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Abstract 
 
When we study a congruence T(x) ≡ ax modulo m as pseudo random number generator, there are several 
means of ensuring the independence of two successive numbers. In this report, we show that the dependence 
depends on the continued fraction expansion of m/a. We deduce that the congruences such that m and a are 
two successive elements of Fibonacci sequences are those having the weakest dependence. We will use this 
result to obtain truly random number sequences xn. For that purpose, we will use non-deterministic sequences 
yn. They are transformed using Fibonacci congruences and we will get by this way sequences xn. These se-
quences xn admit the IID model for correct model. 
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1. Introduction 
 
In this paper, we present a new method using Fibonacci 
sequences to obtain real IID sequences nx  of random 
numbers1. To have random number two methods exists : 
1) use of pseudo-random generators (for example the 
linear congruence), 2) use of random noise (for example 
Rap music). 

But, up to now no completely reliable solution had 
been proposed ([1]-[3]). To set straight this situation, 
Marsaglia has created a Cd-Rom of random numbers by 
using sequences of numbers provided by Rap music. But, 
he has not proved that the sequence obtained is really 
random. 

However, by using Fibonacci congruence, there exists 
simple means of obtaining random sequences whose the 
quality is sure (cf [4]): one uses the same method as 
Marsaglia, but one transforms the obtained sequence by 
Fibonacci congruences. Then, one obtains sequence of 
real xnsuch that the IID model is a correct model of xn. 

1.1. Fibonacci Congruence 

Linear congruences  mod (m) are often used 
as pseudo-random generators. In this case, we try to 
choose a and m so that successive pseudorandom 
numbers behave as independent. Of course, we can only 
ensure that it is the case of p successive numbers p where 

. To choice a and m, one can use the spectral test 

or the results of Dieter (cf [5]) which allow to choose the 
best “a”. 

 T x ax

2 p m

Unfortunately, the conditions which ensure the inde- 
pendence of three successive numbers are not those 
which ensure the best independence of two successive 
numbers,for example. 

Indeed, in this paper, we will study the conditions 
which ensure the independence of only two successive 
numbers and we will see with astonishment that this is 
the Fibonacci congruence which provides the best 
empirical independence. 

We shall study the set 

    2 = , | 0,1, , 1E T m      when z z  

m and 

 modulo

0 z . <z m  if  We will understand that 

pendence de ds on tthis de pen he continued fraction 
m

a
, 

n t e 

Let . One denotes by 
u

nk

i.e. it depends on sequences  and defined i hnr nh  
following way.  

Notations 1.1 0 =r m , 
ned by

nr
  

= 1k

1 =r a
=n nr h

1  when
sm

n  the sequence defi  1 1 2n nr r    the E - 
clidean division of nr  by . More- 
over, one denotes b d the allest i such as 

1 = 0dr  . One sets 2 = 0dr  . 
sets 0 = 0k  and 

r

  1 = 0nr  
nteger 

=k h k

y

, One 1 2 1 1n n n     if 
1n d  .  

depeThen, ndence depends on the ’s: more they are 
sm

ih
 all, more the dependence is weak. 

Theorem 1 Let  0 0 2,x y E . Let 
    0

0 0 2= , nx x k   a0 0,y y 
1 By abuse of language, we will call “IID sequence” (independent iden-

n nd let R r 0
0 =R R , tically distribution) the sequence of random numbers. 
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be the rectangle  modulo m. Th0R en 

If n is even, 

  2 0 0 k 1 0 1 1, = 0,1,2, ,n n nE x y r h       . 

Moreover the points 

=R

 0 1 0 1,n nx k y r      are lined 

up modulo m. 
If n is odd,  

  0 2 0 2 1 1= 0,1,2, ,n n n n n

E

x k y r r h        
. 

Moreover, the poi

2 0R

1= ,k 

nts  0 2 1 0 2 1,n n n nx k k y r r        

 is only on the border that 
th


are lined up modulo m.  

Of course, in general, it 0R , 
e rectangle modulo m, satisfies 0

0 =R R . If not, 0  
is a normal rectangle. 

For example if 0x

R

0= = 0y , this theorem means that 
the rectangle    0, 2, nk r r  does not contain 
points of 2E  i

2 22n n 
f even:  n is 

    2 0, 2 2,E k r r 
rectangle of 2  is 

empty of points of 2E : that will mark a breakdown of 
independence. 

