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Abstract 
Multiyear observed time series of wind speed for selected points of the Arctic region (data of sta-
tion network from the Kola Peninsula to the Chukotka Peninsula) are used to highlight the impor-
tant peculiarities of wind speed extreme statistics. How largest extremes could be simulated by 
climate model (the INM-CM4 model data from the Historical experiment of the CMIP5) is also dis-
cussed. Extreme value analysis yielded that a volume of observed samples of wind speeds are 
strictly divided into two sets of variables. Statistical properties of one population are sharply dif-
ferent from another. Because the common statistical conditions are the sign of identity of extreme 
events we therefore hypothesize that two groups of extreme wind events adhere to different cir-
culation processes. A very important message is that the procedure of selection can be realized 
easily based on analysis of the cumulative distribution function. The authors estimate the proper-
ties of the modelled extremes and conclude that they consist of only the samples, adhering to one 
group. This evidence provides a clue that atmospheric model with a coarse spatial resolution does 
not simulate special mechanism responsible for appearance of largest wind speed extremes. 
Therefore, the tasks where extreme wind is needed cannot be explicitly solved using the output of 
climate model. The finding that global models are unable to capture the wind extremes is already 
well known, but information that they are members of group with the specific statistical condi-
tions provides new knowledge. Generally, the implemented analytical approach allows us to 
detect that the extreme wind speed events adhere to different statistical models. Events located 
above the threshold value are much more pronounced than representatives of another group (lo-
cated below the threshold value) predicted by the extrapolation of law distributions in their tail. 
The same situation is found in different areas of science where the data referring to the same no-
menclature are adhering to different statistical models. This result motivates our interest on our 
ability to detect, analyze, and understand such different extremes. 
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1. Introduction 
This paper focuses on changes in extreme wind events in the Arctic region. For the purpose of ensuring the 
safety of infrastructure (particularly at exposed sites such as bridges, high buildings, wind turbines and radio 
masts), it is usually a requirement to estimate the extreme loads they might be subjected to during their service 
time. In the maritime sectors, the extremes of low-level winds can generate huge oceanic waves and storm 
surges that consequently may lead to the damage of marine structures (ships, drilling platforms) and coastal ero-
sion. This is especially the case during the cold period in the Arctic, where regular events of intense wind veloc-
ities are typically observed. The quantitative analyses of spatial variation of extreme wind patterns are important 
for effective wild fire management and sustainable long-term urban development on fire-prone landscapes. It is 
therefore worthwhile to properly assess the distribution of wind extremes and their origin.  

Research in the statistical analysis of extreme values has flourished over the past several decades: new proba-
bility models, inference and data analysis techniques have been introduced; and new application areas have been 
explored [1]-[3].  

Extreme value analysis of wind speeds (U) is generally performed through implementation of the following 
idea. Beginning with a parent distribution whose cumulative distribution function (cdf) is F(U), the distribution 
is sampled n times, and the maximum value of the n samples is obtained. This maximum value has a cumulative 
distribution function of its own of simply Fn(U). This relationship leads to the extreme value theory noted by 
Fisher and Tippett [4] that for sufficiently long sequences of independent and identically distributed random 
variables, the maxima of these sequences can be fit to one of three limiting distributions. This result has been 
quantitatively refined by Gnedenko [5]. One representative of these three limiting distributions is the Weibull 
distribution, which has traditionally been used for the statistical modelling of wind extremes (see [6]).  

In another approach, the Pareto distribution is applied to the peaks of independent storms that exceed a suffi-
ciently high threshold (see [6] and [7]).  

Many studies of the estimation of extreme wind speeds are commonly expressed in terms of the quantile value 
U(p), or UT, the maximum wind speed (which is exceeded, on average, once every T years), and the return pe-
riod (the corresponding return period is given by T = 1/(1 − p)). In this situation, the data are generally fitted to a 
theoretical distribution curve in order to calculate the quantiles. To insure the independency of the data, a certain 
minimum separation time is maintained among the data selected for the analysis. 

Statistical method of the extreme value analysis of wind speeds is important because it allows us to detect 
their statistical model. Note, that the same statistical distribution suggests a common originating mechanism. We 
plan to use such idea to interpret of the extreme wind records. 

A striking aspect of anticipated global climate change in response to increasing greenhouse gases is that the 
largest warming is predicted to occur in the Arctic. This observed warming has affected glaciers, sea ice, ecosys- 
tems, permafrost and the coastal geomorphology. It is likely that such warming affects meteorological regimes 
(e.g., extreme conditions). Because the climate models are the tools used to simulate climate change, it is very 
important to understand to what extent wind speed extremes can be reproduced by a general circulation atmos-
pheric models within those climate models. The use of station data will make it possible to evaluate the consis-
tency, in terms of reproduction of statistical behavior, between model simulation products and near-surface ob-
servations. 

