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Abstract 
In this paper, we propose a schistosomiasis model in which two human groups share the water 
contaminated by schistosomiasis and migrate each other. The dynamical behavior of the model is 
studied. By calculation, the threshold value is given, which determines whether the disease will be 
extinct or not. The existence and global stability of the parasite-free equilibrium and the locally 
stability of the endemic equilibrium are discussed. Numerical simulations indicate that the diffu-
sion from the mild endemic village to severe endemic village is benefit to control schistosomiasis 
transmission; otherwise it is bad for the disease control. 
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1. Introduction 
Schistosomiasis is frequently a serious health problem, which was first described by Theodor Bilharz in 1851, 
after whom the disease was initially named bilharzia [1]. The WHO has recently identified schistosomiasis as 
the second most important human parasitic disease in the world, after malaria [2]. The infection is endemic in 
approximately 70 countries with about 200 million people affected worldwide [3], and resulting in about 200,000 
deaths annually [4]. Despite major advances in its control that have lead to substantial decreases in morbidity 
and mortality, schistosomiasis continues to spread to new geographic areas [5]. Although significant progress 
has been made in chemotherapy with safer and more effective drugs, these cannot prevent the high reinfection 
rates of schistosomes, and there have been dramatic recurrences in both its prevalence and associated morbidity 
[6]. 

During their complex developmental cycle, schistosomes alternate between a mammalian host and a snail host 
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through the medium of fresh water. Mammals are infected by free-swimming larval forms of the parasite called 
cercariae. These larvae enter through the skin, and mature through different larval stages while circulating 
through the blood to the lungs before entering the hepatic portal system as mature males and females. They 
release thousands of eggs daily, which are discharged in the faeces after a damaging passage through the 
intestinal wall. Once into the fresh water, the eggs hatch and produce free-swimming miracidia, which infect 
amphibious snails from the genus Oncomelania. The miracidia reproduce asexually through sporocyst stages 
within these intermediate hosts, resulting in the production of many free-swimming cercariae [7]-[10]. 

MacDonald (1965) was the first to use simple mathematical models to study the transmission dynamics of 
schistosomiasis [11]. The earliest models of schistosomiasis described the population sizes of both humans and 
snails to be constant [11] [12]. In [11] [13] [14], authors considered that models were based on describing the 
dynamics of transmission between man and snails. Previous several models focused on the interactions between 
one group of human hosts and schistosomes in a contaminated water resource(for example [15] [16]). However, 
in realistic situations, the contaminated water might be shared by several human groups. In [15], Feng et al. 
proposed a model that described the disease dynamics involved two migrated human groups. They also analyzed 
the mathematical properties of the systems. Meanwhile, they established models with multiple human groups and 
found some structurally similarities between the models involved two human groups and those involved n groups. 

Incidence rate plays an important role in the modeling of epidemic dynamics. In many epidemic models, the 
bilinear incidence rate SIβ  and the standard incidence rate SI Nβ  are frequently used. The saturated 
incidence rate ( )1SI Iβ +  , where Iβ  implicits the infection force of the schistosomiasis and ( )1 1 I+   
with 0>  describes the psychological effect or inhibition effect from the behavioral change of the susceptible 
individuals with the increase of the infective individuals. It seems more reasonable than the bilinear incidence 
rate SIβ , and it is a good approximation if the number of available partners is large enough and everybody 
could not make more contacts than is practically feasible, and includes the behavioral change and crowding 
effect of the infective individuals and prevents the unboundedness of the contact rate [17]-[19]. In this paper, we 
develop a new mathematical model with saturated incidence function and diffusion effect. In many literatures 
[20]-[22], the diffusion effect is studied. Numerical simulations demonstrate that the diffusion effect is an 
important parameters for epidemic transmission or species survival. 

