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ABSTRACT 

This study examines temporal patterns of software systems defects using the Autoregressive Integrated Moving Average 
(ARIMA) approach. Defect reports from ten software application projects are analyzed; five of these projects are open 
source and five are closed source from two software vendors. Across all sampled projects, the ARIMA time series mod-
eling technique provides accurate estimates of reported defects during software maintenance, with organizationally 
dependent parameterization. In contrast to causal models that require extraction of source-code level metrics, this ap-
proach is based on readily available defect report data and is less computation intensive. This approach can be used to 
improve software maintenance and evolution resource allocation decisions and to identify outlier projects—that is, to 
provide evidence of unexpected defect reporting patterns that may indicate troubled projects. 
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1. Introduction 

Today’s software systems are fragile [1], particularly 
when new software releases are deployed [2]. The falli-
bility of software applications and their underlying op-
eration systems is seemingly inevitable [3]. As a result, 
sixty to eighty percent of the typical firm’s total software 
budget is allocated to software maintenance [4,5]. In ad-
dition, an entire business function and support industry 
has grown up to handle the problems as they occur [6]. 
Operational planning within such organizations may take 
several forms. Some organizations attempt to ramp up 
and down maintenance staff and related resources (such 
as test harnesses, software maintenance tools, and testing 
environments) in response to task arrival rate fluctuations. 
Other organizations respond by keeping resources stable 
which results in oscillation between resource over-utili-
zation (and the resulting increased wait time for software 
patches, decreased user satisfaction and business value) 
and resource under-utilization (and the resulting resource 
idling and increased cost). 

Stark and Oman [7] provide alternative staffing and 
release schedule strategies responding to user detected 
software defect reports. Anchored at one extreme, a fixed 

capacity staff can be assigned to respond to defect reports 
as received, with upgrade releases occurring at fixed in-
tervals. At the other extreme, staff augmentation can be 
used to provide resources as needed and upgrade release 
times adjusted to aggregate related changes. Between 
these extremes, additional strategies are implemented in 
practice that provide for variable staffing, but fixed 
schedule periods; or fixed staffing with variable lengths 
of time between upgrades. To evaluate the potential fu-
ture benefit of any of these strategy alternatives requires 
knowledge of the potential distribution pattern of the 
reported defects. 

The manager’s choice in resource planning approaches 
is critical. In recent work, Chulani et al. [8] identified the 
interval between reporting and fixing defects as the 
dominate factor in user satisfaction; this dominance out-
strips even the number of defects. To maintain user sat-
isfaction, resources must be available to resolve defects 
and promptly make the system operate as expected. This 
result is necessary to the use of information systems as a 
vital component in business operations. These observa-
tions lead naturally to the operational planning question: 

Is there a model to aid in predicting when resources 
will be needed? 
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Secondarily, if such a predictive model for software 
maintenance resources can be derived:  

Is such a predictive model computationally and eco-
nomically practical? 

These questions have yet to be adequately addressed, 
as according to Pelayo and Dick [9] “no parametric 
model has ever been developed that accurately forecasts 
the number or occurrence of faults [defects] in a software 
module.” To meet this research challenge, this study 
seeks to develop an accurate predictive model of soft-
ware defect patterns that can be applied to the larger 
problem of software maintenance resource allocation and 
alignment, while using readily available defect report 
data and computational resources. 

2. Background 

During peak shopping times, retailers increase their staff 
of floor professionals and cashiers. When few truckloads 
are expected to arrive, a distribution center manager 
schedules fewer fork lift operators. Software mainte-
nance managers are faced with similar arrival rate fluc-
tuations that impact resource requirements. Software 
maintenance managers must ensure product quality and 
required service levels, while simultaneously minimizing 
costs associated with defect resolution and penalties for 
non-performance [10,11]. Faced with this challenge, 
formal predictive models are not common in resource 
planning; instead maintenance planning methods in prac-
tice continue to be largely ad hoc [12], with recent per-
sonal experience weighing heavily on practitioner pre-
dictions of change requests and staffing needs [10,12].  
As a result, maintenance project managers too often ei-
ther overstaff (causing resources to idle and costs to in-
crease) or understaff (causing delays in defect resolution 
and a decline in user satisfaction and business value). 

Previous work is reviewed regarding predicting soft-
ware defects, where a defect is defined as a reported error 
that is encountered in an operational software application. 
The predominance of prior research does not focus on 
patterns of discovered defects once the application is in 
use. Instead, a strong body of research exists that predicts 
software defects during the development of new systems. 
Both areas are explored and fall into three classes of 
forecasting approaches: causal, learning and time-series. 

