
Journal of Electromagnetic Analysis and Applications, 2011, 3, 305-311 
doi:10.4236/jemaa.2011.38049 Published Online August 2011 (http://www.SciRP.org/journal/jemaa) 

Copyright © 2011 SciRes.                                                                               JEMAA 

305

Radiations from an Eccentric Coated Cylinder 
with N Slots 

Muhammad A. Mushref 
 

P. O. Box 9772, Jeddah 21423, Saudi Arabia. 
Email: mmushref@yahoo.co.uk 
 
Received June 9th, 2011; revised July 3rd, 2011; accepted July 17th, 2011. 

 
ABSTRACT 

The transverse magnetic (TM) radiation characteristics are investigated for a cylinder with N infinite axial slots of ar-
bitrary opening size and location. The cylinder is a thin circular conductor and coated by an eccentric material. Fields 
are found by applying the boundary conditions to the cylindrical wave functions. The addition theorem of Bessel func-
tions is used to obtain an infinite series solution in Fourier-Bessel series form. Results are computed by shrinking the 
generated infinite series to a finite number of terms and compared to other available data. Numerical results in 
graphical forms for different values are also developed and discussed for small eccentricities.  
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1. Introduction 

The problem of field characteristics from slotted cylin-
drical structures is an important study in electromagnetic 
field theory and has been the focus of a number of earlier 
researches [1-6]. Though, previous investigations did not 
determine possible effects to radiations of N arbitrary 
sited slots with diverse opening sizes and when the con-
ducting cylinder and the coating material are both eccen-
tric. 

Silver and Saunders derived expressions for the exter-
nal field produced by a slot of arbitrary shape in 1950. 
The far field was determined by applying the method of 
steepest decent to the Fourier integrals in the solution [1]. 
The results obtained were also applied by Bailinin 1955 
to the cases of narrow-width hal-wavelength slots in infi-
nite cylinders with large radii [2]. Hurd derived the ra-
diation patterns of an axial slot in a dielectric coated cir-
cular cylinder and made some comparisons with experi-
mental results in 1956 [3]. Additionally, Wait and Mi- 
entka presented the fields produced by an arbitrary slot 
on a circular cylinder with a cocentric dielectric coating 
in 1957. The far zone expressions were developed using 
a saddle-point method applied to the derived integrals [4]. 
In 2009, the transverse electric patterns are investigated 
for a cylinder with N axial slots of arbitrary opening size 
and position [5]. The transverse magnetic fields are then 
considered for a dielectric-coated metallic-cylinder with 
two arbitrary axial slots in 2010 [6]. 

2. Mathematical Formulation 

Electromagnetic problems with cylindrical structures are 
typically better solved in cylindrical coordinates. The 
problem stated in this paper is solved in the two dimen-
sional circular cylindrical coordinate system with (r, ). 
As illustrated in Figure 1, the global coordinate system 
(r, ) is defined at the center of the dielectric coating 
material and the local coordinate system (rc, c) is de-
fined at the center of the slotted metallic cylinder. The 
center of the local coordinate system is situated at x = d 
with respect to the global coordinate system. 

In this paper, the transverse magnetic (TM) character-
istics are found for N infinite axial slots in a circular me-
tallic cylinder covered by a dielectric material as shown 
in Figure 1. The cylinder is assumed to be a thin perfect 
electric conductor with radius a and with infinite extent 
along the z-axis. On the cylinder surface N slots are axi-
ally opened with an angular apertures of 21, 22, 23, 

, 2N located at s1,s2, s3, , sN respectively with 
respect to the x-axis. The cylinder is entirely covered by 
an eccentric dielectric layer with radius b and assumed to 
be homogenous, linear, and isotropic and characterized 
by permittivity  and permeability . The region out of 
the coating material for all r > b and 0   2 is as-
sumed to be free space with 0 and 0. As shown in Fig-
ure 1, the dielectric material and free space are consid-
ered as region I and region II respectively. 

 

Formulation starts by solving the Helmholtz scalar  
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Figure 1. Cross sectional view of the structure. 
 
wave equation in the circular cylindrical coordinate sys-
tem in r and . Going after the separation of variables 
method, the solution is a Bessel or Hankel function in r 
multiplied by a complex exponential in . The structure 
shown in Figure 1 requires the electric field to be repre-
sented by a Fourier-Bessel exponential series. In region I, 
this is represented by a summation of a harmonic func-
tion multiplied by Bessel functions as [5,6]: 

    I in
z n n n n n

n

E e J kr Y kr  




  A      (1) 

In region II, the electric field radiates from the struc-
ture and therefore the Hankel function is assumed and 
multiplied by a harmonic function as [7,8]: 

 II (2)
0

in
z n

n

E e H k r




  nA           (2) 

where n, n and An are unknown coefficients and i = 
1 . k and k0 are the dielectric coating and free space 

wave numbers respectively given by k = 2/ and  is 
the wavelength. Jn(x) and Yn(x) are Bessel functions of 
the first and the second type respectively with order n 
and argument x. (2)

nH (x) is the outgoing Hankel function 
of the second type with order n and argument x. 

