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Abstract 
In this paper, we show that some functions related to the dual Simpson’s formula and Bullen- 
Simpson’s formula are Schur-convex provided that f is four-convex. These results should be com-
pared to that of Simpson’s formula in Applied Math. Lett. (24) (2011), 1565-1568. 
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1. Introduction 
Schur convexity is an important notion in the theory of convex functions, which were introduced by Schur in 
1923 ([1] [2]), its definition is stated in what follows. Let nR≥  be denoted as, 

( ){ }1 2 1 2, , , ;n n
n nR x x x x R x x x≥ = = ∈ ≥ ≥ ≥  , 

and ( )nR +
≥  be defined by, 

1 1
( ) ; 0  1, 2, , 1 0 .

j n
n n

i i
i i

R y R y for all j n and y+
≥

= =

 
= ∈ ≥ = − = 
 

∑ ∑  

Then we recall (see, e.g., [3]-[5]) that a function f : nR R→  is Schur convex if 

( ) ( ), ; ( ) .n nx y R y x R f x f y+
≥ ≥∀ ∈ − ∈ ≤  

Every Schur-convex function f : D nR R∈ →  is a symmetric function, and if I is an open interval and 
f : nI R→  is symmetric and of class 1C , then f is Schur-convex if and only if 

( ) 0, on n
i j

i j

f fx x I
x x

 ∂ ∂
− − ≥  ∂ ∂ 

                           (1.1) 

for all i, j {1, 2, , n}∈  .  
Let f : R RI ⊆ →  be a convex function defined on the interval I of real numbers and a, b I∈  with a b< . 

The following inequality 
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( ) ( ) ( )1( )
2 2

b

a

f a f ba bf f x dx
b a

++
≤ ≤

− ∫                          (1.2) 

holds. This double inequality is called Hermite-Hadamard inequality for convex functions. Hermite-Hadamard 
inequality is improved though Schur convexity, c.f., [6]-[10]. Among these paper, it is proven that if RI ∈  is 
an interval and f : I R→  is continuous, then f is convex if and only if the mapping 

( ) ( )1
1, ,  

b

a

S a b f x dx if b a
b a

= ≠
− ∫  

(Here and what follows, we use the mapping convention i b a(a, a) lim (a, b)iS S→=  for b a=  case, which is no 
longer stated.) is Schur convex, and in this case, 1(a, b)S  is convex. If RI ∈  is an interval and f : I R→  is 
continuous, then f is convex if and only if one of the following mappings 

( ) ( )2
1, ( ),  ,

2

b

a

a bS a b f x dx f if b a
b a

+
= − ≠

− ∫  

( ) ( ) ( )3
( ) 1, ,  

2

b

a

f a f b
S a b f x dx if b a

b a
+

= − ≠
− ∫  

is Schur convex. Some exciting results on Schur’s majorization inequality can be found in [11]-[13].  
Let f : [a, b] R→  be a four times continuously differentiable mapping on [a, b]. Then the following quadra-

ture rule is well-known: 

( ) ( ) ( ) ( ) ( ) ( ) ( )441 1 14 , , ,
6 2 2880

b

a

a bf x dx f a f b f f b a a b
b a

ξ ξ +  = + + − − ∈  −   
∫     (1.3) 

which is called Simpson’s formula, c.f. [14] and [15]. For RI ∈  is an interval and f : I R→  is called four- 
convex, if ( )4 (t) 0,f ≥  for all t [a, b]∈ . In [15], the authors proved that if (4) : Rf I →  is continuous, then f 
is four-convex is equivalent to the mappings defined by 

( ) ( ) ( ) ( )4
1 1, 4 ,  
6 2

b

a

a bS a b f a f b f f x dx if b a
b a

 +  = + + − ≠   −  
∫  

is Schur-convex, this is an improvement of the Simpson’s formula. 
On the other hand, the dual Simpson’s formula ([14]) is stated as follows: if ( )4f  is continuous, there exist 

(a, b)η ∈  such that 

( ) ( ) ( )( ) ( )441 1 3 3 12 2 , , .
3 4 4 2 23040

b

a

a b a b a bf x dx f f f f b a a b
b a

η η + + +      = + − + − ∈      −       
∫   (1.4) 

In [16], Bullen proved that, if f is four-convex, then the dual Simpson’s quadrature formula is more accurate 
than Simpson’s formula. That is, it holds that 

( ) ( ) ( )1 1 3 34 2 4 ,
12 4 2 4

b

a

a b a b a bf x dx f a f f f f b
b a

 + + +      ≤ + + + +      −       
∫  

provided that f is four-convex. 
Now we can state our main results. In view of the dual Simpson’s formula and the above Bullen-Simpson 

formula, we construct two mappings as follows: for b a≠ , we set 

( ) ( )5
1 1 3 3, 2 2 ,

3 4 4 2

b

a

a b a b a bS a b f x dx f f f
b a

 + + +      = − + −      −       
∫  

( ) ( ) ( ) ( )6
1 3 3 1, 4 2 4 .