2.1. Causal Models 

Many researchers have constructed models to predict the 
number of defects remaining in completed software 
products or identify defect-dense modules within a sys-
tem. Ohlsson et al. [13] use principal components analy-
sis and classification trees to identify fault-prone com-
ponents. Khoshgoftaar and Lanning [14] used a neural 
network technique to classify modules as high or low risk 

for defects based on quality and complexity metrics in-
cluding the number of fault-correcting and enhancive 
changes. El Emam and Laitenberger [15] used a Monte 
Carlo simulation to evaluate the accuracy of a capture- 
recapture re-inspection defect prediction model.  

Khoshgoftaar et al. [16] constructed a nonlinear re-
gression model predicting the number of faults using 
lines of code. Fenton and Neil [17] and Adams [18] dis-
covered that post-release defects were more likely in 
modules where few defects were discovered pre-release 
and that testing effectiveness significantly impacts the 
post-release presence of defects. Krishnan and Kellner 
[19] found that organizations that consistently followed 
Capability Maturity Model (CMM) practices experienced 
significantly fewer reported field defects in the resulting 
software. Krishnan [20] found that higher levels of do-
main experience of the software team are associated with 
a reduction in the number of field defects in the product. 
However, there is no significant association between either 
the language or the domain experience of the software 
team and the costs incurred in developing the product. 

Such causal predictive models of defects identify the 
factors that impact software defects, thus serving both 
predictive and explanatory roles regarding what factors 
could be controlled to manage future defects. Such mod-
els are useful for software development teams, since they 
can control these variables and manage the overall qual-
ity of software system. Most of these models however 
require access to internal characteristics of software. 

Although available for decades for use in staffing and 
system quality and defect modeling, these causal models 
have not been widely used in practice because of the cost 
and complexity of implementation [21]. Further compli-
cating their use during software maintenance, mainte-
nance practitioners have little control over the internal 
characteristics commonly modeled to predict defects 
(largely set at time of product release), thus rendering 
such complex models of little use to maintenance man-
agers who want to manage and allocate budget, time and 
resources for future defect occurrences. 

2.2. Learning Techniques 

A number of authors have investigated the use of ma-
chine-learning techniques for software defect prediction. 
Some examples include neural networks [22], genetic 
programming [23], fuzzy clustering ([24] and decision 
trees [25]. For example, Seliya et al. [26] proposed a 
semi-supervised clustering method to detect failures in 
software modules. Instead of working with the individual 
modules on software, they group modules and label them 
as fault prone or not fault prone. 

Fenton and Neil [17] used Bayesian belief networks 
(BBN) as an effective approach for defect prediction, an 
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approach that is gaining popularity [27]. Building on this 
work, Menzies et al. [28] showed positive results using a 
naïve Bayes classifier with log-filtered static code meas-
ures. 

Challagulla et al. [29] used simulation to compare 
software prediction using stepwise regression, rule in-
duction, case-based reasoning, and artificial neural net-
works. They concluded that stepwise regression per-
formed better with continuous target functions, while the 
other machine learning approaches performed better for 
discontinuous target functions. They favored case based 
reasoning since it appeared to be the best all round pre-
dictor by a small margin. Song et al. [30] investigated the 
above prediction models on real software data, compar-
ing them in terms of accuracy, explanatory value, and 
configurability. They concluded that the explanatory 
value of case-based reasoning and rule induction gives 
them an advantage over neural nets, which have prob-
lems of configuration. Aljahdali et al. [31] compared 
regression with neural nets for prediction of software 
reliability and concluded that for most cases neural nets 
provided fewer errors than regression models. 

These adaptive, learning based predictive models have 
been found to improve on the accuracy of traditional sta-
tistical linear causal models. However, they still fail to 
meet the ease of implementation goal of this study, as 
they require professionals with specialized model know- 
ledge and sophisticated software not typically at the dis-
posal of a maintenance manager. 

2.3. Time Series Models 

Causal and learning models are both computationally 
complex and require significant investments in project 
data collection. In response to these challenges, the goal 
of this study is to provide a method of predicting patterns 
in software defects that is accurate without the cost and 
complexity of more traditional predictive methods. 

