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Abstract 

In the present work, a construction making possible creation of an additive channel nA B⊆  of 
cardinality s and rank r for arbitrary integers s, r, n ( ( )r n s≤ −min , 1 ), as well as creation of a code 

nV B⊆  correcting errors of the channel A is presented. 
 

Keywords 
Additive Channel, Golay Code, Classical Coding Theory, T-Order Neighborhood, Correcting Code, 
Binary Alphabet, Cardinality 

 
 

1. Introduction 
We consider an additive communication channel introduced in [1] as some transformer of information which is 
a generalization of the classical binary channel with a limited number of distortions: 0 1,1 0→ → . Many no-
tions and facts in the present paper have taken their roots in classical coding theory and are direct analogues of 
well known results [1]-[6]. 

The “noise” generated by an additive channel leads to a word at the exit of the channel which differs from the 
transmitted one. This circumstance makes one to find the leads to creation of necessary initial prerequisites for 
introducing standard notions of an error correcting code in the coding theory, as well as the notions of the speed 
of communication, decoding etc. 

Thus, the problem of constructing new codes from known ones has certain interest for coding theory. In this 
work, using certain combinatory constructions, some new codes for additive communication channels are con-
structed (also see [7] [8]). This problem has particular interest especially if new codes are “optimal” in one of 
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well known senses. 

2. Codes in an Additive Channel 

Let { }0,1B =  be a binary alphabet; *B  be the set of all words with finite lengths in the alphabet B, and 

{ }0,1 nnB = . In this paper it is convenient to take the set nB  as an n-dimensional vector space in the field 

{ }0,1B =  of 2 elements. 
If { }0 1, , , mA y y y=   is a subset of nB , then the notion of an additive channel A is connected with the sub-

set A in the following way. 
Any vector nx B∈  in the channel A is transformed into one of the vectors having the following form:  

, 0,sy x y s m= ⊕ = , 

here ⊕  is the addition operation (addition with respect to mod 2) in the space nB .  
Definition 1. The following set:  

( ) ( ){ }1: ,t tA x u y u A x y A−= ⊕ ∈ ∈  

is called the t-order neighborhood with respect to A of any vector nx B∈ , and ( ) { }оA x x= . 
As the cardinality of the t-order neighborhood does not depend on the vector x, we use the denotation: 

( )t tA A x= . 
Definition 2. The code { }0 1, , , NV v v v=   corrects the errors of the additive channel { }0 1, , , mA y y y=  , if: 

( ) ( )1 1 , for .i jA v A v i j∩ = ≠∅  

An equivalent writing of this condition has the following form: 

i s j rv y v y⊕ ≠ ⊕ , 

or here is another one which is symmetrical to the preceding one:  

i j s rv v y y⊕ ≠ ⊕ . 

Below, without loss of generality, we take:  

( ) ( )0 000 0 , 00 0 .y A v V= ∈ = ∈   
Let us note that for the cardinality of the code V correcting the errors of the additive channel  
{ }0 1, , , mA y y y=   the following limits hold true [3]: 

2 1

2 2n n

V
A A

≤ ≤ . 

Besides, the code V for which the upper limit is reached is called the perfect code correcting the errors of the 
additive channel A. 

To describe ‘interrelations’ of the additive channel A and the code V correcting the errors of this channel, the 
following convenient two-place predicate X(A, V) is introduced:  

( )
1,  if the code    corrercts the errors of the channel ,

,
0, if not

V A
X A V 

= 


 

If the cardinality of the channel A is fixed, then there exist 
2n

A
 
  
 

 various additive channels and, as usual, 

consideration of the following upper limit of the cardinality of the corresponding correcting codes is expedient: 

( ) ( )max ,k A k
D n V A

=
=  

here ( )V A  is the code of the maximum volume correcting the errors of the channel A. 
The Hamming metric is a standard and mostly used metric in theory of coding, defined by the following func-
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tion:  

( )1 2
1

n

n iE E
i

x x x x x
=

= = ∑
. 