12 4 2 4

b

a

a b a b a bS a b f a f f f f b f x dx
b a

 + + +      = + + + + −       −      
∫  
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We shall show that if (4) : Rf I →  is continuous, then f is four-convex if and only if the mapping ( )5 ,S a b  

or ( )6 ,S a b  is Schur-convex. Obviously our results improve the dual-Simpson’s formula and the Bullen- 
Simpson’s formula, and hence complement the main result in [15]. 

2. Main Results 
We now present our main theorem. 

Theorem 2.1. Let 4R, f C ( )I I⊆ ∈  be a mapping on I, then the following statements are equivalent: 

(a) The function ( )4 ,S a b  is Schur-convex on 2I . 

(b) The function ( )5 ,S a b  is Schur-convex on 2I . 
(c) The function ( )6 ,S a b  is Schur-convex on 2I . 
(d) For any a, b I∈  with a b< , we have the Simpson inequality holds, i.e.: 

( ) ( ) ( )1 1 4
6 2

b

a

a bf x dx f a f b f
b a

 +  ≤ + +   −   
∫ . 

(e) For any a, b I∈  with a b< , we have the dual Simpson inequality holds, i.e.: 

( )1 3 3 12 2
3 4 4 2

b

a

a b a b a bf f f f x dx
b a

 + + +      + − ≤       −      
∫ . 

(f) For any a, b I∈  with a b< , we have the Bullen-Simpson inequality holds, i.e.: 

( ) ( ) ( )1 1 3 34 2 4
12 4 2 4

b

a

a b a b a bf x dx f a f f f f b
b a

 + + +      ≤ + + + +      −       
∫ . 

(g) The function f is four-convex on I. 
Proof: 
The equivalence of (a) (d) (g) was already proven in [15]. Suppose that item (g) holds, then by the definition 

of the function ( )5 ,S a b , we have 

( ) ( ) ( ) ( )5 5 2 1 3 3b a a [ ( )]( )
3 4 4

b

a

S S a b a bf f b f x dx f f b a
b a b a

∂ ∂ + +   − − = + − − − −  ∂ ∂ −    ∫ . 

( ) ( ) ( ) ( )1 1 3 3a 4 [ ( )]( )
3 2 3 4 4

a b a b a bf f b f a f b f f f b a +  + +   ′ ′≥ + − + + − − −        
, 

(by Simpson’s formula (1.4) and four-convexity of f) hence,  

( ) ( )

( )

( )

2
5 5

2

2

2

2 1 1 3 1 1 3
3 2 4 2 4

1 2 3 3
3 2 4 4

1 2
3

a b
b

a b a

a b

a

a b

a

S S a b a bf x dx f f x dx f
b a b a b a

b a a b a bf x f x dx f f
b a

h x d
b a

+

+

+

+

    
∂ ∂ + +       ′ ′ ′ ′− = − − −       ∂ ∂ − −           

 
−  + +       ′ ′ ′ ′= + − − −       −         

=
−

∫ ∫

∫

∫
3 .

4
a bx h

 
+  −      

 

Here we denote ( ) ( )
2

b ah x f x f x− ′ ′= + − 
 

, for a,
2

a bx + ∈   
. Since f is four-convex, h(x) is convex. 



Y. W. Li 
 

 
626 

Thus Hermite-Hadamard (1.2) holds for h(x) in a,
2

a b+ 
  

, this gives that ( ) 5 5b a 0S S
b a

∂ ∂ − − ≥ ∂ ∂ 
, so by the 

criteria (1.1) 5S  is Schur-convex, item (b) is a consequence of item (g). 

Now suppose that item (b) holds. Since , (a, b)
2 2

a b a b+ + 
 
 

 , Schur-convexity of 5S  gives that 

5 50 , ( , )
2 2

a b a bS S a b+ + = ≤ 
 

, i.e., item (e) is valid if item (b) holds. 

Next we prove item (e) implies item (g). By item (e) and the dual Simpson’s formula (1.6), we get 

( ) ( ) ( ) ( ) ( )44
5

10 , , ,
23040

S a b f b a a bη η≤ = − ∈ . 