Time series models assume that events are correlated 
over time and the impact of other factors is progressively 
captured in historical archives [32]. The most commonly 
used forecasting method, time series models are fre-
quently used to predict product demand [33], macro-eco-
nomic trends [34], and retail sales [35], but are yet to be 
widely adopted in the software maintenance domain [36]. 

Within the domain of software maintenance, time se-
ries modeling has had limited use. Kemerer and Slaugh-
ter [37] used ARIMA modeling to predict monthly 
changes, not reported defects, in software. Kenmei et al. 
[38] and Raja et al. [36] created time series models for 
defects in open source software (OSS) and found that the 
ARIMA models outperform the accuracy of simple mod-
els. Each research team found that time series modeling 
was a suitable and accurate method of defect prediction 

for large-scale OSS projects. However neither of the lat-
ter studies investigated proprietary closed source soft-
ware applications. 

Thus based on results in the literature, time series 
analysis potentially provides a method of predicting pat-
terns in software defects that is accurate without the cost 
and complexity of causal and learning models. It is left to 
this study to determine whether the results found in OSS 
projects can be replicated across open and closed source 
software (CSS) applications. 

3. Methods 

This work builds on previous studies that discovered the 
accuracy and ease of implementation of time series soft-
ware defect prediction. Specifically this research com-
pares the defect evolution patterns across a diverse set of 
projects, providing the opportunity to study projects 
within and across organizations. This section describes 
the prediction model adopted in this study, the software 
maintenance projects examined, the associated data ex-
tracted, and the analytical techniques used. 

3.1. Time Series Analysis 

As proposed in prior studies [32,36], time series analysis 
offers promise in the field of software defect prediction. 
These models are suited for representing situations char-
acterized by frequent variations, such as the pattern of 
software defect occurrences. A time series is a collection 
of observations made over equal intervals of time that can 
be used to predict future values and to identify trends [39]. 

A wide variety of time series modeling techniques are 
available and their suitability depends upon the nature of 
the data. A Moving Average series (MA) explain present 
as a mixture of random impulses, while an Autoregres-
sive (AR) model builds the present in terms of past val-
ues. These series are suitable for data that is stationary in 
nature i.e. its statistical properties (e.g. mean, variance, 
autocorrelation) are constant over time. 

For cases in which there is evidence of data being 
non-stationary as opposed to stationary, Box and Jenkins 
[40] introduced a corresponding generalized model. This 
model is called Autoregressive Integrated Moving Aver-
age (ARIMA). The general form of ARIMA (p,d,q) is:  

0 1 1

1 1
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t q t q

Y Y Y  

   


 

    

  




        (1) 

where: 
Yt = time series of the variable y. 

t  = coefficient associated with Yt, to be estimated 
using least squares. 

t  = the defect term, assumed to be independent, 
identically distributed variables sampled from a normal 
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distribution with zero mean. 

t  = the coefficient associated with t  to be esti-
mated using least squares. 

As detailed in the following subsections, the ARIMA 
modeling strategy followed in this study is comprised of 
four steps: Identification, Estimation, Diagnostic Testing 
and Application. 

Model Identification: The first step in model identifi-
cation is often to apply a logarithmic transformation to 
stabilize the variance of a series. Then the model is pa-
rameterized as ARIMA (p,d,q), where  

p = order of the Autoregressive component. 
d = order of the Differenced component. 
q = order of the Moving Average component. 
During model identification, the time series is ana-

lyzed to assess what values of the parameters p, d, and q 
are most appropriate. The value of d is set taking into 
account whether the series is stationary (d = 0) or non- 
stationary (d > 0). 

Estimation: The original or transformed time series is 
then modeled using the parameters and identified in the 
previous step to estimate the coefficients   in Equation 
(1). The different candidate values of p and q are used to 
compute the respective coefficient. The final model is 
selected using goodness of fit tests. Where goodness of 
fit is equivalent, the most parsimonious model is selected. 

Diagnostic Testing: The residuals are computed as the 
difference of the actual and predicted values (using the 
identified mode). These residuals are then analyzed using 
known techniques to determine the adequacy of the 
model. The residuals of a good model are expected to be 
small and random. 

Model Application: The predictive model accuracy on 
unseen data is estimated using a hold-out data sample 
[41]. Using this approach, a subset of the time series data 
is withheld from use in parameter estimation, and is in-
stead used to test the model’s accuracy. 