One can accept that this metric is connected with the ‘natural’ basis ( )1 2, , , nE e e e=   in the following way: 

1 1

n n

i i iE
i i

x e xα α
= =

= → =∑ ∑ . 

It is clear that choosing another basis { }1 2, , , nM y y y=   we generate another metric:  

1 1

n n

i i iM
i i

x y xβ β
= =

= → =∑ ∑ . 

A more general procedure of metric generation is as follows. For a given subset { }1 2, , , n
mM y y y B= ⊆  

and a vector nx B∈  we consider all expansions of x with respect to M, that is, the expansions of the following 
form: 

 

1

m

i i
i

x yα
=

= ∑ .                                      (1) 

And for each such representation, we juxtapose the following number:  

1

m

i
i
α

=
∑ . 

Then, choosing the least of these numbers, we define the following norm (the МLМ norm), connected with 
M: 

{ } ( )min , with respect to representation 1 ,

, if there is not such representation.
i

Mx
α= 

∞

∑                      (2) 

The function M  is a metric (below, the МLМ metric) for an arbitrary subset nM B⊆  (see [6]). 

3. Constructing New Codes from the Given Ones in an Additive Channel 

Let { }0 1, , , n
mА y у у В= ⊆  and { }1 2, , , rу у у  be a basis for A. We consider an arbitrary basis 

{ }1 2, , , nz z z  of the space nB , where , 1,i iz y i r= = , and f is a linear reversible transformation: : n nf B B→ , 
defined in the following way: 

( ) ( )10 10 , 1, .i n i
i if z e i n− −= = =  

We denote the image of the set nС B⊆  by ( )f C : 

( ) ( ){ }; .f C f y y C= ∈
 

It is clear that if ( ) ( )1 2 n f Aα α α ∈ , then 0iα =  for all 1,i r n= + . 
According to [9], the following statement holds true. 
Lemma 1. The image ( )( )f V A  of the maximal code ( )V A  is the maximal code for the channel ( )f A , 

and ( ) ( )( )V A V f A= . 

Theorem 1. For all 0 2 1nm≤ ≤ −  the following inequality holds true:  

( ) ( )log 1
1

22 2
1

m
n m n m

mD n
m

− +  − 
+

 
≤ ≤  + 

. 

Corollary 1. If 2 1sm = − , then ( )1 2n s
mD n −
+ = . 

This corollary can be paraphrased as follows.  
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If 2 1,Sm = −  (s is an integer), then there exists a channel nA B⊆  with the cardinality 1m +  for which 
( )V A  is a perfect code. 
Anyhow, one cannot assert that the condition 2sA =  is sufficient. This means that ( )V A  is not always a 

perfect code for 2sA = .  
Example 1. For instance, if 90n =  there does not exist a perfect code correcting the errors of the additive 

channel ( )2
0A y , where 90

0\A y B⊆  is the basis, and 2 122А = . 
For Hamming metric the proof of this fact can be found in [10], and this proof states that there does not exist a 

binary perfect code correcting binary errors except the trivial ones. And for the MLM metric, this fact is estab-
lished in [11] by the following theorem. 

Theorem 2. The non-trivial perfect codes, correcting the errors of the additive channel ( )0
tA y , exist only 

for the following values of n and t: 
(a) 2 1, 1en t= − = ,  
(b) 23, 3.n t= =  
If { }0 1, , , mA у y y=   is an arbitrary additive channel, then the set А generates a MLM metric in nB , given 

by formula (2). The statement presented below shows [11] that the ability of the code { }0 1, , , NV v v v=   of 
correcting the errors of the additive channel can be formulated in terms of the MLM metric generated by the set 
А.  

Lemma 2. The code V corrects the errors of the additive channel А, if the following conditions hold true:  

( ), 3, , 1, .A i jv v i j Nρ ≥ =  

Now we consider the set ( )( )1 1\ 0m nA A y e += × ∪ , as well as the code 
( ) ( ) ( )( )1 10 0 0m nV V V y e += × ∪ × ⊕ ⊕ . 