As 1ih  , t

2 2 =n   . If  is large, 
that will mean at an important 

ngruence which defines the best 
in

n n

 th

he co

1nh 

depe  of 2E  will satisfy = 1ih  and = 2dh . In 
this case we call it congruence o onacc ed, 
there exists 0n  such that 

0
= na fi  and 10

= nm fi

ndence
f Fib i. Inde

  
where nfi  is the sequence of ci: 1 2fi , 

2 1=n n n

Fibonnac = =fi 1
fi f fi   . As a matter of fact the s n  

 Fibonacci except for the last terms (i.e. 
except for 1 2= = 1fi fi ). It is also the case for sequence 

nk . 
Re

i
sequenc

mark 1.

e

n

quence 

ce h

r

, we 

is the e o

1 

f

art 

ongr

In fact, when
us

t he s not 

.2. Application: Building of Random Sequence 

nfortunately, c uences of Fibonacci cannot be used 

 we use seque n

ha

e Euclidean Algorithm. Now, Dieter has also used this 
algorithm to compute the dependence of 

    1
0 0,n nT x T x  when e= 2m . Bu

of the ih is dependence.  
 
understood the p ’s in th

1
 
U
in order to directly generate good pseudo random 
sequences because 2 =T Id  where Id  is the identity 
(cf page 141 of [6  in this case, the pseudo 
random sequence 

]). Indeed
 0=

n

nx T x  checks 2 =n nx x  . 
However, one can us  of Fibon r 
to build IID sequences by transforming some random 
noise ny . 

Definitio

e congruence

 *q

acci in orde

ongruencen 1.2 . Let T be the c  
of

  Let 
. We Fibonacci modulo m  define the function of 

Fibonacci qT  by ˆ
q qT Pr T  where  
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2)   1 2= 0,q qPr z b b b  when 1 2= 0,z b b   is the 

bi  writing of z.  nary
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2,  admits for correct model ce 
0ny 

 ,N. Then,  a sequen
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l probabilities of nY  admit densities with 

Lipschitz coefficient bounded b 0

c tionaondi
y K  not too large. 

In fact, since nY  has discrete lue, we can alwva ays 
assume that nY  h  a continuous density.  
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For all permutation   of , N  , for all 1, 2,
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sity with respect tconditional den   of  n =  

given    1 21 2= , = ,n nY y Y y  

Y y
   .  

Sinc can e Y  is n discrete, e w also assume that 
 , 1. ,n     has a finite Lipschitz coefficient. 

4  We denote by 0

2 ,y 
ns 1.

f y
Notatio K  a constant such 

that, for all permutation   of  2, , N , for all 1,
 1,2, ,n N  , 
   , 1 2 , 1, , , ,n n 2 0f y y y f y y K y y  y         . In 

order to simplify the proofs w  suppose .  
itional 

pr

e 0 > 1K
the cNow, we shall prove easily that ond

obabilities of  q nT Y  check  

         
 

0 1 21 2 1

0
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q

Y y Y y

m O K m

   = = , =q Nn n nP T Y x y Y    

  


 

Then we shall choose m and q such that 

0 2qK m  is small enough. We shall deduce that, for 

all Borel set   0 2 ,1 2 , , 2 1 2
N

q q q qBo   , 

      1 = 1 1N Bo L Bo O N, ,P X X      where L 
is the measure corresponding to the Borel mea


sure in the 

case of discrete space :   1 2 , , 2 = 1 2q N Nq
NL k k .  

Then  =n q nx T y  c an annot be differentiated from 
IID sequ , it is wellknown that, for a sample 

n

ence. Indeed
x , there is many models correct : in particular, if nx  is 

racted of an IID sequence, models such hat ext  t
     1, , = 1NP X X Bo L Bo    are correct if   

eciprocally, if th  
sequence of random variables n

is sma respect to N. Rll enough with e
X  checks 

     1, , = 1N BoP X X Bo L Bo  , the
 nx .  

Thus one will be able to admit that the IID m

  m

co

odel IID 

odel is a 
is also a l for the sequence correct mode

rrect model for the sequences nx . As a matter of fact, 
one will be even able to admit that there exists another 
correct model 0

nY   of ny  such that  0
q nT Y   is 

exactly the IID se ce. 
Now there exists noises

quen
  such that ny 0K  is not too 

large. For example these seq nces can be built by using 
texts. In this case we can prove the result : in order that 

n

ue

x  is IID, it suffices that ny  admits a correct model 
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such that 0K  is not too larg However, it is a condition 
which can e imposed easily by transforming some 
noises. The advantage compared with the CD-Rom of 
Marsaglia is that this result is proved. Of course, we 
tested such sequences. 

So finally we can in

e. 

deed build sequences 

b

nx  admi- 
tting for correct model the IID model by using onacci 
congruences. This means that, a priori, these sequences 

n

Fib

x  behave as random sequences. It is always possible 
t they do not satisfy certain tests. But it will be a very 

weak probability as we know it is the case for samples of 
sequences of IID random variables. 