3.2. Site Selection and Data Description 

To study patterns in defect arrival rates, projects from a 
diverse set of organizations, problem domains, teams, 
and development methodologies were selected. The 
closed source software data was acquired from two or-
ganizations. Organization A is a large diversified interna-
tional software consulting firm, with a mature method-
ology environment; all Organization A development 
groups are currently assessed at Capability Maturity 
Model Integration (CMMI) Level 3 or higher. Data for 
three Organization A projects was obtained, denoted in 
this study as Project A1, Project A2, and Project A3. 

Organization B is a small (30 employee) privately 
owned provider of financial transaction automation soft-
ware using agile methodologies. Data for two Organiza-

tion B projects was obtained, denoted in this study as 
Project B1 and Project B2. 

In addition to the five CSS projects (three from Or-
ganization A and two from Organization B) five projects 
not included in Raja et al. [36] study were randomly se-
lected from the list of the top twenty most active OSS 
projects within the SourceForge repository. Inclusion of 
these five projects provides process replication and ex-
tends the sample set coverage by more than 50% to the 
OSS projects as evaluated by Raja et al. [36]. Descrip-
tions of the OSS and CSS projects included in this study 
are presented in Table 1. 

Each of the ten studied projects has one or more arti-
fact repositories that store information regarding various 
artifact types e.g. defects, patches, and feature requests. 
Defects of an individual project can be extracted using 
the unique defect repository identifier, available in each 
artifact. The defect data also includes the time of defect 
submission. The data is then aggregated to compute 
monthly defects for each project. Table 1 shows the start 
date, number of months of available data and the total 
number of defects for each of the sampled projects. 

3.3. Variable Specification and Data Extraction 

Time series modeling requires that data are gathered 
across equally spaced time intervals. Consistent with the 
commonly used resource planning interval, a monthly 
count of software defects was computed for each project. 
The model accuracy is sensitive to the length of historical 
data available. Therefore projects with a minimum 50 
months of data available were used in the analysis. This 
also ensures that there is enough data available for hold- 
out sampling and testing of the accuracy of the model 
forecasts. 

For OSS projects, the SourceForge.net defect-tracking 
repository holds archives of defect reports for the pro-
jects hosted by that community. Organization A and B 
host their own internal defect tracking repositories for 
trouble resolution. In all three environments, the data 
dictionary of the repository was used to identify the arti-
fact repository of defects. SQL queries were used to ex-
tract individual project defect data from the hosting ar-
chive warehouse. Further queries were used to compute 
monthly statistics of the defects for each project indi-
vidually. The monthly counts of defects were computed 
using the time stamps of each defect report. The resulting 
dataset contained the monthly defects for all OSS and 
CSS projects. 

4. Analysis and Results 

4.1. Model Identification 

The first step in model identification is to stabilize the   
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Table 1. Sample description. 

 Projects Description Months Total Defects 

wxWidgets 
wxWidgetsis a free C++ framework that facilitates cross platform soft-
ware development, including GUIs, threads, sockets, database, file system 
access, etc 

90 4843 

Firewall Builder 
Object Oriented GUI and set of compliers for various firewall platform. 
Currently implemented compilers for iptables, ipfiler, OpenBSD, ipfw, 
Cisco PIC firewall routers access lists 

93 1067 

Netatalk 

Netatalk is a freely-available Open Source AFP fileserver. It also provides 
a kernel level implementation of the AppleTalk Protocol Suite. A 
*NIX/*BSD system running Netatalk is capable of serving many Macin-
tosh clients simultaneously as an AppleShare file server (AFP), Apple-
Talk router, *NIX/*BSD print server, and for accessing AppleTalk print-
ers. 

69 347 

PhpWiki 

PhpWiki is a WikiWikiWeb clone in PHP. A WikiWikiWeb is a site 
where anyone can edit the pages through an HTML form. Multiple stor-
age backends, dynamic hyperlinking, themeable, scriptable by plugins, 
full authentication, ACL's. 

99 627 
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Exult 
Exuit is a game engine for running Ultima7 on modern operating systems, 
plus a map editor and other tools for creating your own mods and games. 

102 1675 

Org A#1 
A1 is an n-tier web-enabled wholesale billing application using J2EE and 
interfacing with an Oracle database. 

58 3539 

Org A#2 
A2 is an object oriented service rating, pricing and discounting applica-
tion using J2EE and interfacing with Oracle database. 

60 1214 

Org A#3 
A3 is a performance management system providing KPI dashboards and 
analytics for monitoring and forecasting, built using a SOA and interfac-
ing with most industry standard databases. 

