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Abstract 
 
In this paper, inference on parameter estimation of the generalized Rayleigh distribution are investigated for 
progressively type-I interval censored samples. The estimators of distribution parameters via maximum like-
lihood, moment method and probability plot are derived, and their performance are compared based on 
simulation results in terms of the mean squared error and bias. A case application of plasma cell myeloma 
data is used for illustrating the proposed estimation methods. 
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1. Introduction 
 
Burr [1] introduced twelve families of distributions for 
modeling lifetime data. Among those families, Burr type 
X and Burr type XII have received the most attention. 
The Burr type X distribution is also known as the 
generalized Rayleigh distribution (GRD). The probabi- 
lity density function (pdf), cumulative distri-bution func- 
tion (cdf) and hazard function of the two-parameter GRD 
are defined, respectively, as below:  
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where   is the shape parameter and   is the scale 
parameter. If = 1 , the GRD reduces to the Rayleigh 
distribution. The GRD has been studied in many papers 
such as [2-11]. Johnson et al. [12] provided an excellent 
review for the GRD up to the year of 1995. 

When 1 2  , the GRD has a decreasing pdf (1.1) 
and a bathtub-type hazard function. When 1 2  , the 
pdf (1.1) is a right-skewed unimodal function and the 
hazard function is an increasing function. The two- 
parameter GRD has several properties commonly 
happened in the two-parameter gamma, Weibull and 
generalized exponential distributions. However, when 

1 2  , the hazard function (1.3) behaves more close to 
the hazard function of Weibull with shape parameter 
greater than 1. Similar to the generalized exponential 
distribution and Weibull distribution, the GRD has a 
closed form of cdf and is very popular for dealing with 
censored data. Readers can refer to [5] and [7] for more 
detailed information about the comparison among these 
distributions. 

According to complete samples, Surles and Padgett 
[10] showed that the two-parameter GRD is quite 
effectively in modeling strength data and general lifetime 
data. Kundu and Raqab [5] studied many different 
estimation methods for the GRD. However, it is very 
often that objects are lost or withdrawn before failure or 
the object’s lifetime is only known within an interval in 
industrial life testing applications or medical survival 
analysis. Hence, the sample information is imcomplete 
and the obtained sample is called a censored sample. The 
most common censoring schemes are type-I censoring, 
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type-II censoring and progressive censoring. The life 
testing is ended at a pre-scheduled time for the type-I 
censoring and for the type-II, the life testing is ended 
whenever the number of lifetimes is reached. Both the 
type-I and the type-II censoring schemes allow with- 
drawing the test items only at the end of life testing. 
However, the progressive censoring schemes allow re- 
moving test items at some other times before the end of 
life testing. More information about progressive type-I 
and type-II censoring schemes and their applications can 
be found in [13]. 

Aggarwala [14] introduced the statistical inference 
procedure for progressively type-I interval censored data 
from the exponential distribution. Under progressive 
type-I interval censoring, observations are only known 
within two consecutively pre-scheduled times and items 
would be allowed to withdraw at pre-scheduled time 
points. Ng and Wang [15] studied parameter estimations 
for Weibull distribution under progressive type-I interval 
censoring. Chen and Lio [16] inferred the parameters of 
GED according to progressively type-I interval censored 
samples. To our best knowledge, there no any research 
work about the statistical inference for the GRD based on 
progressively type-I interval censored samples has been 
published in literatures. 

The rest of this article is organized as follows. In 
Section 2, we introduce the progressive type-I interval 
censoring scheme into the GRD followed by the 
theoretical backgrounds and methods for its parameter 
estimation. A simulation study is conducted in Section 3 
to compare the performance of these estimation methods 
in terms of the mean squared error (MSE) and bias. In 
Section 4, the application to a real data set is discussed. 
Some conclusions are given in Section 5. 
 