In order to keep the model manageable, Feng et al. assumed that the disease-induced death rate of snails 
0sd =  in [10]. Previous studies suggested that the disease-induced death rate of snails sd  was an important 

parameter in the study of population dynamics [23]. In this paper, we investigate firstly a schitosomiasis model 
with saturated incidence and diffusion effect, in which the disease-induced death rate of snails sd  is taken into 
consideration. Further, by the spectral radius theory, we get the threshold value 0R , below which the parasites 
die out, and above which the disease persists. When the threshold 0 1R = , we consider that the model may 
produce a bifurcation. And we study that exchange of stability between disease-free and endemic equilibria at 
bifurcation point. 

This paper is organized as follows. In Section 2, we introduce model formulation. In Section 3, we analyze 
equilibria states of model. The basic reproduction number of the model is determined and the stability of the 
equilibria is studied. Numerical simulations and control strategies are presented in Section 4. Finally, we 
summarize and discuss the results in Section 5.  

2. Model Formulation 
In [16], Feng et al. proposed a schistosomiasis model with age dependence:  
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where N, P, S, I, C denote the numbers of human hosts living in village, adult parasites that are hosted by human 
hosts in village, uninfected snails, infected snails and free-living cercaria, respectively. τ  is infection-age, and 
( ),x t τ  is the infection-age density of snails at time t. k is the clumping parameter which determines the degree 

of over-dispersion in the negative binomial distribution. The following parameters is used in system (1), all of 
them positive,  

hΛ  is the recruitment rate of human hosts; 
sΛ  is the recruitment rate of snails; 

hµ  is the per capita natural death rate of human hosts; 
pµ  is the per capita death rate of adult parasites; 

α  is the disease-induced death rate of humans per parasite; 
σ  is the effective treatment rate of human hosts; 

sµ  is the per capita natural death rate of snails; 
sd  is the disease-induced death rate of snails; 

ξ  is the per capita (successful) rate of infection of snails by miracidia produced by one pair of adult 
parasites; 

β  is the per capita (successful) rate of infection of humans by one cercaria; 
( )r τ  is the releasing rate of cercariae, when the infection age is τ .  

In [15], Feng el at. considered two neighboring villages sharing the same contaminated water resource and 
migrated between these two villages, and proposed the following model which based on the system (1).  

( ) ( ) ( )

1 2
,1 1 1 2,1 2 1,2 1 ,2 2 2 1,2 1 2,1 2

2 2
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        (2) 

where ,i h p iδ µ µ α σ= + + +  hiΛ  is the recruitment rate of human hosts of village i and ,i jm  is the 
immigration rate of human hosts from village i to village j, ( ), 1, 2i j = . For system (2), Feng el at. made the 
following assumptions: 

1) the snails do not move; 
2) the parasites are overdispersed; 
3) they have negative binomial distributions among human hosts with clumping parameters ik ; 
4) the releasing rate of cercariae is infection-age independent, i.e., ( )r τ γ≡ . Thus, ( ) ( )C t I tγ= . 
In system (2), authors introduced the bilinear incidence rate NIβ . Whereas the number of uninfected snails 

is limited within a certain time which contacted by the adult parasites. So the saturated incidence may be more 
suitable for the realistic situation. The following new model with the saturated incidence function is derived:  

( ) ( ) ( )
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        (3) 

where   is limitation of the growth velocity of infection of snails. In a contaminated water resource, many 
people are infected, which develops into chronic disease if not treated. Current control programs primarily focus 
on chemotherapy with Praziquantel, it is a new drug that is very effective, they can almost kill the adult parasites 
which reside within the patient. Thus, the disease-induced death rate of human hosts α  is very small. For 
analysing the properties of the model, we let 0α = . Then the first two equations become: 
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The equilibrium points are obtained by setting the right-hand side of system (4) to zero, we solve the 
following system of equations:  

,1 1 2,1 2 1,2 1

,2 2 1,2 1 2,1 2

0,
0.

h
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N m N m N
N m N m N

µ

µ

Λ − + − =

Λ − + − =
                             (5) 

The unique solution of system (5) is ( )* *
1 2,N N , which is globally asymptotically stable, where  
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with , 1, 2i j =  and i j≠ . 
Therefore, we have the following four-dimensional limit system of system (3) which summarizes the above 

result.  
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                               (6) 

The existence and the uniqueness of solutions of system (6) can be proved by using standard methods (see, for 
example, [24]).  

