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Abstract

In this paper, we show that some functions related to the dual Simpson’s formula and Bullen-
Simpson’s formula are Schur-convex provided that f is four-convex. These results should be com-
pared to that of Simpson’s formula in Applied Math. Lett. (24) (2011), 1565-1568.
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1. Introduction

Schur convexity is an important notion in the theory of convex functions, which were introduced by Schur in
1923 ([1] [2]), its definition is stated in what follows. Let R! be denoted as,

R! :{x:(xl,x2,~~-,xn)e R™; X > X, 2---2xn},

and (R!)" be defined by,

i n
(RD* ={ye R" >y, >0 forall j=12,--,n-1and >y, :0}.
i=1 i=1
Then we recall (see, e.g., [3]-[5]) that a function f:R" — R is Schur convex if
vx,yeRy—xe(RI) f(x)< f(y).

Every Schur-convex function f:DeR" — R is a symmetric function, and if | is an open interval and
f:1" > R is symmetric and of class C', then f is Schur-convex if and only if

(xi—xj)(%—%]zo,on B (1.1)
i j

forall i,je{l,2,---,n}.
Let f:1 R —> R beaconvex function defined on the interval | of real numbersand a,bel with a<b.
The following inequality
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f (a)+ f(b)
2

£ @rb - 1aj'f(x)dxs (1.2)

2 b-

holds. This double inequality is called Hermite-Hadamard inequality for convex functions. Hermite-Hadamard
inequality is improved though Schur convexity, c.f., [6]-[10]. Among these paper, it is proven that if 1 eR s
aninterval and f:1— R iscontinuous, then fis convex if and only if the mapping

b
sl(a,b):ﬁjf (x)dx, if bza

(Here and what follows, we use the mapping convention S;(a,a) =lim,_, S;(a,b) for b=a case, which is no
longer stated.) is Schur convex, and in this case, S;(a,b) isconvex. If I eR isanintervaland f:1 >R is
continuous, then f is convex if and only if one of the following mappings
1 8 a+b
S,(a,b)=——|f (x)dx— f
(@)= [ o= 1

), if b=a,

f(a); f(b)—biaif(x)dx, if ba

a

S;(a,b)=

is Schur convex. Some exciting results on Schur’s majorization inequality can be found in [11]-[13].
Let f:[a,b]—> R be a four times continuously differentiable mapping on [a, b]. Then the following quadra-

ture rule is well-known:
Lbf(X)dx:l{f(aﬁf(b)+4f("Hbﬂ—if(4)(§)(b—<'sl)4 Ee(ab),  (13)
6 2 2880 ’ v '

b-a:

which is called Simpson’s formula, c.f. [14] and [15]. For | e R is an interval and f:1— R is called four-
convex, if £ (t)>0, forall te[a,b]. In[15], the authors proved that if ™ :1 — R is continuous, then f

is four-convex is equivalent to the mappings defined by
1 a+b 18 .
S,(ab)==| f(a)+ f(b)+4f| — | |-———|f(x)dx, if b=a
a)=3] t@)+ 10)ear( 22| 2o fr
is Schur-convex, this is an improvement of the Simpson’s formula.
On the other hand, the dual Simpson’s formula ([14]) is stated as follows: if £ is continuous, there exist
n € (a,b) such that

1t 1 3a+b 3b b 1 4
Eaf(x)dx=§{2f(a7+j+2f(az ]—f(a; ﬂ+23040f()(n)(b—a) ,ne(ab). (14)

In [16], Bullen proved that, if f is four-convex, then the dual Simpson’s quadrature formula is more accurate
than Simpson’s formula. That is, it holds that

1 b

Eaf (x)dxgé{f (a)+4f (3a:bj+2f (a;bj+4f (afbjn(b)},

provided that f is four-convex.
Now we can state our main results. In view of the dual Simpson’s formula and the above Bullen-Simpson
formula, we construct two mappings as follows: for b= a, we set

s, (ab) = —— 1 (x)dx—%{Zf (Sajbjuf (afbj— f (azbﬂ

b-a;

Se(a,b):%{f (a)+4f (3a:b]+2f(azbj+4f (a*fb} f (b)}—ﬁbf (x)dx.
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We shall show that if f* :1 — R is continuous, then f is four-convex if and only if the mapping S, (a,b)

or Se(a,b) is Schur-convex. Obviously our results improve the dual-Simpson’s formula and the Bullen-
Simpson’s formula, and hence complement the main result in [15].