The next section reviews the study area and dataset. The following sections describe the evidence for Weibull 
distribution in station observation data and in model data as well. The last section concludes the paper.  

2. Study Area, Dataset and the Question of Statistical Independence 
The study was performed over the Arctic region from the Kola Peninsula until Chukotka Peninsula including 
both coastal area (predominantly) and inland territory. Strong wind speed events are often noted in the region in 
the cold time of year during the passage of meteorological synoptic storms. Wind speeds of more than 30 m∙s−1 
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are observed during this time over the marine surface, inducing high waves of more than 4 m. 
A dataset of observed hourly 10-minute mean wind speed data from stations was obtained, with the record 

period varying from station to station. For the present study, we used the period 1966-2013, which was covered 
by data of all stations (Table 1). Their location is shown in Figure 1. Note that we do not consider here the 
matter of anemometer exposure. As with all analyses of wind data, the results of an extreme value analysis will 
be flawed if the data on which they are based are taken from an anemometer with a non-standard exposure (e.g., 
sheltered in one or more directions, or at a height above the ground different from the 10 m standard). Metadata 
for stations can be obtained from Meteorological Service of Russia. 

It was interesting to observe exceptional outliers for several values (60 - 70 m∙s−1) in the dataset. As part of 
our analysis, we questioned whether to neglect this information as errors or spurious outliers. We investigated 
the reanalysis dataset to find such values. For this aim, a dataset of 3-hourly 10-m wind of the 20th Century Re-
analysis dataset (1.9 × 1.875 deg. Lat. × Long.) for the period 1979-2004 was obtained [8] [9]. These data cor-
respond to diagnostic values at the equivalent anemometer level. They differ little from other products [10] that 
are typically used for the Arctic region. This product was related directly to observations and in all cases we saw 
that it does not contain observed exceptional outliers. Therefore it seems logical that such velocities should were 
diagnosed as errors and ignored. However, as will be shown below, in some cases their appearance is possible. 

A dataset of wind simulation of the INM-CM4 climate model for the period 1966-2005 was also obtained [11]. 
These data (1.5 × 2 deg. Lat. × Long.) correspond to the Historical experiment of the Coupled Model Intercom-
parison Project, Phase 5 (CMIP5) [12]. The use of station data will make it possible to evaluate the consistency 
between wind simulation products and near-surface observations. Observational data and the INM CM4 data 
cover not the same years, but it could not influence the statistical results due to specification of used numerical 
experiment, which focuses on generation of common features of modern climate conditions. Apart from, the 
appearances of extremes are not regular (Figure 2). Note that pictures in Figure 2(a) and Figure 2(b) are dif-
ferent in spite of the distance between stations is no more than 250 km. In this figures we can identify the 
long-term clusters of extreme events. Due to short observation period, it is not clear whether this is a sign of 
climate changes or a trace of long-lasting variations. The period of 1966-2013 characterizes the period of cli-
mate change [13]; however, diagnosed events did not appear in statistics of wind speed events. 

It is a condition of extreme value analysis that the extremes selected for examination have to be independent. 
Annual (or seasonal) maximum wind speeds chosen from each year are statistically independent. However, 
when several data points are taken from each season, there may well be several clustered maximum speeds from 
a single storm. Such events are unlikely to be statistically independent. Various strategies are invoked to remove 
dependent events before proceeding with a statistical analysis. A simple method is to require a minimum time 
separation or “deadtime” between selected events. Working with Arctic wind climate, we use the autocorrelation 
coefficient r(τ) to establish a deadtime between consequent wind fluctuations. Its value is a measure of the cor-
relation of neighbouring wind events. It was shown to be less than 0.05 for τ equal to 48 or 72 hours. Therefore, 
we use a deadtime of 72 hours. The same values (48 - 60 h) were used earlier [14]-[16]. 
 

 
Figure 1. Location of observation stations. 
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Table 1. Wind measurement stations across the Arctic coastal zone of Russia (http://meteo.ru/). 