2. Data, Likelihood and Parameter 

Estimations 
 
2.1. Progressively Type-I Interval Censored Data 
 
Let  items are placed on a life test simultaneously at 
the initial time 0  and under inspection at m  
pre-specified times 1 2 , where m  is the 
scheduled time to terminate the experiment. At the time 

i , the number, i

n
= 0t

< < < mt t t t

t X , of failures occurred in  1it  , ti  is 
recorded and i  surviving items are randomly removed 
from the life test, for . At the time m , 
all surviving items are removed and the life test is 
terminated. Since the number, i , of surviving items in 

R
= 1,2, ,i 

Y

1m t

 1  is a random variable and i i  at schedule 
time i , i  could be determinated by the pre-specified 
percentage of the remaining surviving units at the time 

. For example, given pre-specified percentage values, 
 and , for withdrawing at 

1 2 , respectively,  at each 
inspection time it  where . Therefore, a 
progressively type-I interval censored sample can be 
denoted as 

,i t
t
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= 0, =R i

, where sample size 

=1 ii
. If i , then the 

progressively type-I interval censored sample is a 
conventional type-I interval censored sample. 

=
m

in X 

 
2.2. Likelihood Function 
 
Given a progressively type-I interval censored sample, 
 , , , = 1, 2, ,i i iX R t i m , of size , from a continuous 
lifetime distribution with cdf, 

n
 ;F T  , where   is the 

parameter vector, the likelihood function can be 
constructed as follows (see for example, [1]):  
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It can be seen easily that if 1 2 1m , 
the likelihood function (2.1) reduces to the corresponding 
likelihood function for the conventional type-I interval 
censoring. The maximum likelihood estimate (MLE) for 
the parameter can be carried out by maximizing the 
likelihood function of (2.1). Generally, it is often the 
case without a closed form for the MLE and therefore an 
iterative numerical search could be used to obtain the 
MLE from the above likelihood function. 

= = 0R 

 
2.3. Maximum Likelihood Estimation 
 
Given a progressively type-I interval censored sample 
from the GRD defined by Equation (1.1) and Equation 
(1.2), the likelihood function, (2.1), can be specified as 
follows: 
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Let   . By setting the derivatives of the log 
likelihood function with respect to   or   to zero, 
the MLEs of   and   are the solutions to the 
following likelihood equations 
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No closed form of the solution can be found to the 
above equations, and an iterative numerical search can be 
used to obtain the MLEs. Let MLÊ  and MLÊ  be the 
solution to the above equations. Then the MLE for   is 

MLE MLE
ˆ ˆ=  . When   is known and   is un- 

known, then only   needs to be estimated and the 
MLE is the solution of   to the Equation (2.4) with 
  replaced by the know 2n  . Wh  en   is known and 
  is unknown, then on  ly   needs to be estimated and 
the MLE of    is the positive squared root of the 

ution, sol   to Equation (2.3) with   replaced by the 
wn kno  . Since there is no closed form of the MLE, a 

mid-point approximation and the Expectation-Maximiza- 
tion (EM) algorithm are introduced as follows for finding 
the MLEs of   and  . 
 
2.4. Mid-Point Approximation Method 
 
Suppose that the iX  failure units in each subinterval 
 1,i it t  occurred at the center of the interval 

1=
2

i
i

t t
m   i  and  censored items withdrawn at the iR

censoring time i . Then the log likelihood function from 
the GRD could be approximately represented in terms of 
pseudo-complete data as: 
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(2.5) 
When   and   are unknown, the MLEs, ̂  and 

̂ , of   and   are the solution to the following 

system of equations, 
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Then the estimate for   is ̂ . en  Wh   is k wn 
and 

no
  is unknown, then only   needs to be 

estimated and the MLE via mid-point approximation is 
the solution of   to the Equation (2.6) with ̂  
replaced by 2 . When   is known and   is un- 
known, then only   needs to be estimated and the 
MLE of   via mid-point approximation is the positive 
squared root of the solution,   to Equation (2.7) with 
̂  replaced by  . Again, there is no closed form for 
the solution and an iterative numerical search is needed 
to obtain the parameter estimates, Mid̂  and Mid̂ , from 
the above equation(s). Thereafter, the estimates are 
referred as “MidPt” in this paper. Although there is no 
closed form of solution, the mid-point likelihood equa- 
tions are simpler than the original likelihood equations. 
 