We point out that a first version of thes

tha

e results are in 
[4

use the congruence of Fibonacci method 
is

]. Moreover, all these results and the proofs are 
detailed in [7]. 

Note that to 
 completely different from the method using Fibonacci 

sequence with 1 1=n n nX X X   modulo m, which is 
moreover a bad gene  27 of [1]. 
 

rator : cf page

2. Depe nce Induced by Linear 
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ction
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.1. Notations 

e recall that we define sequences  and  by the 

 T x ax

2
 
W nr

 a
s

nh

nr  by
following way: we set 0 =r m , 1 =r a nd 

1 1 2=n n n nr h r r   , the E an ion of uclide  divi  1nr   
when 1 = 0nr   . O

s 1 =dr 

nd nk

ne denotes by d the smallest integer 
such a 0 . One sets 2 = 0dr  . Moreover, 0 = 0k , 

1 = 1k  a 1= n nh k 2 1 nk  if   

The

1n d  .  

n 1

2

3
4

1
= .

1
1

m
h

a h
h

h







 

Therefore,  for all n = 1, 2, d and 
uence 

1nh 
h

eque

 ,
e

cong

1 1= = 0 =d d d d d d dh r r r h r   . Th  full seq

1 =r a ,  , 1 = 0dr  , 

2 = 0dr  . Then, if T is a F ci en  
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s. 
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d
 is 

also the Fibonacci sequence for n = 1,2 ,d. Indee  by 
definition, 0 = 0k , 1 = 1k  and 2 1 1=n n n nk h k k  

,
  if 
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.2. Theorems 

ow, in order to prove the theorem 1, it is enough to 

2
 
N
prove the following theorem. 

Theorem 2 Let  ,2,3,n  d . Then 
If n is even, 

       2 2 1 1 10, = , = 0,1,2, ,n nE k r k r h     . 
Moreover the points 

0, n  n n 

 1 1,n nk r    are lined up. 
If n is odd,  

    
  

2 2

2 1 2 1 1
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= , = 0,1,2,
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E k r
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. 

,

Moreover, the points  2 1 2 1,n n n nk k r r       are 
lin

here exists large, there is a breakdown of 
in

ed up.  
Then, if t ih  

pdependence. For exam le if n = 2, it is a wellknown 
result. Indeed, 0=m r , 1 =r a , 1 = 1k  and 

2 1= =k h m a    where x    m
ctangle  

eans the integer part of 
x. Thus, the re  2 = 0, 2 2,Re m a m m    
will not contain any point of 
rectangle has its surface equal to  

ct

2E . However, this 
2 4m a . Thus if “a” 

is not sufficiently large, i.e if 1h  rge, there is 
breakdown of independence.  

We confirm by graphs the 

is too la

previous conclusion. We 
suppose m = 21. If a = 13, we have a Fibonacci con- 
gruence: cf Figure 1. If one chooses a = 10, 

  = 20isup h : cf Figure 2 . If one chooses a = 5, 
  = 5isup h : 

Then, in o
cf Figure 3. 

rder to avoid any dependence, it is necessary 
that  isup h  is small. 
 
2.3. Distribution of T([c,c'[) When T Is a 

 
We assume that T is a Fibonacci congruence. Let 

Fibonacci Congruence 

   = , 0,1, , 1I c c m    where  , 0,1, , 1c c m  . 

We are interested by  I  or 
1

T
  T I  because 

2 =T Id . Since  T aves ndependentI  beh as i  of I, 
ld fnormally, we shou ind that  T I  and, therefore 

 1
T I


, is well distributed in  , 1m  . As a 
f fact it is indeed the case. 

Indeed, let nk , n = 1, 2, , c' – 

0,1,
matter o

c, be a permutation of 
 1, 1, ,c cc    such that 

       1 11 2< < < c cT k T k T k
   . Then, 

for all numerical simulations which we execute s 

1 1 3< T k


d, one ha
always obtained  

       1 r
T k m r N I m N I   

where    m Log m  . In fact, it seems that  m  is 
of the o )). Moreover, 

   
rder of Log(Log(m

 1
=0,1, ., 1

r
r N IMax N I T k m r

   seems m 
when I is large enough : 

maximu
> 2c c m  .  

For example, in Figu nd 6res 4, 5 a , we he 
gr

 have t
aphs    1 rN I T k m r  , r = 0, 1, ,N(I) – 1 for  
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Figure 1. Fibonacci congruence. 
 

 

Figure 2. sup(hi) = 20. 
 

 

 

Figure 4. a = 1346269, m = 2178309. 
 