3. Analytical Solution 

The boundary conditions are applied to find n, n and An 
coefficients. From the geometry of the structure shown in 
Figure 1, the boundary conditions with respect to the 
global coordinate are continuity of both tangential elec-
tric Ez and magnetic H fields for all  at r = b, that is: 

I II  at  and 0 2πz zE E r b             (3) 

I II  at  and 0 2πH H r b              (4) 

where H is derived from Maxwell’s equations as 
  zH i E  r     [5,6]. 

Equations (3) and (4) can be solved using the or-
thogonality of the complex exponential functions to get: 

    (2)
0n n n n n J kb Y kb H k b          (5) 

    (2)
0n n n n r n J kb Y kb e H k b           (6) 

where r r re    and the prime notation designates 
differentiation with respect to the argument. 

Equations (5) and (6) are then solved to find n and n 
as: 
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       (8) 

The third boundary condition can be expressed in the 
local coordinate system. At rc = a the tangential electric 
field vanishes in region I for all values of c except at the 
slots where it has a value of: 

 I π
cos

2
c sL

z oL
L

E E
 


 
 
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d

d

          (9) 

for rc = a, |c – sL| < L and L = 1, , N. 
The addition theorem of Bessel functions is given by 

[9,10]: 
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  (10) 

where Tm(x) can be Jm(x) or Ym(x) and m and p are inte-
gers. 

By applying the theorem in Equation (10) to the 
boundary condition in Equation (9), the outcome can be 
simplified to be: 
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  (11) 

For small values of L, cos(mL) ≈ 1 and Equation (11) 
can be simplified to: 
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For small values of d the summation quickly con-
verges and thus Equation (12) can be further simplified if 
expressed in matrix form. Therefore, the coefficients An 
can be found as: 

   1

,1 1n n m mn n m
A Z f



 
             (13) 

where Zn.m is the second factor in the left side of Equation 
(12) and fm is the right side of the same equation. The 
matrix ,n m m n

 in Equation (13) is a non-singular 
square matrix. 

Z


  

The asymptotic expression of the Hankel function can 
be used in Equation (2). Hence, the radiated field can be 
estimated at a far point as [3,6]: 

   0 π 4II

0
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π
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where P() is the far radiated field pattern given by: 
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              (15) 

The antenna gain and the aperture conductance per 
unit length 0 are two other major quantities in the study 
of the antenna characteristics. By Equations (13) and (15) 
both can be respectively found as in reference [11] to be: 
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where VoL is the voltage across the slot equals EoL as in 
Equation (9) [8,9]. 

4. Numerical Analysis 

It is essential to confirm the correctness of the expres-
sions derived before obtaining the numerical results for 
the consequences of the slots’ arbitrary sizes and loca-
tions. Several graphical results are computed and also 
judged against other curves in reference [11] for a slot 
size of 0 = /100. The results achieved are only calcu-

lated for values of n from –25 to 25 of the series pro-
duced in the solution due to the fast convergence of the 
summation. The produced field patterns are normalized 
to the curves of zero eccentricity to simplify investiga-
tions and recognize the variations that may happen when 
N axial slots of arbitrary size and position exist with ec-
centricity. 

Equation (12) is expressed as a series over n from –∞ 
to +∞ which can produce infinite matrices in Equation 
(13). This series quickly converges for small values of d 
and can be numerically solved by reduction to develop 
finite matrices. In contrast, for larger values of d the 
physical size of the antenna structure shown in Figure 1 
is bigger and additional terms in the summation are re-
quired [12]. Therefore, the numerical evaluations are 
computed for small eccentricities in order to smooth the 
progress of the series expansion. 

The antenna gain in Equation (16) compared to refer-
ence [9] is shown in Figure 2(a) versus the coating 
thickness at  = 0 for N = 1, Eo1 = 1, s1 = 0, 21 = 0, d = 
0.0010, /0 = 4, /0 = 1 and a = 20. In addition, the 
aperture conductance per unit length 0 in Equation (17) 
is shown in Figure 2(b) versus the coating thickness for 
N = 1, Eo1 = 1, s1 = 0, 21 = 0, d = 0.0010, /0 = 4, 
/0 = 1and a = 20 assessed against the same results in 
reference [11]. As expected, the curves establish perfect 
agreements and the calculated results confirm every in-
dication of accuracy. Additionally, convergence tests cla- 
rify that a sufficient number of terms in the infinite series 
is applied. 