Station Lat., N Lon., E Height above sea level 

Teriberka 69.2 35.1 33 

Murmansk 69 33.1 55 

Lovozero 68.1 34.8 161 

Krasnoshchelye 67.4 37.0 155 

Kandalaksha 67.1 32.4 26 

Umba 66.7 34.3 39 

Arkhangelsk 64.6 40.5 3 

Zimnegorsky Mayak 65.5 39.7 85 

Сapе Kanin 68.7 43.3 48 

Kolguyev Island Northern 69.5 49.1 23 

Kotkino 67 51.2 18 

Naryan-Mar 67.7 53.0 4 

Ust-Usa 65.9 56.9 77 

Ust-Tsilma 65.4 52.3 78 

Okunev Nos 66.3 52.6 20 

Hoseda Hard 67.1 59.4 84 

Anderma 69.8 61.7 53 

MalyKarmakula 72.4 52.7 18 

Marresale 69.7 66.8 24 

Novy Port 67.7 72.9 11 

Antipauta 69.1 76.9 2 

Dikson 73.5 80.2 42 

Fedorov Observatory 77.7 104.3 13 

Bolvansky Nos 70.5 59.1 13 

Khatanga 72.0 102.3 30 

Vize Island 79.5 77 11 

Tiksi 71.6 128.6 6 

Wrangel Island 71.0 181.5 2 

Cape Konstantinovsky 68.6 55.5 7 

The Yubileynaya 70.8 136 25 

Vankarem 67.8 183.5 3 

Ambarchik 69.6 162.3 23 

Cape Schmidt 68.9 180.7 3 

Ayon Island 69.9 168.0 13 

Ostrovnoye 68.1 164.2 94 

Cape Billings 69.9 175.8 2 

Salekhard 66.5 66.5 15 

Igarka 67.5 86.4 25 

Kotelny Island 76 140.5 10 

Kyusyur 70.7 127.5 36 

http://meteo.ru/
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(a) 

 
(b) 

Figure 2. Appearance of wind speed extremes (>21 m/s), based on wind observation at the Teriberka (a) and the Zimne-
gorsky Mayak (b) for cold period (from November (number of month is 11) to April (number is 4)) of each year. 

3. The Weibull Distribution in Station Observation Data 
Because it is widely accepted that the Weibull distribution is a good model for wind speed distributions, empiri-
cal extremes are modelled by the cdf: 

( ) 1 e
kAUn F U

N
−≈ = −                                    (1) 

This expression (stretched exponential distribution) can be replaced by 

ln ln ln lnN n k U A
N
− − = +  

.                               (2) 

Such representation allows a straight representation of the empirical function on the coordinate axis of the 
Weibull distribution. The model parameters (A and k) can be estimated using the maximum likelihood approach. 
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To estimate the success of approximation the coefficient of determination, denoted R2, is traditionally calculated. 
It provides a measure of how well observed outcomes are replicated by the model of linear regression, it is the 
square of the sample correlation coefficient. Such approach allows us to determine (almost visually) whether a 
simple estimate can approximate expression (1).  

In Figure 3 we plot several empirical cdfs on the bases of station measurements. Configuration of empirical 
points in the form of columns is determined by the fact that the data are quantized due to specified accuracy of 
measurement. Pictures are the “Weibull Plots”, which are a specific nonlinear transformation of the data, and a 
straight line is recovered if the sample is Weibull. We can see that at all sites, we found that the empirical cdfs 
consistently deviate from the theoretical line starting with certain large threshold values (Uth). This means that 
the empirical tail diverges from the Weibull model, indicating that a different model might describe the data 
well. As a rule, there are only few such values (U > Uth); however, their presence has profound significance be-
cause they are the greatest extremes. 

To approximate these empirical cdfs we use the same technique but applying Gumbel distribution. Again, as 
was expected, we found that the empirical cdfs consistently deviate from the theoretical model. 

It is possible in such a situation to choose another function (including three parameters) for approximating the 
behaviour of observed data. However, we interpret these results in another way. It seems that data indicate that 
there is a violation of the above-mentioned condition of identically distributed random variables. The shape of 
the curve suggests that the volume of samples is composed of two sets of variables, each described by its own 
Weibull function. Figure 4 shows approximations of the empirical cdfs of wind speed extremes for different re-
gions (same as in Figure 3) by two different Weibull distributions. Very large R-squared values (>0.95) denote 
the high success of this approximation. Coefficients of regression equations allow us to estimate parameters k 
and A in each cases.  

For example, in Figure 5 we compare empirical cdf of wind speed extremes on the bases of the Teriberka sta-
tion measurements (only data shown in Figure 4(a)) and corresponding Weibull distribution using calculated 
parameters: A = 1.64 × 10−5 and k = 3.97. To decide if samples come from a population with Weibull distribu-
tion the special statistical tests could be utilized. First of all note that R-squared values, denoting the success of 
the maximum likelihood approach, reflects in some aspects the Cramer-Mises-Smirnov (C-M-S) test, because it 
uses the integral of the squared difference between the empirical and the estimated distribution functions. If R2 
→ 1 this means that the integral converge to zero. However, the C-M-S test cannot be used, because the infor-
mation about the empirical function is incomplete since we have only values corresponding to U ≤ Uth. Similarly, 
the Anderson-Darling criterion cannot be applied because it places more weight on observations in the tails of 
the distribution which are out of reach. In this case more suitable the Kolmogorov-Smirnov (K-S) test because it 
uses the supremum of the absolute difference between the empirical and the estimated distribution functions. 
Here we take into consideration (using forms of regression lines—see Figure 4) that the supremum is not lo-
cated in tail zone. 