 

Figure 5. a = 121393, m = 196418. 
 

 

Figure 6. a = 10946, m = 17711. 
 
arious Fibonacci congruences when c' – c = 100. 

. Proof of Theorem 2

 this section, the congruences are conguences modulo 

1, 
M

v
 
3  
 
In
m. Now the first lemma is obvious.  

Lemma 3.1 For n = 3,4, ,d + 1 1> >n n nk k k  . 
oreover 2 1 1=n n n nk h k k     is the Euclidean division Figure 3. sup(hi) = 5. 
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 following results.  

. If n is even, 

of 2nk  b
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 1nk  . 
oveow, 

Lemma 3.2 Let n = 0, 1, 2 , , d
=n na m r . If n is odd, k =n nk a r . 

e prove this le  recu
 

Proof. W mma by rrence. For n = 0, 
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1r .  
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.  

t n = 2,3, d + 1. Let Lemma 3.3  ,
 1, 2, , 1nk . If n  is even, t 2  1 <nr  nat m r  .  
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 se
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Proo conf. The d assertion is lemma 3.2. Now, we 
pr

2 . 
M
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.  
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 .  
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= 2n , 1 1 1 1=n nk r= = =a k a a rNow, if   .  
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, it is also true for n + 1 = 3.  
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1 1 1=n n n1 2 2 3 3 1 1 1nH h k   .  

3.7, 

k h k h k h k H h     

Because . By lemma  10,1,2, , nt H   , 

1 , 1= nt l gk   where 
1nt L 

nIf nt L  1g h  . By lemma 3.2, 

     2

11 1
n n

nat gk gr gr


    . 1 1n na l al al     

Therefore,  

 
 

  
  
  

1

1 1

1 1

1 1

1 1

,

= = , , ,

= 1 , ,

= 1 , ,

= 1 , ,

n

n n n

n

n n n

n

n n n

nn
s n n

t km t L k Z

at km t l gk l L g h k Z

al gr km l L g h k Z

1 =nE a

f gr km f F g h k Z

o gr km s Z g h k Z



 

 

 

 

  

    

     

     

     

 

Suppose that n is even.  

2nr



Then,   11 =s no gr o 1

nn n n
s n s ngr o r     

1 1 1 2=n n n n n

    
because gr h r r r     .  

e recurrence. Suppose =n nUse th  1s s n

2nr
o

 n n n
so

o r . Then, 

1 2 11 =n s n n sgr o r r o
n

      
There

 .  
fore,  

 
 

1 1 <n n n
t s to o  1

1 1 1 1= < < < <

n
s

n n n n
s s n s n n s

o o

o o r o h r o



    
 . 

Therefore, 1 1
1 1=n n

t t no o r 
 

1 1
1 1

n n
 or  if 2nr 

<n n
s t to o so o   .  

=n n


Suppose 1 1s s no o r  en, s ixed  . Th is f .  
Let  1= m =in = 0,1, , n n

s t s t nT o o r   . Tt herefore, 
1 =n n

s T 

Let 
s To o  nr .  

 =0 1 1= 0T n
t s n ngr g h     .  

, 
tO o

Then
   1 1 1 1, , 0n n n n

s nO o o o o gr h    .  
ore, 

= ,s

Theref
s T s T n    g 
 1= , , ,s s s KO o o o   

1

 where 

1 =s s no r o    . Moreover, 

1 1 nr1= =n
n n nr h r 2s T s Ko o  

Therefore, if 
  

1n
 .  

ot

  and 

 1 1 1
1 t s s To o o o    1

1 1
1 1=n

t t no r 
  ,n n n n

t to     or n  no

2nr  .  
uppoS se that odd. result by the 

sa
n is One proves this 

me way as when n is even (cf [7]).  
Proof 3.9 Now one proves theorem 2.  
Suppose that n is even.  

Then, 1 1=n nk a r  , 1 12 nk = 2a rn   , ......

1 1n nk a r1 1 2= =n n n nh h r r     . 

Now, 1 1 1= =ak r rn n n     for  1= 0,1,2, , nh   . 

  
  

1

1 1 1 2

, = 0,1,2, ,

= , = 0,1,2, ,

n

n n n

r

k ak h E



   

 

   
Therefore, 

Moreover, nr

1 1n nk h  

2 1 1=n n nr h r    . On the other hand, by 
lemma 3.8 of , all the points  2 = ,E t at , 1nt H  , 
have ordinates distant of nr  or r

Therefore, if there is oth r poin f 
1n . 

ts oe
    2 1 20, 0,n nH r    that the poiE nts 

  1 1n n  ts 1, nh  , there exis, = 0,1,2,k r   

 0 11, 2, ., nh    and 
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      1 1 2 1, 0, 0,n nx y E H r   
1 0 1 =n nr y r  .  
Because 1 1= 1n n n

2  such that 

1 1d< nH k k k   , b
, n , s

k  
3.5, there exists an only 1, 

y lemma 
uch that  1t H 

1= n only 

 10,1, , nt H   , such that 

at y : 1=t x . Because 1 = 0y  , there exists a

1=at y . 