58 377 

Org B#1 
B1 is a payment processing application built on Microsoft platform that 
includes check scanning, image and data archival, courtesy amount rec-
ognition and legal amount recognition. 

54 1842 
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Org B#2 
B2 is a merchant capture application that allows for the remote digital 
capture of check and payment data at the point of presentment and the 
bundled transmission for deposit into multiple accounts 

54 582 

 
means and variances by applying a logarithmic transfor-
mation to the time series data. The next step is to plot: 
the autocorrelation factors (ACF), the correlation, at spe-
cific lags, between the residuals of the data; and the par-
tial autocorrelation factors (PACF). For each studied 
project the values of p (the autoregressive component) 
and q (the moving average component) are determined 
by examining the trends in the ACF and PACF plots. If 
ACF plots die out (i.e., disappear gradually) and PACF 
plots cut-off (i.e., disappear abruptly), this suggests that 
an autoregressive model is suitable (p > 0, q = 0). If the 
opposite is true, i.e. the ACF plots cut-off and PACF 
plots die-out, a Moving Average model is suitable (p = 0, 
q > 0). If both ACF and PACF die out, then the most 
appropriate model contains both a p and q parameter (i.e. 
a mixed model is called for). The ACF and the PACF 
plots are shown in Figures 1-3. The differencing term is 
obtained by examining if the series is stationary or not. In 
most software evolution studies, a simple differencing 
(i.e., d = 1), transforms the data to a near-linear series 

[42]. 

4.2. Model Estimation 

For all five of the studied OSS projects the best fitting 
model was ARIMA (0,1,1). Though the OSS project set 
used in this study did not overlap with the project set 
used by Raja et al., [36] the best fitting model is consis-
tent with their findings. It can be seen that for each OSS 
project the p value of the t-statistic is significant for MA1. 
The plots of the residual ACF and PACF indicate that the 
model provides suitable fit and there are no significant 
correlations in the residuals. The final estimates of the 
model parameter are shown in Table 2 and the ACF and 
PACF plots of the residuals are shown in Figure 4. 

The best model for all the three projects in Organiza-
tion A was ARIMA (2,1,0). Several competing models 
were evaluated, but based on fit statistics and the residual 
analysis the same autoregressive model was the best fit 
for all three projects. The final estimates of the model pa-
rameters for each of the sampled Organization A projects  
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Figure 1. ACF and PACF plots of the original time series for OSS projects. 
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Figure 2. ACF and PACF plots of the original time series for Organization A projects. 
 

 

Figure 3. ACF and PACF Plots of the original time series for Organization B projects. 
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Table 2. Best fitting model specifications for each project. 

Project Type Coefficient SE Coefficient t p 

OSS #1 
MA1 

Constant 
0.5761 

0.17 
0.0873 
0.6827 

6.6 
0.25 

0 
0.804 

OSS #2 
MA1 

Constant 
0.5606 
–0.1085 

0.0872 
0.3075 

6.43 
–0.35 

0 
0.725 

OSS #3 
MA1 

Constant 
0.5693 
–0.0854 

0.1072 
0.178 

5.31 
–0.48 

0 
0.633 

OSS #4 
MA1 

Constant 
0.6991 
0.0005 

0.0734 
0.0242 

9.53 
0.02 

0 
0.984 

OSS #5 
MA1 

Constant 
0.6827 
–0.0138 

0.0743 
0.0266 

9.19 
–0.52 

0 
0.604 

Org A #1 
AR1 
AR2 

Constant 

–0.5665 
–0.5013 
1.219 

0.1245 
0.1338 
3.759 

–4.55 
–3.75 
0.32 

0 
0 

0.747 

Org A #2 
AR1 
AR2 

Constant 

–0.3478 
–0.4101 
0.376 

0.1263 
0.1275 

1.74 

–2.76 
–3.25 
0.22 

0.008 
0.002 
0.83 

Org A #3 
AR1 
AR2 

Constant 

–0.8854 
–0.6345 
0.602 

0.1089 
0.1089 

1.89 

–8.13 
–5.83 
0.32 

0 
0 

0.751 

Org B #1 
MA1 

Constant 
0.4163 

–0.05461 
0.128 

0.05364 
3.25 

–1.02 
0.002 
0.313 

Org B #2 
MA1 

Constant 
0.3088 
0.02648 

0.151 
0.07185 

2.05 
0.37 

0.046 
0.714 

 
are shown in Table 2. The ACF and PACF plots of the 
residuals are shown in Figure 5. 

t model for both of the projects from Organization B 
was an ARIMA (0,1,1). Several competing models were 
evaluated, but based on fit statistics and the residual 
analysis the same Moving Average model was the best fit 
for both the projects. The final specifications of the 
model parameters for each of the sampled Organization 
B projects are shown in Table 2 and the ACF and PACF 
plots for Organization B are shown in Figure 6. 