Because test is applied in contexts where a family of distribution is being tested, in which case the parameters 
of that family need to be estimated and account must be taken of this in adjusting either the test-statistic or its 
critical values. Revised critical values for Weibull distribution are given by [17]. Using the K-S test we assess 
that the null hypothesis, which asserts that the sample come from a population with Weibull distribution, cannot 
be rejected. Analogous procedure was used to decide if samples depicted in Figure 4(b) come from a population 
with Weibull distribution using another calculated parameters: A = 0.0120 and k = 1.77. It was concluded again 
that Weibull distribution fits well to the data (Figure 5(b)). The same result was established for other examples 
of Figure 4 and in all studied stations (Table 1). 

Note additionally that application of a sufficiently high threshold and, consequently, detection of especially 
high wind speeds allows us to describe for their approximation the peaks-over-threshold modelling approach, 
using the Pareto distribution. It has a cumulative distribution function 

( ) th1 UU
U

γ
 Φ = − 
 

.                                    (3) 

It is worth mentioning here that the threshold value is not assigned a priori (as is usually done [7]) but is ex-
plicitly estimated previously. 

Generally, the implemented analytical approach allows us to detect that the majority of extreme wind speed  
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(a) 

 
(b) 

 
(c) 

Figure 3. Empirical cumulative distribution functions of wind speed maxima (station observations, cold period) for 72 
hours time step records straightening on the coordinate axis of the Weibull distribution, and linear regression line corres-
ponding to the Weibull function. (a) Teriberka, (b) Krasnochelie, (c) Zimnegorsky Mayak. 
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(d) 

 
(e) 

 
(f) 

Figure 4. Empirical cumulative distribution functions of wind speed maxima (station observations, cold period) for 72 
hours time step records straightening on the coordinate axis of the Weibull distribution, and linear regression line corres-
ponding to the Weibull function. (a), (b) Teriberka, (c), (d) Krasnochelie, (e), (f) Zimnegorsky Mayak; (a), (c), (e) denotes 
the Weibull distribution for range U ≤ Uth (so-called “swans”—see below), (b), (d), (f) denotes the Weibull distribution for 
range U > Uth (so-called “dragons”—see below). In all cases R2 > 0.96. 
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(a) 

 
(b) 

Figure 5. Fragments of empirical cdfs of wind speed extremes on the bases of the Teriberka 
station measurements and corresponding Weibull distribution using previously calculated 
parameters: (a) for data shown in Figure 4(a); (b) for data shown in Figure 4(b). 

 
events (below the threshold value) adhere to the Weibull distribution. The same statistical distribution of popu-
lation could be considered a result of the same organization principle, and this suggests a common generating 
mechanism for each representative of this population. This idea allows us to understand that a large extreme is 
not distinguished from its small siblings apart from its large power. The occurrence of large extremes looks like 
the appearance of a few black swans in a flock of white swans. This terminology was introduced by N.N. Taleb 
[18], as a metaphor to describe an event that comes as a surprise.  

However, there are extreme wind speed events located above the threshold value that are much more pro-
nounced than predicted by the extrapolation of “black swans” law distributions in their tail. They adhere again to 
the Weibull distribution. Such events were termed “kings” (taking into account the special position of the for-
tune of kings, which appear to exist beyond the Zipf law distribution of the wealth of their subjects [19]) or 
“dragons” (to stress that we address a completely different, beyond the normal, type of animal). D. Sornette [20] 
introduced the concept of dragon-kings to refer to such extreme events. The same statistical distribution suggests 
a common generating mechanism different from that responsible for extrema at U ≤ Uth. 

It is not clear to what extent such excessively metaphoric terminology is required for our case because it was 
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originally introduced to describe unique extraordinary events. However, it allows us to mark events that adhere 
to different Weibull distributions. Therefore, we will use below these terms: “swans” or “black swans” (hereaf-
ter Ss or BSs) and “dragons” (hereafter the Ds).  

A very important message is that we can easily diagnose events adhering to the BSs or the Ds (in many cases 
the diagnostic of Ds is not simple and requires different methods adapted to the specific problem [20]). In Fig-
ure 3, indeed, the Ds can be detected evidently based on obvious breaks in the tail of wind distributions. In sta-
tistics there is a test of the null hypothesis that two samples come from the same population against an alterna-
tive hypothesis, especially that a particular population tends to have larger values than the other. This is the 
Mann-Whitney U test (the Kruskal-Wallis test extends the Mann-Whitney U test when there are more than two 
groups). However, for comparing two (or more) sets of observations, they have to be a priori selected. In the 
case of wind speed extremes (or other meteorological extrema) such method is not possible, because all data re-
fer to the same nomenclature. 