Now, 1 0 1 0= = =n na at r ak   . Then1nr y k  , n

0 1 =n na k ak at . Then,     0 1 =n na k k at . 

e d  with , 

Moreover, , en, . 

ma 3.4, 

1

1

n



.  

Then, 
Now 1

M

use 

Becaus 2dh  . 

2 . Then dk
1 =d dr h r

d n 
1 >d dr r

1 > 0 . Thd  1 > 0

Then, by lem

2 1 12 2 =n n d d d dk k k k      
Then, 0 < < k . 

< 2d d dk k h k k m  . 

1dk k 0 1n n
Then, by lemma 3.4, 

0 <

=
n nk   1 0 1 1 1 2

1 1 =
n n n n n n n

d d d d d

k k k h k k k k k

k h k k k m
 

 

       

   



22 2 < 2n n d dk k k k 

0 1 10 < <n n dk k k  . 
0 < =t H k k 1 1 11 <n n n d d dk k k     . 
r, 0 10 < <n n dk k k  . oreove 1

Then, beca  0 1 =n na k k at  , by lemma 3.5

> a 
co

ore, there is not other points of 

, 

0 1= nt k   n

1 1n n n nk k k   
k . 

Then, 0 1= nt k H  . It is 
ntradiction.  
Theref

   0, nE H r 2 10, n 


  that 2

 1 1 1, = 0,1,2, ,n n nk r h      . 

ther poTherefore, there is not o ints of 
    2 20, 0,n nE k r    

 
that the points 

 1 1 1, = 0,1,2, ,n n nk r h      .  

Therefore,  

       2 2 1 1nr  10, 0, = , = 0,1, 2, , .n n n nE k r k h         

what precedes,  According to 

  
  1 1 1, = 0,1, 2, ,n n nk r h     

1 1 1, = 0,1, 2, ,

=

n n nk ak h     
 

is located on the straight line  1 1= n ny r k x   if n is 
even.  

Suppose that n is odd. One proves this result by the 
]).  

 
4.

same way as when n is even (cf [7

 Models Equivalent with a Margin of   
 
4.1. Correct Models 

 
In general terms, one can
realization of a sequen

 always suppose that  is the 
ce of random varia les 

defined on a probability space 

ny
b nY  

 , ,A P :  =ny Yn   
where   and where nY  is a correct model of ny . 

As a matter of fact, there exist an infinity of corr t 
models of ny . It is thus necessary to t 
of all th ble random v iables.  

Notations 4.1 One considers the sequences of random 
variables nY

ec
be placed in the se

e arpossi

 , n = 1, ,N, defined on the probabilities 
spaces  , ,A P ,   : 

    1 2, , , : 0 ,1 , , 1
N

NY Y Y m m m m       . One 

assumes tha =  all t n nY Y  for   .  
For exam n assumple, one ca e that 

  = 0 ,1 , , 1
N

m m m m   and 
   1, , =NY Y d  .  , ,Id I

what is a correct 
model. Indeed, if a model 

It thus raises the question to define 

nY   is 
=ny

not correct, it is 
however possible that  nY  . Now, in the case 
where the model nY   is IID, to define a correct model is 
a generalization of the problem f the definition of an 
IID sequence. Then, it omplex problem (cf 
[1]). 

However, generally, one feels well that correct models 
exist. In fact, it is a traditional assumption in science. In 
weath

 o
is a very c

er for example, the researchers seek a correct 
m

 a more detailed study is in [7]. 
 

.2.1. The Problem 

odel, which implies its existence (if not, why to try to 
make forecasts?). 

One could thus admit that like a conjecture or a 
postulate without defining exactly what is a correct 
model. Cependant,

4.2. Models Equivalent 
 
4
Let 2

nY   and 1
nY   be two sequences of random vari- 

ble h that all Borel set Bo,  a s suc , for 

       1 1
1

 2 2, ,P Y Y Bo 
1= , , 1 1 ,N NP Y Y Bo Ob       

where Ob(.) means the classical O(.) with the additional 
condition  1 1Ob  . One supposes 1

nY that  is 
correct model of the sequence n = 1, 2, . On

a 
e n

wants to prove that 2
nY

y ,  ,N
  is also a correct model of ny  

if   is sm  
 
4.2.2. Example 
Le us suppose that we

all enoug

t  have a really IID sequence of 
ndom variables 

h.

ra nX   with uniform distribution on 
,1  with a probability such as [0,1/2] and [1/2 ] and

    1 2,1 = 0,500 1nP X     where = 0,001 . 
Then, this sequence  not the uniform distribution on 
[0,1]. However, if we have a sample with size 10, we 

 that n

has

ot unwill absoluetely n derstand X   has not the 
uniform distribution on [0,1]. It is wellknown that one 
need samples with size larger than N = 1000 minimum in 
order to test this difference. 