4.3. Diagnostic Testing 

After estimating the series for all the sample projects, 
they are individually tested against the competing models. 
The best model is selected using the t statistics and 
goodness of fit tests. The residuals are also analyzed to 
ensure that autocorrelation has been removed. We used 
the Ljung-Box [43] test for the residual analysis. The null 
hypothesis for this test is that ACFs for lag 1 through m 
are all 0. If H0 is rejected, it implies that there is signifi-
cant autocorrelation in the residuals. Failure to reject the 
null hypothesis means that the correlation in the residuals 
is insignificant. 

The results of the diagnostic testing for all the projects 
are shown in Table 3. Across all 10 projects, diagnostic 
results show that the selected model fully captures the 
behavior of the series and there are no significant missing 

elements in the model. 

4.4. Model Application 

Because the ultimate goal of the research is to develop 
models that can be useful for forecasting future defects, 
the accuracy of model predictions on unseen data is a 
critical factor. We therefore used the hold-out cross- 
validation technique for comparing model predictions 
[41]. In this method, some data is withheld and not used 
during parameter estimation. The selected model is then 
used to generate a forecast, which is compared to the 
withheld (actual) values. 

We used a holdout sample of 4 months data for each 
project. This number was selected keeping in view the 
amount of data available for all projects. Results indicate 
the best-fit models identified in the Model Estimation 
section were all stable over the sample sets’ holdout se-
ries for each of the 10 studied projects. Across all 10 
sampled projects, the mean square error (MSE), mean 
absolute percentage error (MAPE), and mean absolute 
deviation (MAD) for the previously identified best-fit 
models (ARIMA (0,1,1) for OSS and Organization B; 
ARIMA (2,1,0) for Organization A) are all lower than 
competing models. 

5. Discussions 

The purpose of this study is o determine whether a time  t   
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Figure 4. ACF and PACF plots of theresiduals for OSS projects. 
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Figure 5. ACF and PACF plots of the residuals for organization a projects. 
 

 

Figure 6. ACF and PACF Plots of the residuals for Organization B projects. 
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Table 3. Lijung-Box fit statistics for sampled projects. 

Ljung-Box Chi-Square Project Statistic at Lags 
Project 

12 24 36 48 

OSS #1 
5.4 

(–0.866) 
16.9 

(0.768) 
26.8 

(0.807) 
32.1 

(0.94) 

OSS #2 
9.2 

(–0.514) 
25.4 

(0.276) 
32.9 

(0.522) 
39.7 

(0.73) 

OSS #3 
14.3 

(–0.162) 
36 

(0.03) 
32.94 

(0.061) 
54.1 

(0.193) 

OSS #4 
9.1 

(–0.26) 
19 

(0.648) 
25.2 

(0.864) 
33.9 

(0.908) 

OSS #5 
12.4 

(–0.26) 
21.8 

(0.475) 
26.4 

(0.82) 
41.6 

(0.656) 

Org A #1 
7.9 

(0.545) 
16.6 

(0.736) 
26.1 

(0.799) 
33.5 

(0.895) 

Org A #2 
9.8 

(0.369) 
21.3 

(0.44) 
29 

(0.668) 
37.9 

(0.764) 

Org A #3 
11.7 

(0.228) 
21.1 

(0.454) 
30.3 

(0.601) 
39.5 

(0.703) 

Org B #1 
6.9 

(0.734) 
14.1 

(0.897) 
26.2 

(0.827) 
34.7 

(0.888) 

Org B #2 
13.6 

(0.191) 
21.5 

(0.491) 
34.6 

(0.437) 
44.8 

(0.521) 

Note: Chi-Square Statistic with p values in parenthesis. 

 
series approach (which requires no data collection in-
vestment beyond what normally resides in most defect 
tracking databases) could be used to accurately predict 
patterns in software defects discovered during software 
maintenance, the extent to which this approach holds 
across a diverse set of projects, organizations, and main-
tenance teams, and whether variations in model parame-
ters can be identified a priori. The evidence from ten 
projects is shown in Table 4, and supports study goals. 
Across all ten projects examined in this study, reported 
defects are accurately predicted using a form of the 
ARIMA model (as evidenced by measures including 
MSE, MAPE, MAD, and Ljung-Box).  