Note that mentioned above exceptional outliers (“super extreme” wind speed events) are denoted along the 
line corresponding to the Ds distribution on the Weibull Plot. It means that their presence is not prohibited. 

The Weibull distribution parameters calculated for all stations are shown in Table 2. Parameters are given 
separately for two groups of wind speed extremes come from the Ss and Ds populations. Note that events be-
longing to the Ds are not diagnosed in several cases. 

4. The Question of Quantile Estimation 
As was demonstrated, the Weibull distribution fits well with the data in all cases. Therefore, the estimated pa-
rameters (k and A) allow us to calculate the quantile (inverse cumulative distribution) function for the Weibull 
distribution as follows:  

( )
1

1 1ln
1

k

U p
A p

 
=  − 

.                                  (4) 

Quantile wind speed values are calculated differently for the Ss and the Ds (Table 3). In our analysis, we have 
divided the data relating to cold and warm seasons. We have taken into account that in the Arctic region, July 
and August are the only true summer months, while the winter season covers not only December, January and 
February but also includes the whole interval from November to April. In these cases, taking into account the 
data volume (1966-2013) and remembering that time step records are 72 hours, the value of U(0.99) for the 
summer characterizes the maximum wind speed, which is exceeded, on average, once every five warm seasons. 
Similarly, the value of U(0.99) for the cold period of the year characterizes the maximum wind speed, which is 
exceeded, on average, two times every three cold seasons.  

The dissimilarity between the Ds and the BSs can reach up to 30%, demonstrating both a difference in statis-
tical properties and, probably, the differences of origin. The most pronounced feature of the geographical distri-
bution of the quantile wind speed values is that the maxima (both the BSs and the Ds) are in the coastal area. As 
an example, for winter, U(0.99) = 24 ms−1 (the BS) and U(0.99) = 29 ms−1 (the Ds) are at the Teriberka station, 
(corresponding to 19 and 27 ms−1 at another coastal station, the Zimnegorsky Mayak), while for the Krasnochelie 
(the inland station of the Cola Peninsula), U(0.99) is 9 and 10 ms−1 for the BS and the Ds, respectively. During 
the summer, the geographical peculiarities are the same; however, absolute values are almost two times lower. 

The “winter acceleration” of wind over the coastal area is not simply a consequence of a smooth sea surface, 
compared to land. An important role is played by storms that are typically much more active over the sea, espe-
cially during the cold season under the conditions of the non-freezing surface of the Barents Sea. During the 
warm season, the coastal/inland difference is not so pronounced and the quantile values are smaller. 

The wind speed extremes observed at the surface should be a function of the meso-scale circulation [21]-[23]. 
It is a well-known fact that increased wind (e.g., wind gusts) originates from air parcels flowing at higher levels 
in the boundary layer that are deflected downward to the surface. Apart from meso-scale convective complexes 
we can note that some low level extremes involve the role of complex terrain as well as combinations of these 
processes. The most striking example (within the area of investigation) is demonstrated by the Maly Karmakula 
station where bora winds affect the eastern shore of the Barents Sea and wind speed can be ~40 ms−1 (see Table 
3). Boras develop when cold air from the Kara Sea (typically covered by ice) is blocked by the Novaya Zemly 
Mountains, which rise to ~1000 m, but it can cross the mountains.  
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Table 2. The Weibull distribution parameters (k and A) calculated separately for two groups of wind speed extremes come 
from the Ss and Ds populations over the selected period 1966-2013 years (for wind speed in m/s). 