3. Equilibrium States  
In this section, the equilibrium states of system (6) are discussed. The system (6) admits two steady states. We 
establish sufficient condition for the globally asymptotic stable of infection-free solution and for the permanence 
of the system (6).  

3.1. Boundedness 
The model (6) describes the dynamics of adult parasites and snail. It is important to prove that these populations 
are positive and bounded for 0t >  with any positive initial data. So we have the following results.  

Theorem 1. If ( ) ( ) ( ) ( )( )1 2, , ,P t P t S t I t  is any solution of system (6), and ( )1 0 0P > , ( )2 0 0P > , 
( )0 0S >  and ( )0 0I > , then ( )1 0P t > , ( )2 0P t > , ( )S t , ( ) 0I t >  for all 0t > .  
Proof. From the first equation of system (6), we have  

1
1 1

d .
d
P P
t

δ> −  

After integrating, we obtain  

( ) ( ) { }1 1 10
0 exp d 0,

t
p t p tδ≥ − >∫  
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( ) ( ) { }2 2 20
0 exp d 0,

t
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( ) ( ) ( )( ){ }1 20
0 exp d 0,

t
sS t S P P tµ ξ≥ − + + >∫  

and  

( ) ( ) ( ){ }0
0 exp d 0.

t
s sI t I d tµ≥ − + >∫   
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Hence, we conclude that the solution ( ) ( ) ( ) ( )( )1 2, , ,P t P t S t I t  of system (6) is always positive for all 
0t > .  

Theorem 2. For any nonnegative initial data, the solution ( ) ( ) ( ) ( )( )1 2, , ,P t P t S t I t  of system (6) are 
bounded for all time.  

Proof. From the last two equations in system (6), we have  

( ) ( ) ( )d
.

d s s s s s
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S I d I S I
t
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= Λ − + − ≤ Λ − +  
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It follows from the first and second equations of (6) and (7) that  
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Similarily above, ( )( )*
1 1 1s s sNβ γ δ µΛ + Λ  and ( )( )*

2 2 2s s sNβ γ δ µΛ + Λ  is a ultimately upper bound of 
1P  and 2P , respectively. The proof is completed.  
The equilibrium states of the basic model are obtained by setting the right-hand side of system (6) to zero. 

The system (6) has two steady states of the disease-free equilibrium 0E  and the endemic equilibrium *E .  

3.2. The Disease-Free Equilibrium  
At the disease-free state, there is no adult parasitrs and infected snails and hence no infection in the host and the 
intermediate host. Thus, the system (6) has a disease-free equilibrium  

( ) ( )0 0
1 2, , , 0, 0, , 0 ,E P P S I S= =  

where 0 .s sS µ= Λ  
In many epidemic models, the basic reproductive number 0R  is a key parameter. It refers to the expected 

number of secondary infections during the entire period of infectiousness in a completely susceptible population 
[25]. Following the idea in [26], we give the basic reproductive number for system (6). Rewrite system (6) as 
following form:  

( )
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d , ,
d

S f S Y
t
Y h S Y
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=

=
 

where ( )1 2, ,Y P P I= . S denotes the number of uninfected snails, while components of Y represent the number 
of adult parasites that are hosted by human hosts in Village ( )1, 2i i = , and infected snails, respectively. 
Following the symbol in [26], we compute matrixes A, M and D as  
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where A F V= − . Obviously, 0F ≥  and 0V >  is a diagonal matrix. The basic reproductive number is the 
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spectral radius (dominant eigenvalue) of the matrix 1FV − , that is,  

( )1
0 .R FVρ −=  

Thus, in this case  

( ) ( )
* 0 * 0

2 21 1 2 2
0 1 2

1 2
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                        (9) 
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N SR
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=
+

 and 
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* 0
2 2

2
2

.
s s

N SR
d

β γ ξ
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=
+

 

We know that 1R  presents the schistosomiasis transmission coefficient in village 1, and 2R  represents the 
schistosomiasis transmission coefficient in village 2. 

