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Abstract 
This paper transforms fuzzy number into clear number using the centroid method, thus we can 
research the traditional linear regression model which is transformed from the fuzzy linear re-
gression model. The model’s input and output are fuzzy numbers, and the regression coefficients 
are clear numbers. This paper considers the parameter estimation and impact analysis based on 
data deletion. Through the study of example and comparison with other models, it can be con-
cluded that the model in this paper is applied easily and better. 
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1. Introduction 
Regression analysis is an important and comprehensive approach to analyze relationship between dependent va-
riable and other one or more independent variables; it has a very wide range of applications in engineering 
sciences, social sciences, economic and financial fields. Traditional regression analysis methods often require 
that both independent variable and dependent variable are clear data. However, practical problem is often not 
clear data but fuzzy data. For example, the amount of observations described in language, such as something 
large, something heavy, or approximately equal to 3, etc. Because of some ambiguous indicators, analyzing 
these issues only by traditional regression can not get satisfactory and completely results. 

By means of Zadeh’s [1] fuzzy set theory, researchers established a different fuzzy regression model and 
solved its solutions. After Tanaka et al. [2], Diamond [3] estimated regression coefficients using least squares 
method (FLS), which is similar to traditional LS estimate. Savic and Pedrycz [4] established a two-step model of 
fuzzy regression analysis by combining FLS with linear programming. Recently, Chang [5] compared fuzzy re-
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gression methods, summed up three methods of fuzzy regression: minimum fuzzy criteria, least squares fitting 
criteria and interval regression analysis method. The main difference between fuzzy regression and conventional 
regression is that the residual in fuzzy regression is a fuzzy variable, but a random variable in traditional regres-
sion. The fuzzy regression model discussed here can be divided into several cases, such as the regression coeffi-
cient being expressed in fuzzy numbers; or part of variables being ambiguous; or input and output variables be-
ing ambiguous [6]-[10]. 

This paper starts from the fuzzy input and output variables, transforms them into clear data by centroid me-
thod [11], and then, the problem of fuzzy linear regression analysis (regression coefficient is clear number) can 
be transformed into traditional linear regression analysis. Thus, the problems of fuzzy linear regression analysis 
can be addressed by the estimation and statistical diagnosis method of traditional linear regression model. 

2. Fuzzy Regression Model and Parameter Estimation 
Assume that ( ) ( ), 1, 2, , , 1, 2, ,ij ix y i n j p= = 

   is a observational data set of fuzzy input and fuzzy output, 
and ,ij ix y R∈ 

   ( R  is the fuzzy number set of the real number set R). Then fuzzy linear regression model can 
be expressed as 

0 1 1 2 2i i i p ip iy x x xβ β β β ε= + + + + +    
                            (1) 

where 0 1, , , ,p iR Rβ β β ε∈ ∈ 


 , iε  is the i-th observation error. 
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Then the fuzzy linear regression model (1) can be expressed in the form of matrix as 

,Y X Eβ= +                                         (2) 

where the membership functions of , ,ij i ix y ε   are , , , 1, 2, , , 1, 2, ,
ij i ix y i n j pεµ µ µ = =

 

  . 
For convenience of discussion, we assume that all observations are triangular fuzzy numbers 

( ) ( ) ( ), , , , , , , 0,ij ijl ijm iju i il im iu i il iux x x x y y y y ε ε ε= = =   

where the , , , , , , ,ijl ijm iju il im iu il iux x x y y y ε ε  are all real numbers. And their membership functions are 
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In order to obtain the estimator of regression coefficient β , a natural idea is to try to turn fuzzy observation 
data ,ij ix y   into crisp data, and then use traditional least squares method to calculate the estimator of β  [12]. 
There are many ways to transform fuzzy data into crisp data, one of the most common methods is the centroid 
method [7]. 
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The fuzzy data ,ij ix y   is transformed into crisp data ,ijc icx y  ( ,ijc icx y  are usually called the centroid of 
,ij ix y  ) with the formula 
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                          (3) 

Obviously, when the observation data is a symmetric triangular fuzzy data, the centroid of fuzzy observation 
data is the symmetric center of the symmetric triangular fuzzy data. 

Lemma 1 [13] The traditional linear regression model 
Y X β ε= +  

where ( ) ( ) ( )T T 2
1 2 1 2, , , , , , , , 0, ,n nY y y y N Iε ε ε ε ε σ= =    
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Then the least squares estimator of β  is 

( ) 1T Tˆ X X X Yβ
−

= . 

According to Lemma 1, it is easy to get the estimator for the parameter in model (1) or (2). 
Theorem 2.1 Assume that the fuzzy linear regression model is 

Y X Eβ= +    

where ( ) ( ), 1, 2, , , 1, 2, ,ij ix y i n j p= = 
   are observed triangular fuzzy data and ( ), , ,ij ijl ijm ijux x x x=   

( ), ,i il im iuy y y y= . Then the estimator for β  is 

( ) 1T Tˆ
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 ,ijc icx y  can be calculated by (3). 