Station Population 
Cold season Warm season 

k A k A 

Teriberka 
Ss 3.97 1.6E−05 4.39 3.1E−05 

Ds 1.77 0.0120 2.12 0.0081 

Murmansk 
Ss 3.95 0.0001 4.94 3.6E−05 

Ds 1.34 0.1039 2.56 0.0062 

Lovozero 
Ss 3.19 0.0013 4.45 0.0003 

Ds 1.69 0.0429 2.30 0.0202 

Krasnoshchelye 
Ss 3.14 0.0043 3.04 0.0012 

Ds 0.99 0.4608 1.45 0.0664 

Kandalaksha 
Ss 3.50 0.0017 4.20 0.0006 

Ds 1.22 0.2322 1.45 0.1545 

Umba 
Ss 3.63 0.0006 4.56 0.0002 

Ds 1.70 0.0508 0.9285 0.4050 

Arkhangelsk 
Ss 3.60 0.0016 4.00 0.0010 

Ds 1.48 0.1159 1.49 0.1372 

Zimnegorsky Mayak 
Ss 3.50 0.000145 3.80 0.0002 

Ds 1.13 0.1125 1.40 0.0759 

Сapе Kanin 
Ss 4.80 0.2E−05 4.40 1.9E−05 

Ds 2.40 0.0017 1.30 0.0835 

Kolguyev Island Northern 
Ss 4.50 0.7E−05 6.10 0.1E−05 

Ds 1.50 0.0309 2.90 0.0013 

Kotkino 
Ss 2.90 0.0032 3.56 0.0013 

Ds 0.40 1.6109 1.66 0.0869 

Naryan-Mar 
Ss 3.12 0.0017 4.45 0.0002 

Ds 1.54 0.0620 1.88 0.0389 

Ust-Usa 
Ss 3.70 0.0006 5.20 3.0E−05 

Ds 1.25 0.1515 1.72 0.0620 

Ust-Tsilma 
Ss 4.20 0.0002 5.10 4.9E−05 

Ds 0.90 0.3854 1.85 0.0561 

Okunev Nos 
Ss 3.40 0.0014 4.40 0.0002 

Ds 0.52 1.1722 0.98 0.3816 

Hoseda Hard 
Ss 3.00 0.0011 4.50 8.8E−05 

Ds 0.98 0.2695 2.20 0.0159 

MalyKarmakula 
Ss 3.40 5.4E−05 4.08 3.6E−05 

Ds 1.90 0.0042 1.86 0.0087 

Anderma 
Ss 3.60 7.7E−05 4.26 6.7E−05 

Ds 1.85 0.0127 2.20 0.0108 

Marresale 
Ss 3.60 0.0001 4.80 1.8E−05 

Ds 1.67 0.0264 1.86 0.0237 
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Continued  

Novy Port 
Ss 3.65 0.0002 5.00 1.2E−05 

Ds 1.60 0.0303 1.80 0.0254 

Antipauta 
Ss 3.19 0.0006 4.60 4.4E−05 

Ds 2.14 0.0093 1.88 0.0266 

Dikson 
Ss 3.23 0.0002 5.14 0.5E−05 

Ds 2.00 0.0088 2.70 0.0023 

Bolvansky Nos 
Ss 3.70 6.5E−05 4.15 5.9E−05 

Ds 1.65 0.0254 2.1 0.0115 

Khatanga 
Ss 3.70 0.0005 5.20 2.1E−05 

Ds 1.76 0.0319 1.50 0.0756 

Vize Island 
Ss 3.3 0.0003 4.4 3.6E−5 

Ds 2.1 0.0063 2.0 0.0154 

Tiksi 
Ss 1.9 0.0088 4.7 2.0E−5 

Ds - - 2.6 0.0029 

Wrangel Island 
Ss 2.7 0.0008 3.1 0.0009 

Ds - - 2.4 0.0042 

Cape Konstantinovsky 
Ss 3.9 5.3E−5 5.3 0.3E−5 

Ds 2.1 0.0057 2.5 0.0032 

The Yubileynaya 
Ss 2.7 0.0081 4.2 0.0002 

Ds 1.3 0.1358 1.4 0.1060 

Vankarem 
Ss 3.3 0.0002 5.2 0.6E−5 

Ds 1.0 0.2166 2.6 0.0032 

Ambarchik 
Ss 3.0 0.0005 4.8 1.8E−5 

Ds 1.6 0.0259 3.0 0.0013 

Cape Schmidt 
Ss 3.2 0.0003 4.2 5.5E−5 

Ds 1.3 0.0632 2.6 0.0033 

Ayon Island 
Ss 3.12 0.0011 5.0 1.8E−5 

Ds 1.8 0.0188 1.8 0.0294 

Ostrovnoye 
Ss 2.4 0.0115 4.1 0.0005 

Ds - - 1.5 0.1125 

Cape Billings 
Ss 3.3 0.0005 4.9 1.3E−5 

Ds 1.5 0.0377 2.2 0.0070 

Salekhard 
Ss 2.9 0.0034 3.8 0.0004 

Ds 1.6 0.0518 1.6 0.0561 

Igarka 
Ss 3.2 0.0015 4.6 0.0001 

Ds 1.5 0.0852 1.3 0.1848 

Kotelny Island 
Ss 3.3 0.0004 4.1 4.9E−5 

Ds 1.43 0.00620 2.0 0.0104 

Kyusyur 
Ss 2.1 0.0107 4.9 2.4E−5 

Ds - - 1.9 0.0254 



A. Kislov, T. Matveeva 
 

 
218 

Table 3. Quantile wind speed values U(0.99) in ms−1 (1966-2013) for wind data from measurement stations calculated sep-
arately for two groups of wind speed extremes come from the Ss and Ds populations. 

