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Abstract 
Hyperspectral unmixing is a powerful tool for the remote sensing image mining. Nonnegative ma-
trix factorization (NMF) has been adopted to deal with this issue, while the precision of unmixing 
is closely related with the local minimizers of NMF. We present two novel initialization strategies 
that is based on CUR decomposition, which is physically meaningful. In the experimental test, NMF 
with the new initialization method is used to unmix the urban scene which was captured by air-
borne visible/infrared imaging spectrometer (AVIRIS) in 1997, numerical results show that the 
initialization methods work well. 
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1. Introduction 
Given a non-negative matrix m nM R ×∈  and a desired rank min( , )k m n , the non-negative matrix factoriza-

tion aims to find two matrices m kU R ×∈  and k nV R ×∈  with the non-negative elements such that 
M UV≈                                       (1) 

Problem (1) is commonly reformulated as the following minimization problem: 

,
min . . , 0

m k k mU R V R
M UV s t U V

× ×∈ ∈
− ≥                                 (2) 

Due to non-subtractive combinations of non-negative basis vector, NMF can give a simple interpretation in 
many areas. We are concerned with its application of analyzing data obtained using astronomical spectrometers, 
which provide nonnegative spectral data [1]. Determining what smaller sub-elements make up a pixel is called 
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unmixing. The observed spectra represents a linear mixture of spectra underlying consistent compounds and the 
aim of NMF is to extract the desired spectra and provide the information on their abundance. Each row vector of 
the original matrix M represents an observed mixed spectrum at certain wavelength, while each column of M 
give the spectral signature of a given pixel. In such way, each element ijM  of M is equal to the reflectance 
spectra of the jth pixel at the ith wavelength. With the help of NMF, M is approximated by the product of U and 
V. In hyperspectral unmixing, U is often thought of as the endmember or source matrix, which give the spectral 
signature of k  different materials on the ground and V is the fractional abundance matrix. 

Many algorithms have been designed for solving (2). Most of these algorithms can be classified into two cat-
egories: gradient descent methods [2] [3] and alternating non-negative least squares [4]. There are two main dif-
ficulties when applying NMF in hyperspectral image analysis. One is the time consuming of the optimization 
based algorithms, the other is the nonunique of the NMF solutions. 

Since NMF is a nonconvex optimization problem, the iterative methods typically converge slowly to a local 
minima. It’s said that a good initialization can improve the speed and the accuracy of the solutions of many 
NMF algorithms as it can produce faster convergence to an improved local minima [5]. 

Originally, the factor matrices are initialized with random numbers between 0 and 1. The random initialized 
matrices are dense and do not provide a good estimate for U and V. In order to obtain better solutions, some re-
searchers have tried to improve the initialization phase. Wild [6] proposed the centroid initialization which 
based on spherical k-means. Unfortunately, it is expensive as a preparing step for NMF. Boutsidis [7] designs 
nonnegative double singular value decomposition (NNDSVD) to enhance the initialization stage of NMF, which 
can be combined with all the existing NMF algorithms. But the factor matrices given by NNDSVD is determi-
nistic. Once the obtained solution is unsatisfactory, we could not get a better local minima with the multiple runs 
of NNDSVD. Later, Langvill et al. give the random Acol, random C initialization and the co-occurence initiali-
zation. The random Acol get the factor matrix U by select k random columns of M. Rand C initialization is in-
spired by the C matrix of CUR decomposition, which is similar with random Acol, with another restriction that 
the k random columns of W should be the k longest columns of W. Finally, co-occurence initialization is based 
on the co-occurence matrix TC WW= , this procedure is expensive. 

CUR decompositions approximate the data matrix M by using a small number of actual columns of M. In 
hyperspectral image analysis, these methods find endmembers that are already present in the data. By doing this, 
these methods are easily interpretable. However, the endmembers should by contained within the data. It is 
called the pixel purity assumption, which is a strong requisite. Applying the column selection technique of CUR 
in the initialization stage of NMF is called Acol. In this paper, we give two new initialization methods for NMF 
which is based on CUR. 