When fuzzy data is reduced to crisp data, the least squares estimation of β  is a conventional least squares 
estimation. 

Specifically, when the fuzzy linear regression model is 0 1i i iy xβ β ε= + +   , we have 
Corrary Let ( ) ( ), 1, 2, ,i ix y i n= 

  is a set of triangular fuzzy data of the fuzzy linear regression model 
0 1i i iy xβ β ε= + +   , it has 
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If the fuzzy observation data ( ),i ix y   is not triangular fuzzy data, the centroid method can also apply. 
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3. The Evaluation Performance of Fuzzy Linear Regression Model 
In order to evaluate the performance of fuzzy regression model, Kim and Bishu [11] introduced an absolute dif-
ference of the observed fuzzy dependent variable and estimated one as 

( ) ( )
ˆ

ˆ d ,
i iy yi i

i y yS S
E y y yµ µ= −∫











                            (6) 

where 
iyS


 and ˆiyS


 are the support of 
iyµ   and ˆiyµ  , respectively. 

Essentially, iE  is estimated error term, the smaller value of iE , the better fit of fuzzy linear regression 
model. Nasrabadi and Nasrabadi [12] showed the general calculation steps. Kao and Chyu [13] showed with the 
fuzzy linear regression model ( )0 1

ˆ , , 0,i ijy x l rβ β ε ε= + + = −   , the formula of iE  is 
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where 
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. The value of ,l r  can be determined by using the following method 
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4. Parameter Estimation and Impact Analysis of the Data Deleted Fuzzy Linear  
Regression Model 

4.1. The Fuzzy Linear Regression Model Based on Data Deletion  
For the fuzzy linear regression model (1) or (2), in order to evaluate the role and impact of the i-th data point 
( ),ij ix y   in the regression analysis, we can compare the inference results of before and after deleting the i-th 

data point ( ),ij ix y  . And we can test this point whether it is an outlier point or not. The fuzzy linear regression 
model with the i-th point deleted is called a case deletion fuzzy linear regression model (FCDM), and its com-
ponent form and matrix form are respectively  

0 1 1 2 2 , 1, 2, , , butk k k p kp ky x x x k n k iβ β β β ε= + + + + + = ≠   
                 (8) 

( ) ( ) ( ) ( )Y i X i i iβ ε= + 

                                 (9) 

where ( ) ( ) ( ), ,Y i X i iε 

  is the vector or matrix after deleting the i-th data of , ,Y X ε 

  respectively and ( )ˆ iβ  
denotes the least squares estimator of ( )iβ  in model (7). 
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4.2. The Parameter Estimate of Case Deletion Fuzzy Linear Regression Model 
According to Lemma 1 and Theorem 2.1, we can obtain the least squares estimator ( )ˆ iβ . 

Theorem 4.1 For the case deletion fuzzy linear regression model (6) or (7), the least squares estimator of 
( )iβ  is 

( ) ( ) ( ) ( ) ( )
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where T ˆ
î ic ice y x β= − , and icx  is the vector which is composed of the i-th row’s element of matrix cX , iip  is  

the main diagonal element of matrix ( ) 1T T
c c c cP X X X X

−
= . The proof of formula (10) can be obtained in Wei et  

al. [13]. 
Theorem 4.1 gives a calculation formula of the regression coefficient after the i-th data point deleted and also 

shows the relationship of the regression coefficient before and after the i-th data point deleted. It is the basis that 
we evaluate whether this point is a outlier point or a strong impact point. If the i-th data point is a normal point, 

( )ˆ iβ  and β̂  should be little difference. If they have a large difference, it shows that the existence of the i-th 
data point seriously affect the estimation of β , and this data point may be a outlier point or a strong impact 
point. 

4.3. The Impact Analysis of the Case Deletion Fuzzy Linear Regression Model 
At present, the existing method on fuzzy regression model did not consider the actual data which often contains 
outlier point or strong impact point. However, because of the gross error, rounding error, and other factor’s in-
terference, it’s difficult to avoid that actual data mixed with a certain proportion of outlier points or strong im-
pact points. Once mixed with outliers, these methods will face serious challenges, and even lead to wrong con-
clusions. Research about the impact of the data on the model is an important part of statistical diagnosis, and one 
of the most straightforward way is to delete data [6]. As we transform fuzzy data into clear data, the problem of 
the fuzzy linear regression analysis is transformed into a traditional linear regression analysis problem. There-
fore, the discussion of impact analysis based on data deleted fuzzy regression model can be transformed into a 
traditional data-deleted linear regression model. 

Although we can get ( )ˆ ˆ iβ β−  by formula (8), it’s a vector which is difficult to compare. In practice, Cook’s 
distance is often used to measure ( )ˆ ˆ iβ β− . Cook’s distance is one of the most important diagnostic statistics, 
and was originally proposed based on the statistical significance of parameter confidence region by Cook in 
1977 [14]. 

