

Block-Transitive 4 - (v, k, 4) **Designs** and Ree Groups

Shaojun Dai¹, Ruihai Zhang²

¹Department of Mathematics, Tianjin Polytechnic University, Tianjin, China ²Department of Mathematics, Tianjin University of Science and Technology, Tianjin, China Email: daishaojun1978@sina.com, zhangruihai781119@126.com

Received 27 February 2016; accepted 4 April 2016; published 7 April 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

0 0 **Open Access**

Abstract

This article is a contribution to the study of the automorphism groups of $4-(v,k,\lambda)$ designs. Let $S = (\mathcal{P}, \mathcal{B})$ be a non-trivial $4 - (q^3 + 1, k, 4)$ design where $q = 3^{2n+1}$ for some positive integer $n \ge 1$, and $G \le Aut(S)$ is block-transitive. If the socle of G is isomorphic to the simple groups of lie type ${}^{2}G_{2}(q)$, then *G* is not flag-transitive.

Keywords

Flag-Transitive, Block-Transitive, t-Design, Ree Group

1. Introduction

For positive integers $t \le k \le v$ and λ , we define a $t - (v, k, \lambda)$ design to be a finite incidence structure $S = (\mathcal{P}, \mathcal{B})$, where \mathcal{P} denotes a set of points, $|\mathcal{P}| = v$, and \mathcal{B} a set of blocks, $|\mathcal{B}| = b$, with the properties that each block is incident with k points, and each t-subset of \mathcal{P} is incident with λ blocks. A flag of \mathcal{S} is an incident point-block pair (x, B) with x is incident with B, where $B \in \mathcal{B}$. We consider automorphisms of S as pairs of permutations on \mathcal{P} and \mathcal{B} which preserve incidence structure. We call a group $G \leq Aut(S)$ of automorphisms of S flag-transitive (respectively block-transitive, point *t*-transitive, point *t*-homogeneous) if Gacts transitively on the flags (respectively transitively on the blocks, t-transitively on the points, t-homogeneously on the points) of S. For short, S is said to be, e.g., flag-transitive if S admits a flag-transitive group of automorphisms.

For historical reasons, a $t - (v, k, \lambda)$ design with $\lambda = 1$ is called a Steiner t-design (sometimes this is also known as a Steiner system). If t < k < v holds, then we speak of a non-trivial Steiner t-designs.

How to cite this paper: Dai, S.J. and Zhang, R.H. (2016) Block-Transitive $4 - (v, k, \lambda)$ Designs and Ree Groups. Advances in Pure Mathematics, 6, 317-320. http://dx.doi.org/10.4236/apm.2016.65022

Investigating *t*-designs for arbitrary λ , but large *t*, Cameron and Praeger proved the following result: **Theorem 1.** ([1]) Let $S = (\mathcal{P}, \mathcal{B})$ be a $t - (v, k, \lambda)$ design. If $G \leq Aut(S)$ acts block-transitively on S,

then $t \le 7$, while if $G \le Aut(S)$ acts flag-transitively on S, then $t \le 6$.

Recently, Huber (see [2]) completely classified all flag-transitive Steiner *t*-designs using the classification of the finite 2-transitive permutation groups. Hence the determination of all flag-transitive and block-transitive *t*-designs with $\lambda \ge 2$ has remained of particular interest and has been known as a long-standing and still open problem.

The present paper continues the work of classifying block-transitive *t*-designs. We discuss the block-transitive 4-(v,k,4) designs and Ree groups. We get the following result:

Main Theorem. Let $S = (\mathcal{P}, \mathcal{B})$ be a non-trivial $4 - (q^3 + 1, k, 4)$ design, where $q = 3^{2n+1}$ for some positive integer $n \ge 1$, and $G \le Aut(S)$ is block-transitive. If Soc(G), the socle of G, is ${}^2G_2(q)$, then G is not flag-transitive.

The second section describes the definitions and contains several preliminary results about flag-transitivity and *t*-designs. In 3 Section, we give the proof of the Main Theorem.

2. Preliminary Results

The Ree groups ${}^{2}G_{2}(q)$ form an infinite family of simple groups of Lie type, and were defined in [3] as subgroups of GL(7,q). Let GF(q) be finite field of q elements, where $q = 3^{2n+1}$ for some positive integer $n \ge 1$ (in particular, $q \ge 27$). Let Q is a Sylow 3-subgroup of G, K is a multiplicative group of GF(q) and ${}^{2}G_{2}(q)$ is a group of order $q^{3}(q^{3}+1)(q-1)$ (see [4]-[6]). Hence ${}^{2}G_{2}(q)$ is a group of automorphisms of Steiner $3-(q^{3}+1,q+1,1)$ design and acts 2-transitive on $q^{3}+1$ points (see [7]).