The far radiated patterns are better investigated in po-
lar coordinates due to the general shape of the proposed 
structure shown in Figure 1. As in most references, the 
cylinder radius and the coating thickness are assumed to 
be a = 0.3580 and b = 0.42170 respectively. Besides, 
the number of slots considered in all patterns computa-
tions is N = 3 with three values of eccentricities as d = 
00, 0.020 and 0.060 respectively. Also, the voltages 
across all slots are assumed as EoL = 1 where L is the slot 
number. All calculated radiation patterns are normalized 
to the maximum value of the zero eccentric case, d = 0. 

5. Results and Discussions 

Figure 3 illustrates the radiation patterns for s1 = 0, s2 
= /2, s3 =  and 21 = 22 = 23 = 0. In Figure 3(a), 
the fields are computed for /0= 2.56 and /0= 1. Field 
patterns are symmetric around the y-axis for d = 00 but 
new lobes may appear as eccentricity increases as seen 
for d = 0.060. Figure 3(b) shows the radiation patterns 
for /0= 1 and /0= 4. Symmetry is also noticed for d = 
0 around the y-axis and different lobes are produced 
when d is changed. 

A dditionally, Figure 4 shows the radiation patterns for  
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Figure 2. (a) Antenna gain in dB versus coating thickness for /0 = 4, /0 = 1 and a = 20, —— reference [9], – – – calculated 
at  = 0 for Eo1 = 1, N = 1, s1 = 0, 21 = 0, and d = 0.0010; (b) Aperture conductance in millisiemens versus coating thickness 
for /0 = 4, /0 = 1 and a = 20, —— reference [9], – – – calculated for Eo1 = 1, N = 1, s1 = 0, 21 = 0, and d = 0.0010. 
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(a)                                                       (b) 

Figure 3. Radiation patterns for N = 3, s1 = 0, s2 = /2, s3 = , 21 = 22 = 23 = 0, a = 0.3580 and b = 0.42170 —— d = 00, 
 d = 0.020, – – – d = 0.060. (a) /0 = 2.56, /0 = 1; (b) /0 = 1, /0 = 4. 
 
s1 = 0, s2 = /2, s3 =  and 21 = 0, 22 = 20 and 23 
= 30. In Figure 4(a), the fields are computed for /0= 
2.56 and /0= 1. Lobes on the left side are greater due to 
the larger size of the slot at that location where they may 
also increase as eccentricity increases. The same under-
standing can be accepted for the radiation patterns shown 
in Figure 4(b) for /0 = 1 and /0 = 4. 

Also, Figure 5 illustrates the radiation patterns for s1 
= 0, s2 = 2/3, s3 = 4/3 and 21 = 22 = 23 = 0. In 
Figure 5(a), the fields are computed for /0 = 2.56 and 
/0 = 1. Symmetry is very clear around the x-axis for all 
values of d with the maximum lobe at  = . Figure 5(b) 

shows the radiation patterns for /0 = 1 and /0 = 4. 
Symmetry is also noticed around the x-axis but with lar-
ger lobes at  = 0 as d increases. 

The last computed radiation patterns are shown in Fig-
ure 6 for s1 = 0, s2 = 2/3, s3 = 4/3 and 21 = 0, 22 
= 20 and 23 = 30. In Figure 6(a), the fields are plotted 
for /0 = 2.56 and /0 = 1. No symmetry is noticed due 
to the different sizes of the slots. Figure 6(b) shows the 
radiation patterns for /0 = 1 and /0 = 4 where the 
larger lobes are in the place of larger slots. 

From the above, symmetry of the radiation patterns 
and size of the lobes are greatly affected by the location    
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(a)                                                         (b) 

Figure 4. Radiation patterns for N = 3, s1 = 0, s2 = /2, s3 = , 21 = 0, 22 = 20, 23 = 30, a = 0.3580 and b = 0.42170, 
—— d = 00,  d = 0.020, – – – d = 0.060. (a) /0 = 2.56, /0 = 1; (b) /0 = 1, /0 = 4. 
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Figure 5. Radiation patterns for N = 3, s1 = 0, s2 = 2/3, s3 = 4/3, 21 = 22 = 23 = 0, a = 0.3580 and b= 0.42170, —— d = 
00,  d = 0.020, – – – d = 0.060. (a) /0 = 2.56, /0 = 1; (b) /0 = 1, /0 = 4. 
 
and the size of each slot and the eccentricity of the coat-
ing. 