From above discussion, we have following result. 
Theorem 3. The disease-free equilibrium point 0E  is locally asymptotically stable if 0 1R <  and unstable 

if 0 1R > .  
Next, we give two conditions which guarantee the global asymptotic stability of the disease-free state. 

(H1) For ( )d , 0
d
S f S
t
= , 0

s sS µ= Λ  is globally asymptotically stable. 

(H2) ( ) ( ), ,h S Y AY h S Y= −  , ( ), 0h S Y >  for ( ) 4,S Y R+∈ , where ( )T
1 2, ,Y P P I= , ( )0

YA D h E=  is an 
M-matrix. 

For system (6), we have 
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and A is given in (8). It is clear that ( ), 0h S Y >  for all ( ) 4,S Y R+∈ . It is easy to see that the conditions (H1) 
and (H2) hold. According to the result of literature [26], we have the following result. 

Theorem 4. The disease-free equilibrium ( )0 00, 0 , , 0E S=  is globally asymptotically stable provided that 
0 1R <  and the assumptions (H1) and (H2) are satisfied.  

3.3. The Endemic Equilibrium  
First, we show the existence of the unique endemic equilibrium ( )* * * * *

1 2, , ,E P P S I=  when 0 1R > . Ex- 
pressing in terms of *I , we can derive from system (6) as follows. 

( ) ( ) ( )
* * * *

* * *1 1 2 2
1 2* * * *

1 2 1 2

, ,
1 1

s

s

I N I NP P S
I I P P

β γ β γ
δ δ µ ξ

Λ
= = =

+ + + + 
 

Substituting the expressions for *
1P , *

2P  and *S  into the fourth equation of system (6) we get  

( )* * 0,I B CI− =                                     (10) 

where  

( )* *
2 1 1 1 2 2 1 2 ,s s s s sB N N dξ δ β γ ξ δ β γ µ δ δ µ= Λ + Λ − +  

( ) ( )* *
2 1 1 1 2 2 .s sC d N Nµ ξδ β γ ξδ β γ= + + +  

By solving (10) for *I  we get one of the solutions as * 0I =  which corresponds to the disease-free 
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equilibrium. For 0 1R >  implies that 0B > . Since 0C > , then the endemic equilibrium exists. The results of 
the existence of the endemic equilibrium of system (6) can be summarized in the following lemma.  

Lemma 5. The system (6) always has a disease-free equilibrium and a unique endemic equilibrium when 
0 1R > .  
Center Manifold Theory [19] has been used to determine the local stability of a nonhyperbolic equilibrium, 

we now employ the Center Manifold Theory to establish the local asymptotic stability of the endemic equili- 
brium. In order to apply the Center Manifold Theory, we make the following change of variables. Let 1 1P x= , 

2 2P x= , 3S x= , 4I x= . Now we use the vector notation ( )T
1 2 3 4, , ,X x x x x= . Then the system (6) is written 

in following form  
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1 2 3 4

d , , , ,
d
X f f f f
t
= =  

such that  

( )
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1 1 1 1
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2 4 2

2 2 2 2
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3 3 3 1 2 3
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x Nx f x
x

x Nx f x
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x f x x x d x
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β γ δ
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= = −
+

= = −
+

= = ∧ − − +
= = + − +












                          (11) 

Evaluating the Jacobian matrix of system (11) at the disease-free equilibrium, it can be shown that the 
reproduction number is  

( ) ( )
* 0 * 0

1 1 2 2
0

1 2

.
s s s s

N S N SR
d d

β γ ξ β γ ξ
δ µ δ µ

= +
+ +

 

Take 1β  as the bifurcation parameter. Considering the case 0 1R =  and solving for 1β , we get  

( ) 0 *
1 2 1 2 2*

1 1 0 *
2 1

.s sd S N
S N

δ δ µ δ β γξ
β β

δ γξ
+ −

= =  

We notice that the linearized system (11) of the transformed equation with *
1 1β β= , has a simple zero 

eigenvalue. Hence, Center Manifold Theory can be used to analyze the dynamics of (13) near *
1 1β β= . By 