For example, one cannot test significantly 0H : “ nX   
has the uniform distribution” against  1H  : 
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“      1b= 1P X Bo L Bo O
n     1 10N   . ” if 

Indeed, if = 1 10N   and b = 2, the probability of 

obtaining 
   1 2,1=1

1 1 2
2

nn
X

N

  


 about 0.0466

under 

4

N  
 is  

 1H   and about 0.0455 under 0H : i.e. the 
rejecting the assumptioprobability n IID, 0 of H , under 

 1H   is not much bigger than that of rejecting 0H  if 

nX   is ID (cf also section 4.3 of [8]). 
Then it is no possible to differentiate the  model 

dels such that 

      , , = 1 1X Bo L Bo Ob 

 really I
IID

and mo

P X1 N     
 
4.2.3. B

. 

order of Correct Models 
Now there is a problem : for example, use a realization 

nx  of the IID model, and let 1
nX   be a model checking 

    1 1, , = 1P X X Bo L Bo    11Ob1 N    where  
1  is small enough but not ver  small. Let 2

ny X   be a 
model such that 

  


1

1
1

, ,

= , ,

N

NP X X    

2 2

1 1 1

P X X Bo

Bo Ob

 

 



   




. 

Then, 2
nX   can be not a correct mo el: it is enough 

that 
d

1  is in extreme cases of the possible values of the 
 ’s such that 

      2 2
1 , , = 1 1NX Bo L Bo Ob P X     ,  

  1 = 1Bosup Ob , imply that nX   is a correct model.  
Then, there are models m  correct th others. 

These are models 
ore an 

0
nY   such that, if  1 ,, NP Y Y  , 

nY   is also a cor herrect model w e   is small enough, 
but not too small. For example, = 1 10 , 1/100 or at 
worst = 1 N  if ne e (cf section 5-7 

t seems clear that such models exist. For example it is 
assumed that this is the case when

ed b of [7]). 
I

 nx  is
quence

 sample of an 
IID se n X   and that it is a good realization of 

nX  . 
On the other hand, we know th  it should exist 

estimates of m els (these estimates are easier to 
at

od
calculate in some cases as texts). Then, we can choose as 
model 1

nY  , the model provided by these estimates : 
close models will also correct models. 

All these points are detailed in [7]. 
 
4.3. Exact IID Model 
 

hen, generally, ifT  nY   is a correct model such that 
 q nT Y  cannot be differentiated with the IID model, 

 be able to se another correct model one will  choo 0
nY   

close to nY   and suc hat  0
q nT Y  is exactly the IID 

tion (cf proposition 5-1 of [8]).  
Proposition 4.1 One assumes that m is large enou . 

Let c
nY

h t
e pmodel. Indeed on e fo  

proposi
gh

roves easily th llowing

   a correct model sequence ny . One 
assumes that there exists > 0Y

be  of the 
  such that if nY   is a 

model satisfying, for all Borel set Bo, 

       1 1, , = , , 1 1c c
N N YX X Bo P X X Bo Ob  P       , 

then nY   is a correct model of ny . 
One assumes also that, fo  1, ,r all Nk k ,  

     
 , ,1

1 k kqN N
q  

1 1 = 2

2

q q N Nk
 

where 

= 2

1
=

q qc cP T Y k T Y  

   , , , ,1 1
=k k k k XN N

sup q q   . One assumes 
that  X q  is increasing, that  1X Y   

 
a at 

 such that
nd th

there exists *
1q N 1X q  is small 

enoug
, there exists and a co

h. 
Then rrect model 0

nY*
0q N    

of t quence he se   =1, ,n n N
y   su , for all ch that

 1, , Nk k ,  

      0 01 1= 2 = 2 =
2

q qc c
q q N N q N

T Y k Y k  

 
0

T  

5. Approximation Theorem 
 
5.1. Theorem 

T is a Fibonacci 
ngruence and we use Fibonacci function  in order 

ences. 
Theorem 3 We keep the notations 1.3 and 1.4 and 

1
P

 
In this section, we assume that 
co qT
to build IID sequ

notations of section 2.3. Let    = 2m m    . We 
assume   0 2 0qm NK m   and 0 1m K  Then, for 
all Borel set Bo,  

. 