Five of the ten projects are independently developed, 
maintained, and managed open source projects. Across 
all five OSS projects, the ARIMA (0,1,1) model—a first 
order moving average with one order of non-seasonal 
differencing—accurately predicts the number of monthly 
reported defects. 

Two of the ten projects are developed and maintained 
by a small (30 people, 4 developers) privately held soft-
ware firm using agile methods in a single geographic 
location. In this environment, the same ARIMA (0,1,1) 
model—best fitting for all five open source projects— 
was found to perform best. Because the same team de-
veloped and maintained both products, it is not possible 
to explore cross-team differences within this organiza-

tion. 
Three of the ten projects are developed by different 

teams within a large international software firm using a 
mature waterfall-based methodology. Two of these three 
projects are maintained by (different) joint North Ameri-
can-Indian teams, and the third by a solely North Ameri-
can team dispersed across two offices in the Southeast.  
In this organizational environment, more accurate results 
are obtained using a competing second order auto-re-
gressive model with a constant and one order of non- 
seasonal differencing i.e., ARIMA (2,1,0). This model 
held for all three projects, regardless of team size or geo-
graphic scope. 

These results demonstrate promise for the use of the 
ARIMA model to predict software defect patterns during 
maintenance. This model held across a diverse set of 
organizations, teams, geographic collaboration models, 
and development approaches. Comparison of the model 
fit results across project and team demographics indicates 
that parameters may be dependent on factors related to 
organization or development approach.  

5.1. Implications for Research 

Within the maintenance stage, this research responds to 
the challenge by Pelayo and Dick [9] for the develop-
ment of models that accurately forecast the occurrence of 
defects in software. Results obtained across multiple  
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Table 4. Results summary. 

Project Best Fitting Model MSE MAPE MAD

OSS #1 ARIMA (0,1,1) 0.099 0.049 0.049

OSS #2 ARIMA (0,1,1) 1.435 2.163 0.717

OSS #3 ARIMA (0,1,1) 0.007 0.028 0.003

OSS #4 ARIMA (0,1,1) 0.362 0.801 0.181

OSS #5 ARIMA (0,1,1) 0.636 0.798 0.318

Org A #1 ARIMA (2,1,0) 0.173 0.038 0.087

Org A #2 ARIMA (2,1,0) 0.212 0.125 0.106

Org A #3 ARIMA (2,1,0) 1.595 0.917 0.797

Org B #1 ARIMA (0,1,1) 1.015 0.630 0.507

Org B #2 ARIMA (0,1,1) 1.624 0.813 0.812

 
teams, organizations, and development environments 
confirm that the ARIMA modeling approach accurately 
predicts the pattern of software defects reported during 
maintenance.  

This project addresses several important research 
questions and raises another: what organizational factors 
impact the form of the defect reporting time series? One 
form of the ARIMA model held for all OSS projects and 
all projects developed and maintained by a small pri-
vately held software firm with a self-described "informal, 
geek" culture located in a single office and using agile 
methods. In contrast, another ARIMA model form held 
for all projects developed and maintained by a large in-
ternational software firm characterized by a formal, hier-
archical culture and using a mature waterfall-based 
methodology to structure the efforts of globally distrib-
uted teams. These findings suggest that the significant 
factors focus on development approach and organiza-
tional culture rather than team distribution. Future re-
search is needed to further explore this idea. 

Exploring the differences in patterns of reported de-
fects from a cultural perspective will build on the work 
of Gregory [44] who discovered that Silicon Valley 
software developers shared the same occupational sub-
culture, regardless of firm or role. Several researchers 
have labeled the OSS community a hacker culture that 
values and rewards pushing the boundaries of what are 
considered doable [45]. This work will add to the under-
standing of the linkages, commonalities and similarities 
between the CSS and OSS subcultures. 

Exploring the differences in patterns of reported de-
fects from a development approach perspective will al-
low researchers to integrate the strengths and reduce the 
weakness of the CSS and OSS development processes. 
Crowston and Scozzi [46] characterize free and open 

source projects as predominately self-organizing and self- 
assigning, often without the formality of appointed lead-
ers or specified roles. This characterization may play an 
important role in setting the pattern of software defect 
reports and aid in building a more unified model of CSS 
and OSS defect management. 