Theorem 4.1 in Castillo-Chavez and Song [27], it can be shown that the Jacobian matrix at *
1 1β β=  has a right 

eigenvector of ( )0J E  associated with the zero eigenvalue given by [ ]T1 2 3 4, , ,u u u u u= , where  

( )0 0 ** * *
1 4 1 2 2 11 1 4 2 2 4

1 2 3 4 4
1 2 1 2

, , , 0.
N S uN u N uu u u u u

ξγ β δ β δγβ γβ
δ δ δ δ

− +
= = = = >  

The left eigenvector of ( )0J E  associated with the zero eigenvalue at *
1 1β β=  is given by [ ]T1 2 3 4, , ,v v v v v= , 

where 
0 0

4 4
1 2 3 4 4

1 2

, , 0, 0.S v S vv v v v vξ ξ
δ δ

= = = = >  

We now use the following lemma whose proof is found in [27].  
Lemma 6. Consider the following general system of ordinary differential equations with a parameter φ ,  

( ) ( )2d , , : , ,
d

n nx f x f f
t

φ= × → ∈ ×                            (12) 

where 0 is an equilibrium of the system, that is ( )0, 0f φ =  for all φ  and assume  

A1: ( ) ( )0,0 0,0i
x

i

fA D f
x

 ∂
= =  ∂ 

 is the linearization of system (12) around the equilibrium 0 with φ   

evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts; 
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A2: Matrix A has a right eigenvector u and a left eigenvector v corresponding to the zero eigenvalue. Let kf  
be the kth component of f and  

( ) ( )
2 2

, , 1 , 1
0, 0 , 0,0 ,

n n
k k

k i j k i
k i j k ii j i

f fa v u u b v u
x x x φ= =

∂ ∂
= =

∂ ∂ ∂ ∂∑ ∑                        (13) 

The local dynamics of (12) around 0 are totally governed by a and b. 
1) 0, 0a b> > . when 0φ <  with 1φ  , 0 is locally asymptotically stable, and there exists a positive 

unstable equilibrium; when 0 1φ<  , 0 is unstable and there exists a negative and locally asymptotically 
stable equilibrium; 

2) 0, 0a b< < . when 0φ <  with 1φ  , 0 is unstable; when 0 1φ<  , 0 is locally asymptotically stable, 
and there exists a positive unstable equilibrium; 

3) 0, 0a b> < . when 0φ <  with 1φ  , 0 is unstable, and there exists a locally asymptotically stable 
negative equilibrium; when 0 1φ<  , 0 is stable and a positive unstable equilibrium appears; 

4) 0, 0a b< > . When φ  changes from negative to positive, 0 changes its stability from stable to unstable. 
Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.  

We now compute a and b, for system (11), the associated non-zero partial derivatives of   at the disease 
free equilibrium ( )* *

30,0, , 0x x=  are given by  
2 2 2 2 2 2

* * *1 2 4 4 4 4
1 1 2 22 2

1 3 2 3 3 1 3 24 4

2 , 2 , , , , .
f f f f f fN N

x x x x x x x xx x
β γ β γ ξ ξ ξ ξ

∂ ∂ ∂ ∂ ∂ ∂
= − = − = = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
   

Substituting the above expressions into (13), we get  

( ) ( ) ( )0 2 * * * 2 * 2 0 * 2 * * *
4 4 2 1 1 1 2 2 1 1 4 4 1 2 2 1 1 2

1 2 1 2

2 0.
S v u N N S N v u N N

a
γ ξ δ β δ β γ β ξ β δ β δ

δ δ δ δ

 + + +
 = − + <
 
 


 

For the sign of b, it is associated with the following non-vanishing partial derivatives of  ,  
2

*1
1*

4 1

.f N
x

γ
β

∂
=

∂ ∂
 

It follows from the above expression that  
0

* 4 4
1 4 1

1

0.S v ub v u N ξγ
δ

= = >  

Thus, 0a <  and 0b > . According to Lemma 6, item (iv), we can yield the following result which only 
holds for 0 1R > , but close to 1. 