Cook’s distance is defined as 
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A big iD  shows the estimate ( )ˆ iβ  is far away from the true parameter β̂ , and ( )ˆ iβ  and β̂  have 
large difference. 

The following theorem is a simple formula for calculating Cook’s distance. 
Theorem 4.2 [13] For the fuzzy linear regression model (2) or (7), Cook’s distance can be expressed as 
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where ˆ
ĉ cY X β= . ( ) ( )ˆˆ

cY i X iβ=  is the fitted values with before and after deleting the i-th data point. 
During the specific data analysis, we first calculate Cook’s distance point by point written as 1 2, , , nD D D , 
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and then find one or more particularly large iD  through a list or figure (maybe not particularly large). The data 
point, with a big effect on parameter estimate, may be the outlier or the strong impact point. 

5. Analysis of Practical Example 
The following study shows an application of the centroid method and compares the proposed method in this pa-
per with Diamond and Sakawa and Yano’s method. 

The data in Table 1 are triangular fuzzy numbers, and we establish the fuzzy linear regression model 
0 1 0 1, ,Y X Rβ β β β= + ∈  , discuss the model’s error term and the outlier data point. 

By Theorem 2.1 (centroid), we can get the fuzzy linear regression equation 

( )ˆ 3.5724 0.5139 0.24,0,0.24 .Y X= + + −   

Using Diamond’s method [3], we can obtain the fuzzy linear regression equation 

( )ˆ 3.2636,3.5632,3.8628 0.5206 .Y X= +   

Also when using Sakawa-Yano’s method [11], we can obtain: 

( ) ( )ˆ 3.0307,3.2010,3.3713 0.4982,0.5788,0.6594 .Y X= +   

By formula (7), we calculate the model’s error term iE  and it’s sum using centroid method, Diamond’s me-
thod and Sakawa-Yano’s method, and the results are listed in Table 1. From Table 1, we can find that the sum 
of the model’s error term using centroid method is less than using Diamond’s method and Sakawa-Yano’s me-
thod. Thus, the result of fuzzy linear regression model using centroid method is better than using Diamond’s 
method and Sakawa-Yano’s method. 

Figure 1 obtained by Matlab programming. 
Table 2 and Figure 1 show Cook’s distance under centroid method and their scatter plot, respectively. Be-

cause of being with the Cook’s distance. These results indicate that the data point No. 7 is an outlier or strong 
impact point. 

 

 
Figure 1. The scatter plot of Cook’s distance under centroid method.                             
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Table 1. Data from Sakawa and Yano [15].                                                                                                   

No. ( ), ,i il im iux x x x=  ( ), ,i il im iuy y y y=  
error term iE  

Centroid method Diamond Sakawa-Yano 

1 (1.5, 2.0, 2.5) (3.5, 4.0, 4.5) 0.848 0.861 0.633 

2 (3.0, 3.5, 4.0) (5.0, 5.5, 6.0) 0.208 0.227 0.453 

3 (4.5, 5.5, 6.5) (6.5, 7.5, 8.5) 1.489 1.520 1.613 

4 (6.5, 7.0, 7.5) (6.0, 6.5, 7.0) 0.910 0.945 1.165 

5 (8.0, 8.5, 9.0) (8.0, 8.5, 9.0) 0.760 0.785 0.770 

6 (9.5, 10.5, 11.5) (7.0, 8.0, 9.0) 1.449 1.477 1.977 

7 (10.5, 11.0, 11.5) (10.0, 10.5, 11.0) 1.000 1.060 1.368 

8 (12.0, 12.5, 13.0) (9.0, 9.5, 10.0) 0.806 0.834 1.452 

The sum of error t  
error term   7.470 7.709 9.431 

 
Table 2. Cook’s distance under centroid method.                                                                         

No. ( ), ,i il im iux x x x=  ( ), ,i il im iuy y y y=  iD  

1 (1.5, 2.0, 2.5) (3.5, 4.0, 4.5) 0.2267 

2 (3.0, 3.5, 4.0) (5.0, 5.5, 6.0) 0.0030 

3 (4.5, 5.5, 6.5) (6.5, 7.5, 8.5) 0.1199 

4 (6.5, 7.0, 7.5) (6.0, 6.5, 7.0) 0.0362 

5 (8.0, 8.5, 9.0) (8.0, 8.5, 9.0) 0.0202 

6 (9.5, 10.5, 11.5) (7.0, 8.0, 9.0) 0.1554 

7 (10.5, 11.0, 11.5) (10.0, 10.5, 11.0) 0.2735 

8 (12.0, 12.5, 13.0) (9.0, 9.5, 10.0) 0.1306 

6. Conclusion 
By transforming fuzzy data into clear data, the fuzzy linear regression model is transformed into traditional li-
near regression model. We study the parameter estimation and impact analysis of the case-deletion fuzzy linear 
regression model. By comparing with other methods through a practical example, we can conclude that the pro-
posed method in this paper can be used easily and have a good fitting performance. 
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