5.2. Implications for Practice 

In contrast to learning or causal predictive approaches 
that require complex models difficult to implement (in-
cluding for example the extraction of source-code level 
metrics), the ARIMA time series modeling technique 
provides a computationally tractable approach that can be 
used by practitioners. Commonly available statistical 
packages such as Minitab™, SPSS™, and RATS™ pro-
vide this functionality, which can be implemented with 
readily available professional training.  In addition the 
evidence from the analysis of the sampled projects indi-
cates that the resulting pattern is stable once established 
as well as consistent across projects within a particular 
organization. Thus, once the pattern is established from 
existing defect data, project managers can begin to use 
the organizationally-specific model to build staffing and 
resource estimates for upcoming planning periods. Main- 
tenance staff assignments, testing tool licenses and test-
ing technology environments can be adjusted to be in 
alignment with predicted workloads, ensuring that ser-
vice level agreements are met and organizational re-
sources are not idle during slack demand periods.   

Based on the robust nature of the results thus far, any 
project that does not fit the temporal defect reporting 
pattern of the other projects in the organization is a can-
didate for outlier analysis. A pattern shift may be caused 
by a number of factors—from changes in user adoption 
rates, to changes in business tasks supported, to changes 
in the software development, evolution and maintenance 
processes. In any event, a shift in defect reporting pattern 
is an indicator that can trigger a root cause inquiry.  

5.3. Threats to Validity 

We discuss four types of threats to validity: Construct, 
content, internal and external [47]. Construct validity 
applies to the relationship between theory and observa-
tion and addresses the question: Do the measures quan-
tify what they are expected to? In this study, the major 
threat to construct validity is the fact that the project 
software defects are not classified by criticality level. 

Content validity refers to the sampling adequacy of the 
measurement instrument [48]. In this study, the sole 
source of software defects gathered is the centrally 
maintained defect tracking repository. To the extent that 
other sources of reported defects exist (such as message 
boards, emails, and direct communication with develop-
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ers), the study’s content validity is threatened. 
Internal validity is related to the extent to which infer-

ences can be made regarding cause and effect relation-
ships. As is the case with any univariate time series 
model where only one variable is considered, this study 
is limited in this regard. The impact of other causal vari-
ables is not included in the model. 

External validity deals with the generalizability of the 
study. Since there has been previous research on tempo-
ral patterns of software maintenance in OSS projects and 
this study confirms the uniformity of the previously dis-
covered patterns, external validity is less a threat in that 
domain. For CSS projects, because of the small conven-
ience sample size and limited range of organizations, 
teams, and development environments, the generalizabil-
ity of the discoveries of this study is not certain. Analysis 
of additional CSS projects and the associated defect pat-
terns will help establish generalizability. 

There are other additional threats to validity as well. 
The mechanism for defect reporting is homogenous 
within organizations and within the SourgeForge defect 
repository. However, across these sets, the defect report-
ing mechanism is not uniform. Issues associated with the 
process of defect reporting are not considered in this 
study. 

Future research can reduce the threats to validity. 
Studies that include additional causal variables to control 
for organizational processes and contract management 
will increase the robustness of the model. Replication of 
this study using other CSS and OSS projects and organi-
zations will be used to establish the external validity. 

6. Conclusions 

The introduction section posed two questions important 
to software maintenance resource management:  

Is there a model to aid in predicting when software 
maintenance resources will be needed? If so, is it com-
putationally and economically practical?  

This study points to an affirmative answer to both 
questions. 

In answer to the first question, across all ten projects 
evaluated in this study the ARIMA time series modeling 
technique was found to provide accurate estimates of 
reported defects during software maintenance. ARIMA 
model parameters were found to be organizationally de-
pendent. Future research will explore the proposition that 
predictive model parameters are dependent on the organ-
izational factors of methodology formalism and organ-
izational culture. 

In answer to the second question, the data and compu-
tational needs of the ARIMA models are compared to 
alternative prediction techniques. Causal models require 
the consistent ongoing extraction and analysis of source- 

code level metrics. In addition to this shortcoming, 
learning models require relatively sophisticated statistical 
and computational expertise and software tools. In con-
trast to these approaches, the ARIMA time series method 
is based on readily available defect report data and is less 
computationally intensive. Thus, by employing the 
ARIMA modeling technique to predict the arrival rates 
of the inevitable software defects, maintenance managers 
can begin to align their staff and technical resources to 
balance the competing demands of cost minimization and 
meeting service level expectations.. 
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