Theorem 7. The unique endemic equilibrium *E  is locally asymptotically stable for 0R  near 1.  
In summary, model (6) has a disease-free equilibrium which is globally asymptotically stable when 0 1R < , 

and a unique endemic equilibrium point when 0 1R > . The unique endemic equilibrium is locally asymptotically 
stable at least near 0 1R = . We use numerical simulations to show the existence and stability of endemic 
equilibrium.  

4. Numerical Simulations and Control Strategies 
In this section, in order to understand our results more intuitively, some numerical simulations of system (6) that 
support and extend the conclusions of previous sections are carried out. We use year as unit of time, and choose 
the parameters 1 0.0005β = , 2 0.001β = , 10γ = , 12 0.0011m = , 21 0.0009m = , 0.001sd = , 0.2sµ = , 

0.014hµ = , 0.3pµ = , 0.000000001α = , 1 0σ = , 2 0.2σ = , 1 5.6hΛ = , 2 11.2hΛ = , 2000sΛ = , 
0.002ε = . 

In Figure 1, we show the relationship between the threshold 0R  and adult parasites 1 2P P+  for the 
mathematical model (6). It is easy to see that 0 1R =  is a bifurcation point, and the adult parasites 1 2P P+  are 
stable eventually, when the threshold 0R  increases. Otherwise, the adult parasites 1 2P P+  are extinct. It 
implies that the threshold 0R  is greater than unit, the schistosomiasis will be endemic. Figure 1 and Figure 2 
show that if the threshold 0R  is less than unit, the schistosomiasis will be extinct. 
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Figure 1. The relationship between the threshold 0R  and 1 2P P+  for system (6).                         

 

 
Figure 2. Time series of solutions for system (6). The disease will be extinct eventually. 

00.00000024, 0.52400000Rξ = = .                                                                                                     
 
To see the relative effect of migration in each village, we plot the curved surface of the relationship between 

1,2m , 2,1m  and 0R . From Figure 3 and Figure 4, we can observe that 0R  decreases dramatically when 1,2m  
increases and 2,1m  is fixed with a small number, and 0R  increases sharply when 2,1m  increases and 1,2m  is 
fixed with a small number. This implies that the migration from severe endemic village to mild endemic village 
is bad for disease control. 

In Figure 5, we consider the infection rates 1β , and 2β  as the control factors. We plot the curved surface of 
the threshold 0R  as a function of 1β  and 2β . We observe that the threshold 0R  decreases dramatically 
when 2β  and 1β  decrease. It means that decreasing infection rates is helpful to prevent schistosomiasis 
transmission. 

5. Conclusion and Discussion 
As a kind of the tropical diseases, schistosomiasis continues to be a significant public health threat in the world.  
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Figure 3. It shows sensitive figure that the relationship between the threshold 0R  and migrated 
rate 1,2m , 2,1m .                                                                                                     

 

 
Figure 4. The relationship between the threshold 0R  and migrated rate 1,2m , 2,1m .                                                   

 

 
Figure 5. It shows sensitive figure that the relationship between the threshold 0R  and migrated 
rate 1β , 2β .                                                                                 
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Following the pioneering work of Feng et al. [16] on modeling schistosomiasis, we establish and analyzed a 
schistosomiasis model with diffusion effect and saturated incidence function, in which two groups of human 
share the water contaminated by schistosomiasis and migrate each other. we derived the basic reproduction 
number 0R  and proved that the disease-free equilibrium is globally asymptotically stable when 0 1R < , and the 
unique endemic equilibrium is locally asymptotically stable for 0R  is larger than 1 and near 1. Our results 
indicate that the diffusion rates and the infection rates play an important role in the determination of the 
permanence and extinction of schistosomiasis. The diffusion from the mild endemic village to severe endemic 
village is benefit to control schistosomiasis transmission. 

In realistic situations, there might be several human groups sharing the contaminated water resource. Only 
considering the model with two human groups is insufficient, we expect a similar to work in higher-dimensional 
systems with n human groups and migration. It can be guessed that the model with n human groups has similar 
mathematical properties to two human groups. 
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