2.5. EM-Algorithm 
 
The EM algorithm is a broadly applicable approach to 
the iterative computation of MLEs and useful in a variety 
of incomplete-data problems where algorithms such as 
the Newton-Raphson method may turn out to be more 
complicated. On each iteration of the EM algorithm, 
there are two steps called the expectation step or the 
E-step and the maximization step or the M-step. 
Therefore, the algorithm is called the EM algorithm and 
the detail development of EM algorithm can be found in 
[17]. The EM algorithm for finding the MLEs of 
parameters in the two-parameter GRD is developed as 
follows. 

Let , , = 1, 2, ,i j ij X  , be the survival times within 
subinterval  1,i it t

2,3, ,i m
n

 and  be the 
survival times for those withdrawn items at it  for 

, then the log likelihood, , for the 
complete lifetimes of  items from the two-parameter 
GRD is given as follows: 

*
, , = 1, 2, ,i j ij 

ln cL

R

= 1, 
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where  =1
=

m

i ii
X R n . 

Taking the derivative with respective to   and  , 
respectively, on Equation (2.8), the following likelihood 
equations are obtained: 
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The lifetimes of the iX  failures in the th interval i
 1,i it t  are independent and follow a doubly truncated 
GRD from the left at  and from the right at  and 
the lifetimes of the  censored items in the th 
interval 

1i

iR
t it

i
 1,i it t  are independent and follow a truncated 

GRD from the left at , . The required 
expected values of a doubly truncated from the left at  
and from the right at  with  for EM 
algorithm are given by 
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Therefore the EM algorithm is given in this case by 
the following iterative process:  

1. Given starting values of  ,   and =  , say 
(0)̂ , (0)̂  and (0) (0)ˆ=  . Set = 0k . 

2. In the 1k  th iteration,  
 the E-step requires to compute the following 

conditional expectations using numerical integration 
methods,  
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and the likelihood Equations (2.9) and (2.10) are 
replaced by 
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3. Checking conve ce, if  conve e occurs 

then the current 
rgen  the rgenc
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approximated MLEs of  ,   and   via EM 
algorithm; otherwise, set  and go to Step 2. =k k 1

The approximated MLEs of  ,   and =   
via EM algorithm are thereafter referred as “EM” in this 
paper. It can be easily seen that the EM algorithm has no 
complicated likelihood equations involved for solving 
the solutions as the MLEs of   and  . Therefore, it 
can be efficiently implemented through a computing 
program. 

When   is known and   is unknown, only   
needs to be estimated and Equation (2.11) and Equation 
(2.13) with  ˆ k  replaced by 2  will be implemented 
via EM algorithm to obtain the MLE of  . Similarly, 
when   is known and   is unknown, only   needs 
to be estimated and Equation (2.12) and Equation (2.14) 
with  ˆ k  replaced by   will be implemented via EM 
algorithm to obtain the MLE of  . 
 
2.6. Method of Moments 
 
Let  be random variable which has the pdf (1.1). 
Kundu and Raqab [5] and Raqab and Kundu [7] had 
shown that: 
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to find the estimates of moment method. 
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Since no closed form of the solutions to Equation 

(2.15) and Equation (2.16) can be obtained, an iterative 
numerical process to obtain the parameter estimates is 
described as follows: 

1) Let the initial estimates of  ,   and  , say 
(0) , (0)  and (0) (0)=   with .  = 0k

2) In the  1k  th iteration,  
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 The solution for  , say  1k  , is obtained through 
the following equation 

      1
1 3

1
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m
k
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n

         
 .  (2.18) 

and    1 1=k k    
3) Checking convergence, if the convergence occurs 

then the current  1k   and   are the estimates of 1k 

  and   by the method of moments; otherwise set 
=k k 1  and go to Step 2. The resultant estimates of 

  and   is thereafter referred as “MME” in this 
paper.  