2. Main Results

We now present our main theorem.
Theorem 2.1. Let | c R,f eC*(l) be a mapping on I, then the following statements are equivalent:
(a) The function S, (a,b) is Schur-convexon 1.

(b) The function S;(a,b) is Schur-convexon 172.

(c) The function Sg(a,b) is Schur-convexon 2.
(d) Forany a,bel with a<b, we have the Simpson inequality holds, i.e.:

1 b

BV )

(e) Forany a,bel with a<b, we have the dual Simpson inequality holds, i.e.:

%{Zf(:;a:bj+2f (afbj- f (a;bﬂs bia-Tf (x)dx.

a

(f) Forany a,bel with a<b, we have the Bullen-Simpson inequality holds, i.e.:

IR (x)dxgé[f (a)+4f (3""4+bj+2f (a;bjwf(aft’} f (b)]

b-as

(9) The function f is four-convex on I.
Proof:
The equivalence of (a) (d) (g) was already proven in [15]. Suppose that item (g) holds, then by the definition

of the function S, (a,b), we have

b

0S; 0Sg ) 2 1 a+3b 3a+b
(b—a)(a—a]_f(a)+f(b)—b—£f(x)dx—§[f( . ]_f( i6-a).

> f(a)+ f (b)-%{f (a)+ f (b)+4f (a—;bﬂ-%[f'[a’f’b)- f'(3a4+b)](b-a),

(by Simpson’s formula (1.4) and four-convexity of f) hence,

b

b 2
By B 21 1 [ f'(x)dx—if'(“?’bj o | f'(x)dx—lf'(ﬂj
b oa 3||b-a, 2 4 b-a 1 2 4

=% s :[ f’(x+b_7aj— f’(x)dx—(f’(a;r‘gbj_ f’(3a:bD

Here we denote h(x)= f’(x+

o
N
QD
~—

- f'(x), for xe[a,aTer}. Since f is four-convex, h(x) is convex.
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Thus Hermite-Hadamard (1.2) holds for h(x) in [a,a—gb] this gives that (b—a)(%—z—ssjzo, S0 by the
a
criteria (1.1) S, is Schur-convex, item (b) is a consequence of item ().

Now suppose that item (b) holds. Since (a; b a;bj 0 (a,b) , Schur-convexity of S, gives that

0-s, [ a+b a ! bj <s,(a,b), i.e., item (¢) is valid if item (b) holds.

Next we prove item (e) implies item (g). By item (e) and the dual Simpson’s formula (1.6), we get
1 4
0<S,(ab)=——f“(y)(b-a)' ,ne(a,b).

Since f eC*(l), and a, b are arbitrary, it follows that f is four-convex. Now the equivalence of (b) (e) (g) is

proven. We follow the same pattern to show the equivalence of (c) (f) (g). If item (c) holds, then

0=S (a+ b , a;bj < S4(a,b), i.e., item (f) is valid. Suppose that item (f) is valid. By the definitions and for-

mulas (1.3) and (1.4), we get

0525, (0) =5, (a5) S, (a0) =5 ()5 1 (1) [o-2)", cum<(a).

Since f eC*(l), and a, b are arbitrary, item (g) follows again. It is only left to show that item (g) implies
item (c). We give a lemma first.

Lemma 2.1. Let | cR,feC*(l) be four-convex on I, then the following inequalities hold for any a,b e I

with b > a:
staliems w3 (3o
L 1 1.,(a+b
E!f(x)dxzf(b)—g '(b)(b- a)‘gf( : j(b—a).
Proof:

We only prove the first inequality Denote that
jf x)dx—[f (a)(b— a)+—f()(b—a)2+%f’(a7mj(b—a)z],
and that g(x)=f"(x ),then
a)=0; T'(a)=0; T"(a)=0. (2.1)

(
T’(b):f(b)—f(a)—(%f’(a)+§f’(a+bjj(b—a)—%f (a+b](b— a)’.