Moreover, the gain in dB at  = 0 is plotted in Figure 
7 for N = 3, s1 = 0, 21 = 0, 22 = 20 and 23 = 30. 
Figure 7(a) shows the gain versus the coating thickness 
for a = 20, d = 00, s2 = /2, s2 = , /0 = 4, /0 = 1, 
/0 = 1 and /0 = 4 and also for s2 = 2/3, s2 = 4, 
/0 = 4, /0 = 1, /0 = 1 and /0 = 4. As noticed, the 
gain is almost constant at less than 0.9 up to b = 2.150 
but greatly changed for larger coating thickness values. 

The gain versus eccentricity is also plotted in Figure 7(b) 
for a = 0.90, b = 2.10, s2 = /2, s2 = , /0 = 4, /0 
= 1, /0 = 1 and /0 = 4 and also for s2 = 2/3, s2 = 
4, /0 = 4, /0 = 1, /0 = 1 and /0 = 4. The gain 
does not change much for eccentricities of 0 ≤ d ≤ 0.6 but 
different peaks may occur for d = 0.750 and d = 10. 

The aperture conductance is shown in Figure 8 for N 
= 3, s1 = 0, 21 = 0, 22 = 20 and 23 = 30. Figure 
8(a) shows the aperture conductance versus the coating 
thickness for a = 20, d = 00, s2 = /2, s2 = , /0 = 4, 
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/0 = 1, /0 = 1 and /0 = 4 and also for s2 = 2/3, s2 
= 4, /0 = 4, /0 = 1, /0 = 1 and /0 = 4. The 
conductance shows several peaks for b > 2.20. The ap-
erture conductance versus eccentricity is also plotted in 
Figure 8(b) for a = 0.90, b = 2.10, s2 = /2, s2 = , 
/0 = 4, /0 = 1, /0 = 1 and /0 = 4 and also for s2 = 
2/3, s2 = 4, /0 = 4, /0 = 1, /0 = 1 and /0 = 4. 
The conductance is nearly less than 1 millisiemens up to 
d = 0.70 but different peak values appear for larger ec-  

centricities. 

6. Conclusions 

An analytical solution was derived for the problem of N 
infinite axial slots in a circular cylinder covered with an 
eccentric dielectric coating material. The TM case was 
considered based on the boundary value method and the 
radiated fields were represented in terms of an infinite 
series of cylindrical waves. The solution explained the  
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(a)                                                          (b) 

Figure 6. Radiation patterns for N = 3, s1 = 0, s2 = 2/3, s3 = 4/3, 21 = 0, 22 = 20, 23 = 30, a = 0.3580 and b= 0.42170, 
—— d = 00,  d = 0.020, – – – d = 0.060. (a) /0 = 2.56, /0 = 1; (b) /0 = 1, /0 = 4. 
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(a)                                                            (b) 

Figure 7. Antenna gain in dB versus coating thickness at  = 0 for N = 3, s1 = 0, 21 = 0, 22 = 20 and 23 = 30. (a) a = 2 0, 
d = 0 0, s2 = /2, s2 = , (—— /0 = 4, /0 = 1), ( /0 = 1, /0 = 4), s2 = 2/3, s2 = 4, (– – – /0 = 4, /0 = 1), (– · – 
· – /0 = 1, /0 = 4); (b) a = 0.9 0, b = 2.1 0, s2 = /2, s2 = , (—— /0 = 4, /0 = 1), ( /0 = 1, /0 = 4), s2 = 2/3, s2 
= 4, (– – – /0 = 4, /0 = 1), (– · – · – /0 = 1, /0 = 4). 

Copyright © 2011 SciRes.                                                                               JEMAA 



Radiations from an Eccentric Coated Cylinder with N Slots 311 

2 2.075 2.15 2.225 2.3
0

0.32

0.64

0.96

1.28

1.6

0 0.25 0.5 0.75 1
0

1.25

2.5

3.75

5

6.25

7.5

 
(a)                                                            (b) 

Figure 8. Aperture conductance in millisimens versus coating thickness for N = 3, s1 = 0, 21 = 0, 22 = 20 and 23 = 30. (a) 
a = 20, d = 00, s2 = /2, s2 = , (—— /0 = 4, /0 = 1), ( /0 = 1, /0 = 4), s2 = 2/3, s2 = 4, (– – – /0 = 4, /0 = 
1), (– · – · – /0 = 1, /0 = 4); (b) a = 0.9 0, b = 2.1 0, s2 = /2, s2 = , (—— /0 = 4, /0 = 1), ( /0 = 1, /0 = 4), s2 = 
2/3, s2 = 4, (– – – /0 = 4, /0 = 1), (– · – · – /0 = 1, /0 = 4). 
 
effects of the proposed additional slots in arbitrary loca-
tions with eccentricity to the far field patterns. Possible 
influences that can take place to the antenna gain and the 
aperture conductance were presented and discussed. 
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