When   is known and   is unknown, estimate   
only using Equation (2.17) with  ˆ k  replaced by 2  
will be implemented through the iterative process of the 
Method of Moments to obtain the “MME” of  . 
Similarly, when   is known and   is unknown, 
estimate   only using Equation (2.18) with  k̂  
replaced by   will be implemented through the 
iterative process of the Method of Moment to obtain the 
“MME” of  . 
 
2.7. Estimation Based on Probability Plot 
 
Given a progressively type-I interval censored data, 
 , , , = 1, 2, ,i i iX R t i m
function at time it
product-limit distribution 

 of size , the distribution n
be estim

d as 
 can ated by the 
describe
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3. Simulation Study 
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ehavior of the proposed estimation methods for th
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e b
GRD parameters by using progressive type-I interval 
censored data. Four different simulation schemes are 
proposed to generate the progressively type-I interval 
censored data from the GR distribution and the com- 

parison among all estimation processes described in 
Section 2 will be discussed. The simulation is conducted 
in R language (R Development Core Team [18]), which 
is a non-commercial, open source software package for 
statistical computing and graphics that was originally 
developed by Ihaka and Gentleman [19]. The R codes 
can be obtained from the authors upon request. 
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=
i
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j

R floor p n X R X
  

     
   

   

where returns the largest integer not 
than the ent. Notice that if , 

(3.2) 

()floor  
 argum
= =

greater 

1 1

then 1 1 = 0mR R   and hence 

1 1, , , =m m m

= = = 0mp p 

X X X R  is a simulated sam  
conve rval censorin

on for the procedures in [20] 
developed for the multinomial distribution, involves to 
generate m  binomial random variables with the 
pseudo-code in this case as follows: 

1) Set  and let sum = sum = 0x r .  
2) = 1i i

ple from the
g. This algorithm,n pe-I inte

which is xtensi
tional ty

an e
 

= 0i
  

Generate iX  as a b  vainomial random riable with 

rameters 

 
pa sum sumn x r   and 

   
 

2 2
11 e

2
1

1 e

1 1 e

t ti i

ti
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  1

=1
=

iobs
i i j jj

R floor p n X R X
    

  i



 or 

iR   
e implemented 

 =min sum sum ,obs
i iR n x r X  

depending upon the censoring schem
by percentage, ip , or iR . 

3 = sum) Set sum ix x X  and rsum = obs
irsum R . 

wise, stop. 4) If other
 
3.2. Simulation Schemes 
 
For on  th simulation setups parallel 
to l data, given in Se for the  p
sp  insp

<i m , go to Step 2; 

 simplicity, we c sider e 
 the rea ction 4, re- = 9m
ecified ection times in terms of year, 

1 2 3 4= 5.5 12, = 10.5 12, = 15.5 12, = 20.5 12,t t  t t

5 6 7= 25.5 12, = 30.5 12, = 4t t t 80.5 12, = 50.5 12t  and 

9

periment. We perform intensive simulations to compare 
the performance of the different estimators, d ed in 
Section 2. 

m the GRD with parameters 
   = , = 0.48,2.93    in Equation (1.1) and Equation 

(1.2), both input parameters are selected close to the 
MLEs of para

= 60.5 12  which is the time to terminate the ex- 

escrib

Each replication of the simulation generates a pro- 
gressively type-I interval censored sample of size 

fro

meters in the GRD for the given data in 
Se

n pro- 
cedures  consider the 
following four progress

where censoring in  is lighter for the first four 
intervals and heavie r the next four intervals. The 
censoring  and  is the 
conventional interval oring w o prior 
to the experiment term tion and ns  
only occur at the left ost and th o

t

= 112n  

ction 4. 
To compare the performances of the estimatio

developed in this paper, we
ive interval censoring schemes 

which are similar to the patterns of simulation schemes 
used in [14], [15] and [16]: 