Station 
BSs Ds BSs/D  BSs Ds BSs/D 

Cold season  Warm season 

Teriberka 24 29 0.83 15 20 0.75 

Murmansk 15 17 0.88 11 13 0.85 

Lovozero 13 16 0.81 9 11 0.89 

Krasnoshchelye 9 10 0.90 8 11 0.82 

Kandalaksha 10 12 0.83 9 10 0.90 

Umba 12 14 0.86 10 11 0.91 

Arkhangelsk 9 12 0.75 8 11 0.73 

Zimnegorsky Mayak 19 27 0.70 14 19 0.74 

Сapе Kanin 21 27 0.78 17 22 0.77 

Kolguyev Island Northern 19 28 0.68 12 17 0.71 

Kotkino 12 14 0.86 8 11 0.73 

Naryan-Mar 13 16 0.81 10 13 0.77 

Ust-Usa 11 15 0.73 10 12 0.83 

Ust-Tsilma 11 16 0.69 11 16 0.69 

Okunev Nos 11 14 0.79 10 13 0.77 

Hoseda Hard 16 18 0.89 11 13 0.85 

MalyKarmakula 28 40 0.70 18 29 0.62 

Anderma 21 24 0.88 13 18 0.72 

Marresale 19 22 0.86 13 17 0.77 

Novy Port 17 23 0.74 13 18 0.72 

Antipauta 16 18 0.89 12 16 0.75 

Dikson 21 23 0.91 14 17 0.82 

FedorovObservatory 18 23 0.78 12 17 0.71 

Bolvansky Nos 20 23 0.87 15 17 0.88 

Khatanga 12 17 0.71 11 16 0.69 

Vize Island 19 23 0.82 15 17 0.88 

Tiksi ?      

Wrangel Island 25 -  16 18 0.89 

Cape Konstantinovsky 19 24 0.79 14 19 0.74 

Yubileynaya 10 16 0.63 11 16 0.69 

Vankarem 20 22 0.91 13 17 0.77 

Ambarchik 22 26 0.85 14 15 0.93 

Cape Schmidt 20 27 0.74 14 17 0.82 

Ayon Island 15 20 0.75 12 17 0.71 

Ostrovnoye 12 -  10 11 0.91 

Cape Billings 16 25 0.64 14 19 0.74 

Salekhard 12 17 0.71 11 16 0.69 

Igarka 12 14 0.86 10 11 0.91 

Kotelny Island 18 20 0.90 16 21 0.76 

Kyusyur 18 -  12 16 0.75 
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5. The Weibull Distributions in Data of Climate Model Simulation 
The next step of the analysis is to investigate to what extent the above-mentioned peculiarities of wind extremes 
are simulated by climate models. We analysed a dataset of wind simulation of the INM-CM4 climate model. 
The establishment of the correspondence between wind simulation products and near-surface observations could 
help us to assess the quality of modelling products and their capability to reproduce the wind extremes. Apart 
from that, it is important to advance our understanding of the origin of the BSs and the Ds.  

In Figure 6(a), Figure 6(b), Figure 6(c) we plot several cdfs on the bases of the INM-CM4 simulations. For 
this aim we chose the INM-CM4 grid points located near the stations. We can conclude that the Weibull distri-
bution is a good approximation of the modelled wind speed extremes. We find very small deviation in cdfs from 
the theoretical line starting with certain large threshold values. Let us remind that noticeable deviation was a 
typical feature of empirical cdfs (Figure 3 and Figure 4). Using our terminology, we can conclude that the 
INM-CM4 model wind speed extremes are the Ss and that there are no the Ds. 

This conclusion is supported not only by the specific location of points along a theoretical line but also by the 
fact that modelled wind speed extremes themselves are close to observation data adhering the BSs besides the 
Zimnegorsky Mayak data and the Teriberka data, where observed U(0.99) are almost half times greater than 
modelled values (Table 4). Probably, this is due to inadequate distribution of land and sea in the INM-CM4. 
Their geographical peculiarities are the same (the maxima are at the coastal area). 

The discovered phenomenon of the absence of the representatives of the Ds in modelling data is very impor-
tant. Let us investigate this effect more precisely. Because extreme wind at the surface originates from air par-
cels that are deflected downward from the top of the boundary layer to the surface, we will focus on extremes in 
850 hPa wind, which is likely to be more reliable than surface wind in an atmospheric model, as surface wind is 
more affected by unresolved topography and land/sea mask, and the model boundary layer scheme. Extremes in 
850 hPa wind may be related to the potential for extreme surface wind speed [24].  