Here we gather notation which are used throughout this paper. For a *t*-design $S = (\mathcal{P}, \mathcal{B})$ with $G \le Aut(S)$, let *r* denotes the number of blocks through a given point, G_x denotes the stabilizer of a point $x \in \mathcal{P}$ and G_B the setwise stabilizer of a block $B \in \mathcal{B}$. We define $G_{xB} = G_x \cap G_B$. For integers *m* and *n*, let (m, n) denotes the greatest common divisor of *m* and *n*, and $m \mid n$ if *m* divides *n*.

Lemma 1. ([2]) Let G act flag-transitively on $t - (v, k, \lambda)$ design $S = (\mathcal{P}, \mathcal{B})$. Then G is block-transitive and the following cases hold:

- 1) $|G| = |G_x| |x^G| = |G_x| v$, where $x \in \mathcal{P}$;
- 2) $|G| = |G_B| |B^G| = |G_B| b$, where $B \in \mathcal{B}$;
- 3) $|G| = |G_{xB}| | (x, B)^G | = |G_{xB}| bk$, where $x \in B$.

Lemma 2. ([8]) Let $S = (\mathcal{P}, \mathcal{B})$ is a non-trivial $t - (v, k, \lambda)$ design. Then

$$\lambda(v-t+1) \ge (k-t+2)(k-t+1).$$

Lemma 3. ([8]) Let $S = (\mathcal{P}, \mathcal{B})$ is a non-trivial $4 - (v, k, \lambda)$ design. Then 1) bk = vr; 2v(v, -1)(v, -2)(v, -3)

2)
$$b = \frac{\lambda v (v-1)(v-2)(v-3)}{k (k-1)(k-2)(k-3)}$$

Corollary 1. Let $S = (\mathcal{P}, \mathcal{B})$ is a non-trivial 4 - (v, k, 4) design. If $v = q^3 + 1$, Then $k < 3 + 2q\sqrt{q}$. **Proof.** By Lemma 2, we have $4(v-3) \ge (k-2)(k-3)$. If $v = q^3 + 1$, then

$$4(q^3-2) \ge (k-2)(k-3).$$

Hence

$$k^2 - 5k - 4q^3 + 14 \le 0.$$

We get

$$k \le \frac{5 + \sqrt{16q^3 - 31}}{2} < 3 + 2q\sqrt{q}.$$

3. Proof of the Main Theorem

Suppose that G acts flag-transitively on 4 - (v, k, 4) design and $v = q^3 + 1$. Then G is block-transitive and point-transitive. Since $T = {}^2G_2(q) \leq G \leq Aut(T)$, we may assume that $G = T : \langle \alpha \rangle$ and $G = T : (G \cap \langle \alpha \rangle)$ by Dedekind's theorem, where $\alpha : x \to x^3$, $x \in GF(q)$ and α is an automorphism of field GF(q). Let $q = 3^f$, f = 2n+1 is odd, and $|\langle \alpha \rangle| = m$, then $m \mid f$. Obviously, $|G| = q^3(q^3 + 1)(q - 1)m$.

First, we will proof that if $g \in G$ fixes three different points of \mathcal{P} , then g must fix at least four points in \mathcal{P} .

Suppose that $g \in G$, $|Fix_{\mathcal{P}}(g)| \ge 3$, $x \in Fix_{\mathcal{P}}(g)$. Let *P* is a normal Sylow 3-subgroup of G_x . Then \mathcal{P} is transitive on $\mathcal{P} - \{x\}$. By $v = q^3 + 1$, we have $|P| = |\mathcal{P} - \{x\}| = q^3$. Hence *P* acts regularly on $\mathcal{P} - \{x\}$.

There exist $h \in P$ such that $z = y^h$, where for all $y, z \in \mathcal{P} - \{x\}$. Since $g \in G_x$, $h \in P$ and P is a normal Sylow 3-subgroup of G_x , we have $h^{-1}ghg^{-1} \in P$. On the other hand,

$$z^{h^{-1}ghg^{-1}} = y^{ghg^{-1}} = y^{hg^{-1}} = z^{g^{-1}} = z.$$

So $h^{-1}ghg^{-1} = 1$, that is gh = hg. Hence $h \in C = C_P(g)$. We get that C is transitive on $Fix_P(g) - \{x\}$. Hence $|Fix_P(g) - \{x\}| ||C|$. By $C \leq P$, we have $|Fix_P(g) - \{x\}| ||P|$. Note that $|P| = q^3 = 3^{3f}$, so

 $|Fix_{\mathcal{P}}(g)-\{x\}||3^{3f}$. Hence $|Fix_{\mathcal{P}}(g)-\{x\}| \equiv 1 \pmod{2}$. It follows that $|Fix_{\mathcal{P}}(g)| \equiv 0 \pmod{2}$. This means that g must fix at least four points in \mathcal{P} .

