 

Group 
Hepatitis Outcome: Response Variable 

C Non-ABC No disease 

Time 0 Treated 0 2 400 

Time 0 Untreated 5 3 389 

Time 1 Treated 3 10 1896 

Time 1 Untreated 5 11 1864 
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S T×  coefficients are zero. Exact enumeration techniques may be used to enumerate all possible tables 4 3×  
tables, and their probabilities [15], under the assumption that treatment and time combinations are independent 
of disease status. There are 2,046,240 such tables.  

Inference on the two S T×  parameters may be performed by conditioning the distribution of the associated 
sufficient statistics for the interaction terms on sufficient statistics associated with the T, S, and I parameters. 
This conditioning is equivalent to conditioning on Hepatitis C and non-ABC Hepatitis totals for each treatment 
group, and each time period, separately. After performing this conditioning, 24 tables remain, with 6 distinct 
values for the effect of the S T×  interaction on Hepatitis C, and 4 distinct values for the effect of the S T×  
interaction on non-ABC hepatitis. This yields six tables for inference on the interaction effect on Hepatitis C, 
and four for inference on the interaction effect on non-ABC hepatitis. Figure 1 shows the median bias for esti-
mation of the effect on Hepatitis C, indicating a small advantage for the uncorrected estimates. Figure 2 shows 
coverage of penalized likelihood asymptotic confidence intervals (17), and exact intervals (9), using (10). In this 
case, exact intervals are readily available, and have far better coverage properties than the asymptotic intervals; 
in particular, note that the asymptotic intervals have zero coverage for sufficiently large absolute values of the 
parameter of interest. Values presented in Figure 1 are summarized in Table 2, and values presented in Figure 
1 are summarized in Table 3. The range presented in Table 2 are heavily dependent on the range of parameter 
values examined in Figure 1, and are intended only for comparison among the two methods.  

 

 
Figure 1. Median bias. 

 

 
Figure 2. Coverage for various two-sided confidence interval procedures. 
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A second example concerns polling data related to British general elections [16]. The data set investigated 
here represents a subset of voters in one of eight geographic areas (London North, London South, Greater Man-
chester, Merseyside, South Yorkshire, Tyne and Wear, West Midlands, and West Yorkshire), and includes sur-
vey respondents who provided their ages and an informative response to a question measuring age at which 
education was finished (coded as 1 = 15 or younger, 2 = 16, 3 = 17, 4 = 18, 5 = 19 or older), and reported a party 
of preference, and party of intended vote in the 2005 election. Three parties (Conservative, Labor, and Liberal 
Democrat) were reported as answers to these last two questions. The resulting data set included 67 individuals. 
We model voting choice as a function of usual party preference and education, treated as an ordinal variable. In 
this case, 8K = , with covariates representing the effects of Labor and Liberal Democratic Party membership, 
and education, on the propensity to vote for Labor, and the same effects on the propensity to vote for the Liberal 
Democrats, plus intercept terms for Labor and Liberal Democrats. Membership in the Conservative Party, and 
choice of the Conservative Candidate, are taken as baseline. We explore the effect of education on the propensi-
ty to vote for the Labor candidates. 

The null distribution of this data set cannot be trivially expressed as the independence distribution for a con-
tingency table. One might enumerate the conditional sample space for the sufficient statistics vectors of (3), and 
the associated conditional probabilities [17]; this calculation, however, took over 16 hours to complete when 
coded in FORTRAN 90 and run on a 2.6 GHz processor with a 1 GB cache and 8 GB of memory, and is too in-
tensive for routine use. This condition distribution is tabulated in Table 4. Figure 3 shows the median bias for 
estimates [8] and the proposed method, explicitly recognizing infinite estimates associated with the extreme 
points in the conditional sample space. While the median bias for both estimators is poor, the corrected estimator 
generally performed better than the uncorrected estimator, as reported by other authors.  

This manuscript is primarily concerned with producing confidence intervals. One might use the asymptotic 
intervals calculated using the penalized likelihood (17), or (9), with probabilities calculated exactly using Table 
4 in conjunction with (8) and the nominal level adjusted using (10), or (9), with cumulative probabilities ap-
proximated (in the present case using a double saddlepoint conditional distribution function approximation of 
[2]). Table 5 shows the resulting confidence intervals, and Figure 4 shows the coverage of these intervals. As  

 
Table 2. Median bias in two estimation methods for hepatitis data. 

 Maximized Posterior Conditional MLE 

Minimum −0.986 −∞ 

Maximum 0.967 ∞ 

 
Table 3. Minimal coverage for two confidence interval methods for the hepatitis data. 