         0
1

1
, , = .N

m Ob NK
P X X Bo L Bo

  


 
  

where 

1
2qm

 

 1Ob  is  to 1.  
If 

 increased by a number close

0K  
nd 

is not too large, there is no difficulty to choose 
m a q in such a way that   02qm N K m   is 
small e ough. Therefore, n

      1, , = 1 1P X Bo L Bo ObNX     . 
 
5.2. Proof 
 

 1
T mBecause, by Section 2.3, the points of I


 are well 

istributed in d  0,1, , 1m  , it is easy to prove that the 

 of sum of points   1

Nh T mI


  will be close 

  0,1, , 1card mI m m   (e.g. c 7). Then, 
we have the fo  (cf also proposition 6-1 of 

f Figure 
llowing lemma

be the probability density function 
of 

[7]). 
Lemma 5.1 Let Nh  

  0 ,1 ,m , 1Y m m m  , with respect to m :  
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Figure 7. Points of   
N kh T mI

1
 when    π sin 4 1Nh t t  . 

 

. Let    1

0
= 1N mh u du  0= 1N Nh c h  such that 

Let 

 

 1

0
d = 1Nh u u . 

0K R   such that     0N Nh r h r K r r      
and     0K rNh r Nh r r      when  , 0,r r 1 . 
One supposes 2 0q m  , and 0 1m K    . 

The holds:  n, the following equality 

         01
= 1 ,

2k k q

K
P T mY m I L I

m

  
 
 

 

where 

m Ob
 

 = 2 , 1 2q q
kI k k   ,   = 1 2q

kL I .  
, one can prove theore  3. Indeed, b plying 

le
Then m y ap

mma 5.1 when Y  has for distribution the distribution 
of the conditional probability of  nY  given 

   1 21 2= , = ,n nY y Y y     , we have  

  
      

     
1 21 2

0

= = ,

1
= 1 .

2

k

kn n n

k q

P T mY m I

P X I Y y Y y

m Ob K
L I

m

  



 



 

 
 

 

  = ,

Now, one proves easily that  

      
   

      

1 21 2

,...,
1 11 1

1 11 1

1 21 2

= , = ,

=

= , = , ,

kn n n

y ys sN
y T x y T xs q s q NN

k s sn n n

P X I X x X x

P X I Y y Y y

  

  



 

 
      

 

 

  

 







 

where  
 

      

   
      

1 11 1

, , ysN

y


1 1
1 11 1

1 1
1 11 1

= =
=

= =

s sn n N N

ys

s sn n N N
y T x y T xs q s q NN

P Y Y y

P Y y Y y

 

 


   



         

  

   




 
 

 
Then, 

We deduce that  

   
, ,

1 11 1
1 11 1

= 1.y ys sN
y T x y T xs q s q NN

  
      

    

      
     

1 21 2

0

= , = ,

1
.

2

kn n n

q

X I X x X x

m Ob K

m

  



  




 


 

Then, one proves by basic methods (cf proposition 6.2 
of [7]) that, for all 

= 1kL I
 


P

1k kN
I I  ,  

  
    

=1

= 1 1 ,
N

ks
s

L I Ob   
 

1 1
, , N k kN

P X X I I  

where 
    01

2q

m Ob K

m





 . Because 

  0 2 0qm NK m  , we deduce that  

  
   

1 1k
I  

01
q

m Ob NK

m


, ,

1
= 1 .

2 2

N kN

Nq

P X X I 





 
 
 

 
 

Now, we deduce that, for all Borel set 

  0 2 , , , 2 1 2 ,
N

q q qBo    

         0
1

1
, , = 1 .

2
N q

m Ob NK
P X X Bo L Bo

m

  
  

 
  

 
6. Choice of Random Noises 
 

 
Now, we suppose that we use sequences 

6.1. Use of Texts 

ny  and 
  " 0 ,1 , , 1ny m m m  , m n = 1,2, ,N

from independent texts. In order to redu
, obtained 

ce 0K  we add 
odulo m a text and a text written backm ward: 

   0rand n1 0= "n n N ny y y rand n m 
      where  is 

 which have good empirical 
ptions for p successive pseudo 

ndom numbers when  In an obvious way, the 
ria

for example, one can take a h

 to have 

pseudo-random sequences
independence assum

3p  .ra
texts are realizations of sequences of random va bles : 

s model, t e set of the 
possible texts provided with the uniform probability 

As a matter of fact, we add  0rand n
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sequences which have a good 9
chapte

ny  
r 3 of [6]). 

randomness (cf [ ], or 

In particular, a priori, “  =nP Y y  is not too different 
from 1/m” is a reasonable assumption. Moreover, 
 1 2, ,n n ny y y   has a e cal distribution close to 
independence and texts behaves as Q-dependent 
sequences (cf [6]). Then, for all permutation 

mpiri

 , a 
three-dimensional model   1 2, , nY Y Y  wit  n n   h a 
continuous density and a Lipschitz coefficient not too big 
will be a good model. By the same way, 



      1 21 2

1/m (cf [7]). 