2

o= r-(Fr@- (22252 e-a-g (2o

Here,
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From the Hermite-Hadamard inequality for convex function g(x), we see that T,(b)>0. Besides, it follows

from convexity of g(x) thatforany x<y:

9(y) 2 g(x)+g' (x)(y-x).
Take integration w.r.t y, we get
y

Jo(n)dy= g (x)(y-0+ 39" (x)(y-x),

applying this inequality in [a—;b,b] , we see that T, (b) > 0. It follows that T"(b) >0 for any b > a, hence

by (2.1) we know T (b) >0 forany b > a. The second inequality in the lemma is just the first inequality with b

<a, we omit its proof. The lemma is proven.
Now we continue the proof of our main theorem. By the definition of S (a, b) , We have

-2 - 52 T r a1 @)+ 1 o)
+%[f’(b)— f’(a)](b—a)+g[f’(a23bj—f (3a+b)](b—a)
=K, (b)+K,(b),

here K, (b),K,(b) isdenoted as

)
T
o

2 2 1 1., 3a+b
K =— | f - f(a)-— 1’ —a)-=f'(——)(b-
(0)=5 =5 [ ()= (@)~ 1 (@)b-2) ¢ 1502
2 0 1 a+3b
Kz(b):EaLf( )dx—f(b)+12f (b)(b-a)+ 6f ( )(b-a)
2
Suppose that item (g) holds, by applying the lemma to f in {a, a+b} [a_+b b], we get both K,,K, >0,

thus (b— a)(a; a;: j >0, so by the criteria (1.1) S; (a, b) is Schur-convex, item (c) follows.

Remark 2.1. From Lemma 2.1, we add the two inequalities together to see that the following holds for four-
convex functions f:

zf (x)dx 2%[1‘ (a)+f (b)]—é[f'(b)— f'(b)l(b-a) (2.2)

it is well-known, c.f., [14] or [15].
Starting from this inequality (2.2), we deduce some properties for four-convex functions. As in the above, we
define a pair of mappings S,,S, by

S, (a,b) :b—jf dx-—[f (b)]+%[f'(b)-f'(b)](b-a);

SB(a,b):z[ ]——jf dx——f (a;b](b a)’.
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Then we have

Theorem 2.2. Let | cR,feC*(l) be four-convex on I, then the mappings S,,S; are non-negative and

Schur-convex on 12,
Proof:
We observe that

(b_a)[%_%j:é:f (x)ox—[ f (a)+ f (b)]

1., , 1,.,/a+b 2
F2L0(b)- 1 (@)l(b-2) (Tj(b_a)

1., , 1 a+b
>2L1(b)- f'(a))(b-a) - ( _ j(b a)’ (2.3)
>0 2.4)

Here inequality (2.3) is due to inequality (2.2), and inequality (2.4) is a consequence of the Hermite-Hada-
mard inequality for convex function f”, thus by the criteria (1.1) S, are Schur-convex on 17. Hence we get

sg(a,b)zss(a;b,a—“’jzo.

2
Since S, is non-negative, we observe that

S, oS, 2 ¢
(b—a)(ab aaj 2 (a1 (2)+ 1 (b)]
20 (0)- F(@))(b-a)+ - [F"(a) + £ (b)]6 -2’ (2.5)
2—%[f’(b)—f'(a)](b—a)+$[f”(a)+f"(b)+2f”(a+b)](b a)’.
It is shown in [7] for a convex function g that the function
1 1 by 1 % .
Sg(a,b)zz[g(a)+g(b)]+Eg(a%j—E£f(x)dx (if bxa)

is Schur-convex, specially we have S (a, b) >0.Weset g=f",thenitisconvex, we see that RHS of inequa-
lity (2.5) is non-negative, so by the criteria (1.1), S, is Schur-convex.
Furthermore, we give a Schur-convexity theorem for the following mapping:

slo(a,b):f(“bj——[f )+ £ (0)]+50F(0)- T'(0)](b-a)+ o 1 (‘”bj(b a)? .

Theorem 2.3. Let | cR,f eC*(l) be four-convex on I, then the mappings S,, are non-negative and

Schur-convex on 12 .
Proof: We observe that

(b—a)(%—%]=—%[f’(b)— f’(a)](b—a)+%[f"(a)+ £7(b)+2f" (a+bJ](b a2

Since S,(a,b)>0 for convex function g = f", as in the above, we can conclude that S,(a,b) are non-

negative and Schur-convex.

Remark 2.2. For smooth four-convex functions, we see that both S, and S,, are non-negative and Schur-
convex functions, then the sum of S, and S, is also non-negative and Schur-convex function, especially it
holds that
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a+b) 1 a+b 1 8
fl— |+—f" = |(b—a)* > f d
( 2 j+24 ( 2 j( ) b—aJ; (x)dx

Remark 2.3. For positive real numbers X, y, we denote the arithmetic mean, geometric mean, and logarithmic
mean of x, y by A, G, L. Applying non-negativity of S, and S, to function f(t)=¢', te[lnx,Iny] then

we have
2 2
1o (my] ca-L<ti (Y],
12 X 12 X
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