Now, we can continue to prove our main theorem. Obviously, α fixes three points of \mathcal{P} which are $0,1,\infty$. Then $\langle \alpha \rangle \leq G_{0,1,\infty}$. Hence α must fix at least five points in \mathcal{P} . Since G acts block-transitively on 4 - (v,k,4) design, we can find four blocks, let B_1 , B_2 , B_3 and B_4 , containing four points which is fixed by α . If α exchange B_1 , B_2 , B_3 and B_4 , then $2 ||\langle \alpha \rangle|$ which is impossible. Thus α must fix B_1 , B_2 , B_3 and B_4 . We have $G \cap \langle \alpha \rangle \leq G_{0B_1} = G_{0B_2} = G_{0B_3} = G_{0B_4}$. Therefore T acts also flag-transitively on

 $4-(q^3+1,k,4)$ design. We may assume G=T and $|G|=q^3(q^3+1)(q-1)$.

Since G acts flag-transitively on $4-(q^3+1,k,4)$ design, then G is point-transitive. By Lemma 1(1), we get

$$|G_x| = \frac{|G|}{v} = \frac{q^3(q^3+1)(q-1)}{q^3+1} = q^3(q-1).$$

Again by Lemma 3(2) and Lemma 1(3),

$$b = \frac{4v(v-1)(v-2)(v-3)}{k(k-1)(k-2)(k-3)} = \frac{v|G_x|}{k|G_{xB}|}.$$

Thus

$$|G_{xB}| = \frac{(k-1)(k-2)(k-3)|G_x|}{4(\nu-1)(\nu-2)(\nu-3)} = \frac{(k-1)(k-2)(k-3)q^3(q-1)}{4q^3(q^3-1)(q^3-2)} = \frac{(k-1)(k-2)(k-3)}{4(q^2+q+1)(q^3-2)}.$$

By Lemma 2,

$$4|G_{xB}|(q^{2}+q+1)(q^{3}-2) = (k-1)(k-2)(k-3) \le (k-1) \cdot 4(v-3) = 4(k-1)(q^{3}-2),$$

Again by Corollary 1,

$$1 \le \left| G_{xB} \right| \le \frac{k-1}{q^2+q+1} \le \frac{2+2q\sqrt{q}}{q^2+q+1} < 1 \left(q \ge 27 \right),$$

This is impossible.

This completes the proof the Main Theorem.

References

[1] Cameron, P.J. and Praeger, C.E. (1992) Block-Transitive t-Designs, II: Large t. In: De Clerck, F., et al., Eds., Finite

geometry and Combinatorics, Deinze. (1993) London Math. Soc. Lecture Note Series, Vol. 191, Cambridge Univ. Press, Cambridge, 103-119.

- Huber, M. (2009) Flag-Transitive Steiner Designs. Birkhäuser Basel, Berlin, Boston. <u>http://dx.doi.org/10.1007/978-3-0346-0002-6</u>
- [3] Ree, R. (1961) A Family of Simple Groups Associated with the Simple Lie Algebra of Type (*G*₂). *American Journal of Mathematics*, **83**, 432-462. <u>http://dx.doi.org/10.2307/2372888</u>
- [4] Kleidman, P.B. (1988) The Maximal Subgroups of the Chevally Groups ${}^{2}G_{2}(q)$ with q Odd, the Ree Groups ${}^{2}G_{2}(q)$, and Their Automorphism Groups. *Journal of Algebra*, **117**, 30-71. http://dx.doi.org/10.1016/0021-8693(88)90239-6
- [5] Liu, W.J., Zhou, S., Li, H. and Fan, X. (2004) Finite Linear Spaces Admitting a Ree Simple Group. European Journal of Combinatorics, 25, 311-325. <u>http://dx.doi.org/10.1016/j.ejc.2003.10.001</u>
- [6] Dai, S.J. and Zhang, R.H. (2013) The 2-(v,13,1) Designs with Block-Transitive Automorphism. Ars Combinatoria, **110**, 15-21.
- [7] Dixon, J.D. and Mortimer, B. (1996) Permutation Groups. Springer Verlag, Berlin. <u>http://dx.doi.org/10.1007/978-1-4612-0731-3</u>
- [8] Shen, H. (1990) The Theory of Combinatorial Design. Shanghai Jiaotong Univ. Press, Shanghai.