Theorem 3. The code 1
1

nV B +⊆  corrects the errors of the additive channel  

{ } 1
1 0 1 1 10, 0, , 0, n

m nA y y y e B +
− += ⊆ .  

Proof. Taking into account Lemma 2, it is sufficient to prove that the following inequality holds true:  

( )1 1, 3; , , .A i j i jv v V i jρ ν ν≥ ∈ ≠  

Let us consider two cases: 
1) 0j jv v V⊕ ∈ × .  
Then it is not difficult to prove that  

( ) ( )1
, ,A i j A i jv v v vρ ρ=   ,  

where ,i i jv v v vα α= =  , { }0,1α ∈ , ,i jv v v∈  .  
As ( ), 1X A V = , then it follows from Lemma 2 that ( ) ( )1

, , 3A i j A i jv v v vρ ρ= ≥  . 

2) ( ) ( ) 10 0j j m nv v V y e +⊕ ∈ × ⊕ ⊕ .  
Then ( ) ( )( )1

, , .A i j A i j mv v v v yρ ρ= ⊕   As ,i j mv v y V⊕ ∈  , then it follows from Lemma 2 that  

( ) ( )1
, , 3.A i j A i j mv v v v yρ ρ= ⊕ ≥   Consequently, again applying to Lemma 2, we get ( )1 1, 1X A V = .  

The theorem is proved. 
Without any loss of generality we can take ( ), 1, .i iy e i r A= =  
Applying Theorem 3 sequentially to the pair , nA V B⊆ , we construct the pair , n i

i iA V B +⊆ : 

( ) ( )
1 1

\ 0
i i

i
i r A j r A j

j j
A A y e+ +

= =

     
= ×            



 

, 

( ) ( )( )
( )1 2

0
i

i

i
i

z z z z B

V V x z
= ∈

= × ⊕




, 

where the vector ( ) n ix z B +∈  is defined in the following way:  

 ( ) ( ) ( )( )
1

i

j r A j r A j
j

x z z y e+ +
=

= ⊕∑ .                              (3) 
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The code iV  is the combination of 2i  various shifts of ( )x z  for 0iV × , where ( )x z  are some vectors 
chosen in a “convenient” way. 

From this we have:  

( ) ( ) ( )1, , 2 , , , 1.n i i
i i i i i i iA V B V V r V r V X A V+

−⊆ = ≥ =  

Now, the proof of the following theorem is not difficult.  
Theorem 4. If ( ), 1; , ,nX A V A V B= ⊆  then for any integer r, satisfying the condition  
( ) ( )min , 1r A r n A≤ ≤ − , there exists such a pair , n i

i iA V B +⊆  that:  

( ) ( ), 1; .i i iX A V r A r= =  

Corollary 2. If ( ), 1; , nX A V A V B= ⊆  there exist such ,i iA V  satisfying the condition ( ), 1i iX A B = , for 
which: 

log
1

log
i

n i

i

V
B +

→∞

→ . 

In other words the communication speed for the pair ,i iA V  tends to the unit. 
Corollary 3. For any integers, , ,s r n , satisfying the condition ( )min ,2 1ss r n≤ ≤ − , there exists such an 

additive channel n i
iA B +⊆ , that ( )2 ; ,s

i iA r A r= =  for which ( )iV A  is the perfect code.  
Proof. To prove this statement it is sufficient to apply Theorem 3 to the pair 0s n sA B −= × , { }0s n sV B −= × . 

Then we obtain: 

( ) ( )
1 1

0 \ 0
i i

s n s i
i r A j r A j

j j
A B y e−

+ +
= =

   
= × ×   
   



 

, 

0 0s n s i s n s i
iV B B B− − += × × = × . 

It follows from these that 2s
iA =  and i can be chosen in such a way that ( )ir A r= , as well as: 2n i

i
i

V
A

+

= . 