The results obtained (Figure 6(b), Figure 6(d), Figure 6(f)) indicate that the Weibull distribution is a good 
approximation of modelled wind speed extremes at the level H850. We find again the absence of deviation in 
cdfs from the theoretical line and can conclude that above the atmospheric boundary layer the set of modelled 
wind speed extremes do not consist of the Ds, they are the Ss. Note that in spite of difference of grid points loca-
tion (inland area or coastal zones) the statistical features of modelled wind extremes are the same. For example, 
the quantile wind speed values at the level 850 hPa U(0.99) = 25 - 26 m/s for winter season and U(0.99) = 19 
m/s for summer season (see Table 5). It means, that the geographical peculiarities of the near-surface wind 
speed extremes (see Table 4) originate due to air parcel subsidence occurring differently in the modelled at-
mospheric boundary layer over the coastal and inland area. In vicinity of coastal zone the modelled wind speed 
extremes at the level H850 are close to near-surface observation data, but within the inland territory the model 
overestimates the results of measurements (Table 5). However, this comparison is not meaningful because 
compared values are related to different populations (BSs and Ds) and hence their origin is different. 

6. Conclusions  
Extreme value analysis has been implemented to estimate the statistical properties of extreme wind speed over 
the European and Siberian parts of Arctic region from the Kola Peninsula to the Chukotka Peninsula. The applica-
tion was made on 10-m wind speed data taken from the INM-CM4 climate model dataset and observation stations. 

It was shown that for all stations a volume of observed samples of extreme wind speed are composed of two 
sets of variables. All samples of each population have the same statistical properties but one population is 
sharply different from another. So different origin of strong wind events adhering to two groups can be con-
cluded. Using metaphoric terminology, we marked these events as the Ss (power extremes are the BSs) and the 
Ds. However, the modelled (INM-CM4 data) extreme wind speeds consist of only the Ss. Dissimilarity of the 
Ds and the BSs can reach up to 30%, hence, atmospheric model underestimates extreme wind speeds. The find-
ing that global climate models are unable to capture the wind extremes is already well known, but information 
that the modelled (INM-CM4 data) extreme wind speeds do not consist of the Ds provides new knowledge. 

This evidence indicates that the special mechanisms of the Ds are not reproduced by climate models which 
are utilized as a tool used to simulate climate change. Hence, the problem of identification of pronounced ex-
treme wind speeds based on modelling data remains unresolved.  
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(d) 

 
(e) 

 
(f) 

Figure 6. Cumulative distribution functions of wind speed maxima for cold period simulated by the INM-CM4 in the 
framework of the Historical experiment (CMIP 5) in grid points corresponded to the Zimnegorsky Mayak (a), (b), Kanda-
laksha (c), (d) and Krasnoshchelye (e), (f), near the surface (a), (c), (e) and at 850 hPa (b), (d), (f) for 72 hours time step 
records straightening on the coordinate axis of the Weibull low, and linear regression line corresponding to the Weibull 
function. In all cases R2 = 0.99. 
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Table 4. Quantile wind speed values (U(0.99), ms−1) near the surface for grid points corresponding to wind measurement 
stations across the Kola Peninsula and coastal zones of the Barents Sea and the White Sea (see Figure 1) based on data of 
the INM-CM4 and measurement stations. 

Grid points, corresponding to stations 

Teriberka Lovozero Krasnochelie Kandalaksha Umba Zimnegorsky Mayak 

Winter season, the INM-CM4/the BSs (observation-see Table 3) 

19/24 12/13 11/9 11/10 11/12 11/19 

Summer season, the INM-CM4/the BSs (observation-see Table 3) 

15/15 9/9 9/8 9/9 9/10 9/14 

 
Table 5. Quantile wind speed values (U(0.99), ms−1) at the level 850 hPa for grid points corresponding to wind measure-
ment stations across the Kola Peninsula and coastal zones of the Barents Sea and the White Sea (see Figure 1) based on 
data of the INM-CM4, and quantile wind speed values (U(0.99), ms−1) near the surface based on data of measurement sta-
tions adhering to BSs and Ds (see Table 3). 

Grid points, corresponding to stations 

Teriberka Lovozero Krasnochelie Kandalaksha Umba Zimnegorsky Mayak 

Winter season, the INM-CM4/BSs/Ds 

25/24/29 25 /13/16 25/9/10 26/10/12 25/12/14 25/19/27 

Summer season, the INM-CM4/BSs/Ds 

19/15/20 19/9/11 19/8/11 19/9/10 19/10/11 19/14/19 

 
It is well-known that large wind speed extremes observed at the surface are governed by the mesoscale at-

mospheric phenomena (embedded into strong synoptic storms) including both convective processes and effects 
of gravity waves, connecting to specific circulations (like the bora). Because such processes are not fully simu-
lated by coarse spatial resolution atmospheric model, we could conclude that the largest wind speed extremes 
are not recreated by the climate models. It is important because the tasks demanding the information about wind 
speed extreme (for example, the task of projection of storminess intensity depending on the surface wind field) 
cannot be explicitly solved using the output of current climate model. 

The mesoscale atmospheric models cover several aspects of such processes, the use of which has huge potential. 
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