= = ,n n nY y Y y Y      is not too 

different of  =nP Y y  which is not too different from 
 this case, one can prove that generally 

0

= ,y P

In
K  is small cf [7].  

On the other hand, to increase 0K  a good way is to 
use the Central Limit theore  combine 
the two methods : cf [7]. 
 

m.  can

6.2. Example 
 

ssa

 In fact one

Now it may be nece ry to do some transformations to 
get the  0,1, , 1nmy m    in the case where the 

ers and symbols lett ded by sequences a(j), are provi

3= 1,2, ,j N ,   0,1, , 255a j   , 3= 1,2, ,j N . 
One sets 


0 3 1=N N r   . We choose two consecutive 

elements a and m of the Fibonacci sequence : m can be 
pect to . Then, we choose  such 

.  
chosen with res
that 1< 32ra m

 0N 1r

1) We set    =c j a j  mod = 32  

2) We set   1

=1
1 r

r
n r     for 

. 

  1
1=

r
d n c r
0= 1,2, ,j N

3) We set   1r m 
  for 0= 1,2, ,j N .  

By using this technique, we have created real IIID 
sequences n

=ny d n m


x . We hav used a sequence c(  with 

3 =N . T
e j)

his sequence was obtained from 
clopedia, e. We choose 

. Then  
. In or  

20,0 000
dic y

, 
ha  K
we have ch K

00,
c

a m
d

oos

tionary, en and Bibl
36

1 = 20r , 
. Then, we

 error

n

< 4*10
ve estimate d any

= 70q

0 = 0.01
4

0 = 10

 6
0 = 10N

der to avoi
in the building of e  x . 

We have t nested the sequence x . We e 
nd the highe

 have used th
classical Diehard tests (cf [1] [2]) a r order 
co

 w
“randomness” is a

 

B  c

rrelation coefficients (cf [10]). Results are in 
accordance ith what we waited: the hypothesis 

ccepted by all these tests (cf [7]). 
One can can download this sequence in [11] 

7. Conclusion: Building of Random Sequence 
 

y theorem 3 one can find models orrect nY   such that 

      , , = 1 1NP X X Bo L Bo Ob 
1

     where   

is small if 0K  is not too large. Now it is possible to 
build such sequences concretely, for example by using 
texts studied in section 6. In this case, coefficient 0K  

0

 
de But, pend on the choice of m, i.e. of 1r . K  

e increases very little when increases. E n, in som1

cases, it seems that it decreases. Then, at most 
r  ve

2q m  
decreases m ore quickly than uch m 0K  inc eases. 

we found 

r
So by taking m large enough and by choosing well q, 

  small enough in a way that tthere exis s 
correct models which checks the conditions of 
proposition 4.1. Then, there exists m sufficiently large 
and q sufficiently small and a correct model 

  0 0 ,1 , , 1nY m m m m    such that  0
q nY  is 

the IID model. 
Then, this result show that one can  sequences 

n

T

build
x  such that the model IID is a correct model of nx . 

That means that nx  behaves like any IID sample: a 
priori, nx  an check not the properties which one 
expects from a IID sample like certain tests, but that 
occurs only with a probability equal to that of any IID 
sample. 

 have a mean  the 
technique used by Ma

c

By this method, we therefore to value
rsaglia to create its CD-ROM. We 

ar
ob h
M

ark

he built its CD-Rom. This also corresponds to 
re

rive in fact to prove mathematically that the sequence 
tained can be regarded a priori as random, w at 
arsaglia did not. 
Rem  7.1 One might wonder if the sequence built 

adding text and pseudo-random sequences is not an lID 
sequence. It is a similar hypothesis which Marsaglia 
does when 

sults of [9]. But in fact, nothing is proved. 
It is maybe possible to prove it but that seems 

complicated. Finally, it is much easier to apply the 
functions qT : in this case, it requires only that 0K  is 
not too big. It’s an hypothesis much simp  
ve

 

n,

  

39821916

ler to be
rified and it does not require many efforts in some 

cases. That is why we choose to build IID sequences 
using this technique. 
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