Q.E.D. 
Example 2. Let us consider the additive channel ( )3

0 ;nA y B⊆  ( )3
0A y  (is a 3-order neighborhood), where 

{ }23 23 23
0 0 1 1 23 230 , 0 , , 0n n nA y y y y y y− − −= = × = × = ×  and { } 23

1 2 23, , ,y y y B⊆  is a basis for 23B . 

It follows from Lemma 1 and Theorem 2 that the code ( ) 230n
AV G H −= × ×  (where G is the binary perfect 

code of Golay [10] and AH  is the matrix having the rows which are the vectors of the basis { }1 2 23, , ,y y y ) 
and it is the perfect code correcting the errors of the additive channel ( )3

0A y  in the MLM metric. 
Applying the above-described method (Theorem 3), we get the channel:  

23 23
1 1

\ 0
i i

i
i j j

j j
A A y e+ +

= =

     
= ×            



 

, 

And the code  

( ) ( )( )
( )1 2

0
i

i

i
i

z z z z B

V V x z
= ∈

= × ⊕




, 

where  

( ) ( )23 23
1

i

j j j
j

x z z y e+ +
=

= ⊕∑ .  

The following holds true for the constructed pair:  

( ), 1i iX A V = , 

It follows from here and Theorem 1 that the constructed code n
iV B⊆  is perfect and it corrects the errors of 
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the additive channel iA . 
Let us consider the partitioning of the set { }, 2 ,s

sW A A s n= = ≤  into the classes  
( ){ },s iW A W r A s i+ = ⊆ = + . 

It follows from the preceding theorem that for arbitrary ,s i , satisfying the condition  
( )0 min ,2 1si n s s≤ ≤ − − − , there exists a channel i s iA W +∈  for which ( )iV A  is the perfect code. Theorem 4 

makes possible to construct these channels and the perfect codes correcting the errors of these channels. 
Example 3. 

( )
1 1

0 \ 0
i i

s n s i
i s j s j

j j
A В y e−

+ +
= =

    
= × ×         



 

 

( ) ( ) ( )( )
( )1 2

0 0
i

i

i
s n s i

i i
z z z z B

V V A B x z−

= ∈

= = × × ⊕




 

( )1,min ,2 1si n s s= − − − . 

Let us again come back to the definition of the perfect code. The standard definition of the perfect code means 
that it is a set correcting the errors of an additive channel in the MLM metric in which the upper limit of the car-
dinality of the code is reached. Such a definition provides fixation of the code cardinality, leaving wide room 
only for maneuvering for its geometrical form. But the definition of the perfect code correcting the errors of the 
t-order neighborhood (for Hamming metric, correcting the t-multiple errors) means partitioning of the space nB  
into non-intersecting t-order neighborhoods (a sphere of a t-radius) for the given metric.  

It is obvious that there is a “geometrical sense” in the second definition, which is strictly definite, stating the 
t-order neighborhood (that is, the multiplicity t of an error for Hamming metric). The parameter t defines the 
neighborhood uniquely (a sphere of the radius t) and, consequently, the cardinality of the neighborhood as well,  

which equals tA  (that is, the cardinality of the sphere, 
0

t
i
n

i
C

=
∑ ). 

Taking these considerations into account, one can conclude that these two notions do not always coincide. To 
demonstrate this fact, let us discuss the following example.  

Example 4. A perfect code in the ‘geometrical sense’ does not exist for 90n = , 2t = . (See [10] or Theo-
rem 2 for the MLM metric case). In this case, the channel is a 2-order neighborhood: ( )2 23,А у у В∈ . A perfect 
code correcting the errors of the additive channel А  in the space 90B  with rank 90 does exist, which follows 
from the preceding example. 

Consequently, 

( )
( ) 78

1 2 78

78
z z z z B

V x z
= ∈

=




, 

where ( )x z  is defined as in (3), is perfect in 90B , for the following channel:  

78 78
12 78

78 12 12
1 1

\ 0j j
j j

A В y e+ +
= =

     
= ×            



 

. 

It is clear that the channel 78А A=  differs from the channel ( )2А у  for any 90у В∈ . 
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