2. CUR Based Initialization  
Let tU  be a subset of t columns from M. This subset will make up the candidate columns, which we’ll have to 
choose from. It should be noted that, this will help to maintain the sparsity in M, which would be lost with pure 
random initialization with dense vectors or SVD initialization. 

2.1. Initialization with SAD 
The spectral angle distance (SAD) describes the difference between the true endmembers and the estimated 
endmembers. It is defined as follows, 

( )


,
arccos

i i

T
i i

u u
i i

u uSAD
u u

 
 =   
 

                              (3) 

where iu  is the ith true endmember, and iu  is the ith estimated endmember. The value of SAD range from 0 

to π  represents the similarity of iu  and iu . When 
( ),i iu u

SAD  comes close to 0, the estimated endmember 

iu  matches the true endmember iu  well. 

tU  is randomly selected form M, then 0U  is initialized by finding a submatrix of tU . Each column of 0U  
is constrained to have the smallest SAD with the true endmember. 
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2.2. Initialization with SKLD 
Given a random vector 0w ≥ , the probability vector p associated with u is 

1

i

p w
w

=
∑

                                    (4) 

Then, the entropy of w is given by 

( ) logi ih w p p= −∑                                  (5) 

We employ the symmetrized Kullback Leibler (KL) divergence to select the columns from tU . Let ( )KLD w d  
denoted the KL divergence of d from w, 

( ) log( )i
KL i

i

pD w d p
q

= ∑                               (6) 

where 1

i

q d
d

=
∑

. In our paper, w is a column selected form tU , while d is the true endmember. 

KL divergence is a measure of information lost, when d is used to approximated w. Since the KL divergence 
is not symmetric and does not satisfy the triangle inequality, the following symmetrized KL divergence is con-
sidered. 

( ) ( ) ( )SKLD KL KLD w d D w d D d w= +                           (7) 

Once a column from tU  has the smallest SKLD  with the true endmember, it is selected as one column of 
the initialized matrix 0U . 

3. Numerical Experiments 
In this section, we compare our initialization strategy with the Urban hyperspectral image, which is taken from 
HYper-spectral Digital Imagery Collection Experiment (HYDICE) air-borne sensors. It contains 162 clean  
bands and 307 307×  pixels for each spectral image. The original matrix we obtained from this image is 

162 94249M R ×∈ . 
We will first look at the performance of four initialization techniques: random, rand columns (Acol), random 

selected columns from M with SAD (SADcol) and random selected columns with SKLD (SKLDcol). It is said 
that the active set type NMF method is a good choice to solve the spectroscopy data, so we combine the above 
four initialization with the active set method proposed in [8]. For each run of the NMF algorithm, we use the  
Frobenius norm of the error, 

FM UV−  be our performance criterion. In order to avoid the influence of the 
randomness, each initialization method run 10 times and the average Frobenius error is computed. 

Since the random initialization has nothing to do with the measured spectra signal, the Frobenius error in the 
beginning is bigger than the other methods. It can be seen from Figure 1 that SADcol gives the lowest Frobe-
nius error. The Frobenius error becomes smaller and smaller as the iteration going on. We also compare the run-
ning time of these four initialization methods. 

Table 1 show that SADcol is faster than the other schemes. Both SADcol and SKLDcol give the good initia-
lization, they improve the speed of NMF efficiently. 

4. Conclusion 
Two initialization methods for NMF are proposed in this paper. With the help of the SAD and SKLD measure, 
the Frobenius error is lower than the rand and Acol. Since 0U  is selected from the original matrix, it maintains 
sparsity and physical interpretation. Numerical results show the efficient of the two initialization methods.  

 
Table 1. Running time of different initialization methods 

Method Rand Acol SADcol SKLDcol 

Time 12.5924007s 10.3637064s 7.5863286s 8.1900524s 
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Figure 1. The Frobenius error of different initialization me-
thods. 
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