Since 4f C ( )I∈ , and a, b are arbitrary, it follows that f is four-convex. Now the equivalence of (b) (e) (g) is 
proven. We follow the same pattern to show the equivalence of (c) (f) (g). If item (c) holds, then

6 60 , ( , )
2 2

a b a bS S a b+ + = ≤ 
 

, i.e., item (f) is valid. Suppose that item (f) is valid. By the definitions and for-

mulas (1.3) and (1.4), we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )44 4
6 4 5

1 10 2 , , , , , ,
2880 8

S a b S a b S a b f f b a a bξ η ξ η ≤ = − = − − ∈ 
 

. 

Since 4f C ( )I∈ , and a, b are arbitrary, item (g) follows again. It is only left to show that item (g) implies 
item (c). We give a lemma first. 

Lemma 2.1. Let 4R, f C ( )I I⊆ ∈  be four-convex on I, then the following inequalities hold for any a, b I∈  
with b ≥ a: 

( ) ( ) ( ) ( ) ( )1 1 1
6 3 2

b

a

a bf x dx f a f a b a f b a
b a

+ ′ ′≥ + − + − −  ∫ . 

( ) ( ) ( ) ( ) ( )1 1 1b
6 3 2

b

a

a bf x dx f f b b a f b a
b a

+ ′ ′≥ − − − − −  ∫ . 

Proof: 
We only prove the first inequality. Denote that 

( ) ( ) ( ) ( ) ( ) ( )2 21 1b : [ a (b a) ]
6 3 2

b

a

a bT f x dx f f a b a f b a+ ′ ′= − − + − + − 
 ∫ , 

and that ( ) ( )g x f x′′= , then 

( ) ( ) ( )a 0; 0; 0T T a T a′ ′′= = = .                             (2.1) 

( ) ( ) ( ) ( ) ( ) ( )21 2 1b
3 3 2 6 2

a b a bT b f f a f a f b a f b a +  +   ′ ′ ′ ′′= − − + − − −    
    

. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2

2

1 2

1 2 2 1b
3 3 2 3 2 12 2

2 1 2 1
3 3 3 2 12 2

.

b b

a b a

a b a b a bT b f f a f f b a f b a

a b a bg x dx g x dx g b a g b a

T b T b

+

 +  + +     ′′ ′ ′ ′ ′′ ′′′= − + − − − −      
      

+ +   ′= + − − − −   
   

= +

∫ ∫  

Here,  

( ) ( ) ( )1
1 [ ]
3 2

b

a

a bT b g x dx g b a+ = − − 
 ∫ . 
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( ) ( ) ( ) ( )2
2

2

2 1 1
3 3 2 12 2

b

a b

a b a bT b g x dx g b a g b a
+

+ +   = − − − −   
   ∫ . 

From the Hermite-Hadamard inequality for convex function ( )g x , we see that ( )1 0T b ≥ . Besides, it follows 

from convexity of ( )g x  that for any x y≤ : 

( ) ( ) ( )( )g y g x g x y x′≥ + − . 

Take integration w.r.t y, we get 

( ) ( ) ( ) ( )21( )
2

y

x

g y dy g x y x g x y x′≥ − + −∫ , 

applying this inequality in [ , ]
2

a b b+ , we see that ( )2 0T b ≥ . It follows that ( ) 0T b′′ ≥  for any b ≥ a, hence 

by (2.1) we know ( )b 0T ≥  for any b ≥ a. The second inequality in the lemma is just the first inequality with b 
≤ a, we omit its proof. The lemma is proven. 

Now we continue the proof of our main theorem. By the definition of ( )6 ,S a b , we have 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

6 6

1 2

2 a

1 1 3 3[ ] [ ( )]( )
12 6 4 4

,

b

a

S Sb a f x dx f f b
b a b a

a b a bf b f a b a f f b a

K b K b

∂ ∂ − − = − +    ∂ ∂ − 
+ + ′ ′ ′ ′+ − − + − − 

 
= +

∫

 

here ( ) ( )1 2,K b K b  is denoted as 

( ) ( ) ( ) ( ) ( )
2

1
2 1 1 3: ( )( )

12 6 4

a b

a

a bK b f x dx f a f a b a f b a
b a

+

+′ ′= − − − − −
− ∫  

( ) ( ) ( ) ( ) ( )2

2

2 1 1 3: ( )( )
12 6 4

b

a b

a bK b f x dx f b f b b a f b a
b a +

+′ ′= − + − + −
− ∫  

Suppose that item (g) holds, by applying the lemma to f in , ,[ , ]
2 2

a b a ba b+ + 
  

, we get both 1 2, 0K K ≥ , 

thus ( ) 6 6 0S Sb a
b a

∂ ∂ − − ≥ ∂ ∂ 
, so by the criteria (1.1) ( )6 ,S a b  is Schur-convex, item (c) follows. 