 Asymptotic, based on posterior Exact 

Minimum 0 0.950 

 
Table 4. Probabilities ( ),1Q t0  of sufficient statistic associating education with labor party voting, conditional on sufficient 
statistics for other variables in model. 

Sufficient Statistic Number of Corresponding Conditional 

Value Response Vectors Probability 

73 8673 0.03214 

74 9009 0.03339 

75 1335 0.00495 

76 26,208 0.09712 

77 62,412 0.23129 

78 22,440 0.08316 

79 15,120 0.05603 
80 65,484 0.24268 
81 59,160 0.21924 
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Table 5. Two-sided confidence intervals for the effect of education on voting for labor candidate. 

Sufficient Interval Type 

Statistic Value (17) Exact Saddlepoint 

73 (−1.934, 0.118) (−∞, −0.086) (−∞, −0.242) 

74 (−1.508, 0.134) (−2.996, 0.052) (−8.668, 0.122) 

75 (−1.264, 0.204) (−1.478, 0.068) (−3.420, 0.400) 

76 (−1.092, 0.296) (−1.436, 0.310) (−2.246, 0.712) 

77 (−0.958, 0.408) (−1.180, 0.674) (−1.624, 1.118) 

78 (−0.848, 0.548) (−0.784, 0.816) (−1.216, 1.712) 

79 (−0.760, 0.728) (−0.666, 1.010) (−0.910, 2.850) 

80 (−0.694, 0.990) (−0.616, 3.056) (−0.632, 8.042) 

81 (−0.696, 1.492) (−0.406, ∞) (−0.216, ∞) 

 

 
Figure 3. Median bias. 

 

 
Figure 4. Coverage for various two-sided confidence interval procedures. 

 
noted above, coverage for the asymptotic interval is zero for 1β  below the lowest possible confidence interval 
endpoint, and above the highest possible confidence interval endpoint; since each of these intervals is finite, and 
since there are only a finite number of these intervals, coverage is zero outside of a bounded interval for the pe-
nalized likelihood intervals (17). Coverage for the asymptotic saddlepoint interval is mostly quite good, except 
for one area in the middle. This poor performance near 1 0β =  can be attributed to the fact that for 1 73t = , the 
saddlepoint confidence interval is shifted to the left relative to the exact interval, and so the saddlepoint interval  
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Figure 5. Conditional sample space for education effects. 

 
fails to cover some values of 1β  that the exact interval covers. See the first row in Table 5. Furthermore, this 
most extreme value of 1t  has a considerable amount of conditional probability attached to it; see Table 4.  

In practice, Table 4, and hence the exact intervals in Table 5 and Figure 4, are not computationally feasible. 
The saddlepoint confidence intervals are computationally feasible, but when the entire sufficient statistic vector 
lies on the boundary of the convex hull of the sufficient statistic sample space, the methods of Corollary 2 are 
required to apply these methods.  

One can also consider simultaneous inference on both education parameters. Figure 5 displays the conditional 
sample space for these the sufficient statistic vectors for the effects on education on preference for Labor and 
Liberal Democratic Candidates. Corollary 1 indicates that the observed sufficient statistic vector (indicated by  
in the figure) corresponds to finite estimates. Note that the point indicated by Δ is an example of one corres-
ponding to ambiguous estimates; the parameter associated with the first component is clearly estimated as −∞ . 
The conditional likelihood associated with this sample space, with the first component of the parameter set to 
−∞ , corresponds to the sampling distribution consisting of only the point Δ; this space is degenerate, and any 
value for the second parameter is equally preferred. The point at the opposite corner of the parallelogram in 
Figure 5 exhibits similar behavior. Values presented in Figure 4 are summarized in Table 2, and values pre-
sented in Figure 5 are summarized in Table 3. The range presented in Table 2 are heavily dependent on the 
range of parameter values examined in Figure 4, and are intended only for comparison among the two methods. 

4. Conclusion 
This paper presents an algorithm for converting a multinomial regression problem that features nuisance para-
meters estimated at infinity to a similar problem in which all nuisance parameters have finite estimates; this 
conversion is such that the distribution of a sufficient statistic associated with the parameter of interest, condi-
tional on all other sufficient statistics, remains unchanged. These conditional probabilities in the reduced model 
may be approximated using standard asymptotic techniques to yield confidence intervals with coverage behavior 
superior to those that arise from, for example, asymptotics derived from the likelihood after penalizing using 
Jeffreys’ prior.  
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