Remark 2.1. From Lemma 2.1, we add the two inequalities together to see that the following holds for four- 
convex functions f: 

( ) ( ) ( ) ( ) ( ) ( )1 1 [ ]
2 12

b

a

f x dx f a f b f b f b b a′ ′≥ + − − −  ∫                  (2.2) 

it is well-known, c.f., [14] or [15]. 
Starting from this inequality (2.2), we deduce some properties for four-convex functions. As in the above, we 

define a pair of mappings 7 8,S S  by 

( ) ( ) ( ) ( ) ( ) ( ) ( )7
1 1 1, [ ]

2 12

b

a

S a b f x dx f a f b f b f b b a
b a

′ ′= − + + − −  − ∫ ; 

( ) ( ) ( ) ( ) ( )2
8

1 1 1,
2 12 2

b

a

a bS a b f a f b f x dx f b a
b a

+ ′′= + − − −     −  ∫ . 
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Then we have 
Theorem 2.2. Let 4R, f C ( )I I⊆ ∈  be four-convex on I, then the mappings 7 8,S S  are non-negative and 

Schur-convex on I2. 
Proof: 
We observe that 

( ) ( ) ( ) ( )8 8 2 b

a

S Sb a f x dx f a f b
b a b a

∂ ∂ − − = − +    ∂ ∂ −  ∫  

( ) ( ) ( ) 21 1[ ] ( )
2 3 2

a bf b f a b a f b a+ ′ ′ ′′+ − − − − 
 

 

( ) ( ) ( ) 21 1[ ] ( )
2 3 2

a bf b f a b a f b a+ ′ ′ ′′≥ − − − − 
 

                     (2.3) 

0≥                                                           (2.4) 
Here inequality (2.3) is due to inequality (2.2), and inequality (2.4) is a consequence of the Hermite-Hada- 

mard inequality for convex function f ′′ , thus by the criteria (1.1) 8S  are Schur-convex on 2I . Hence we get 

( )8 8, , 0
2 2

a b a bS a b S + + ≥ = 
 

. 

Since 8S  is non-negative, we observe that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

7 7

2

2

2

1 1[ ] [ ]( )
3 12

1 1[ ] [ 2 ]( )
3 12 2

.

b

a

S Sb a f x dx f a f b
b a b a

f b f a b a f a f b b a

a bf b f a b a f a f b f b a

∂ ∂ − − = − + +    ∂ ∂ − 

′ ′ ′′ ′′− − − + + −

+ ′ ′ ′′ ′′ ′′≥ − − − + + + − 
 

∫

            (2.5) 

It is shown in [7] for a convex function g that the function 

( ) ( ) ( ) ( )9
1 1 1,
4 2 2

b

a

a bS a b g a g b g f x dx
b a

+ = + + −     −  ∫  (if b a≠ ) 

is Schur-convex, specially we have ( )9 , 0S a b ≥ . We set g f ′′= , then it is convex, we see that RHS of inequa-
lity (2.5) is non-negative, so by the criteria (1.1), 7S  is Schur-convex. 

Furthermore, we give a Schur-convexity theorem for the following mapping: 

( ) ( ) ( ) ( ) ( ) ( ) 2
10

1 1 1, [ ] ( )
2 2 12 24 2

a b a bS a b f f a f b f b f b b a f b a+ +   ′ ′ ′′= − + + − − + −        
. 

Theorem 2.3. Let 4R, f C ( )I I⊆ ∈  be four-convex on I, then the mappings 10S  are non-negative and 
Schur-convex on 2I  . 

Proof: We observe that 

( ) ( ) ( ) ( ) ( ) ( ) 210 10 1 1[ ] [ 2 ]( )
3 12 2

S S a bb a f b f a b a f a f b f b a
b a

∂ ∂ +   ′ ′ ′′ ′′ ′′− − = − − − + + + −  ∂ ∂   
. 

Since ( )9 , 0S a b ≥  for convex function g f ′′= , as in the above, we can conclude that ( )10 ,S a b  are non- 
negative and Schur-convex. 

Remark 2.2. For smooth four-convex functions, we see that both 8S  and 10S  are non-negative and Schur- 
convex functions, then the sum of 8S  and 10S  is also non-negative and Schur-convex function, especially it 
holds that 
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( )21 1( )
2 24 2

b

a

a b a bf f b a f x dx
b a

+ +   ′′+ − ≥    −    ∫  

Remark 2.3. For positive real numbers x, y, we denote the arithmetic mean, geometric mean, and logarithmic 
mean of x, y by A, G, L. Applying non-negativity of 7S  and 8S  to function (t) etf = , t [ln , ln ]x y∈  then 
we have 

2 21 1ln ln
12 12

y yG A L L
x x

   ⋅ ≤ − ≤ ⋅   
   

. 
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