   1 = 0.25,0.25,0.25,0.25,0.5,0.5,0.5,0.5,1 ,p  

   2 = 0.5,0.5,0.5,0.5,0.25,0.25,0.25,0.25,1 ,p  

   3 = 0,0,0,0,0,0,0,0,1 ,p  

   4 = 0.25,0,0,0,0,0,0,0,1 ,p  

 1p
r fo

pattern is reversed in 
cens
ina

-m

 2p
here n
 the ce

e right-m

 3p
movals 

ng in
re
ori
st. The initial 

 4p  

values of   and    iterative progresses of MLE, 
mid-point approximation, EM algorithm, momemt 
method and probability plot are gi  the sa  value, 
which is randomly generated, for each simulation run. 
 
3.3. Simulation Results 
 
For given simulation parameter inputs, the simulation is 

absolute value of bias, standard deviation and mean 
squared error are calculated based on the 1000 MLE

for

ven me

conducted 1000 simulation runs. The median, mean, the 

s 
om these 1000 simulation runs. Table 1 sumarizes the 

ating both unknown GRD 
arameters. In general, Table 1 indicates that the 

fr
simulation results for estim
p
processes of the regular MLE and EM algorithm give 
relatively more accurate estimates than the other pro- 
cesses in view of the “Median” and “Mean” in the table 
although there is a slightly bias as indicated in “Bias” (i.e. 
the bias). This conclusion can also be supported by 
Figures 1 and 2 where the medians of the boxplots for 
the processes of the regular MLE and EM algorithm are 
close to the input population parameters, 

   = , = 0.48,2.93   , for the simulation study. 
However, the boxplots shows that almost all the plots are 
right skewed except the cases of the plots for the regular 
MLEs and the MLEs via midpoint approximation for   
under the progressive interval censoring schemes of  3p  
and  4p . The box plots also show potential outliers 
happened for many cases except the 

ive censoring scheme  3p . It 
could be due to the convergence problem from the 
iterative process that outliers happen. Over all, from the 
box plots, we can conclude that process via E  
algorithm provides the best convergence results. 

As e performances among the four censoring 
schemes, the third scheme  3p  provides the most 
precise results as seen from “Bias”, “SD” (i.e the 
standard deviation) and “MSE” (i.e. the mean squared 
errors) shown in Table 1, then followed by the schemes 

 4p ,  1p  or  2p . The results of the performance 
comparisons among these censoring schemes are

case from

M

 th

. 

 similar 

mete estim  sho

 for the maximum likelihood estimate, 
“M

 EM 
algorithm under progress

to the results observed in [15] and [16]. These phe- 
nomena are expected since the third censoring scheme 
could have the largest number of failure items observed 
before the termination of life-testing and then followed 
by  4p ,  1p  and  2p . Intuitively, these are also 

with statistical theory that the larger the 
“sample size” is the more accuracy the parameter 
estimate is. 

Among these three estimators developed in the paper, 
the maximum likelihood estimator (via regular process 
and EM algorithm in the paper) gives the most precise 
para r ates as wn by SD and MSE in Table 
1. Therefore, we recommend the maximum likelihood 
estimation. Among the three processes, “MLE” “MidPt” 
and “EM”,

consistent the 

idPt” has largest “Bias” and comparative “SD” and 
slightly larger “MSE”. Since the process of EM 
algorithm provides better convergence results, the MLE 
via EM algorithm is suggested to be used for the GRD 
modelling under the progressive type-I interval cen- 
soring. 
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Table 1. Summary of simulations assuming both α  and λ  unknown. 

     

Scheme  EM MidPt MLE MME bPt Pro EM MidPt MLE MME ProbPt 

1 Median 0.4 2 1 2.780 3.109 81 0.548 0.481 0.514 0.451 .926 2.622 2.92

2 Median 0.485 0.569 0.486 0.553 0.477 2.877 2.460 2.867 2.480 3.055 

Me an 0  3 di .487 0.530 0.487 0.491 0.495 2.904 2.821 2.905 2.884 2.871 

4 Median 0.486 0.528 0.481 0.492 0.494 2.908 2.803 2.906 2.894 2.878 

1 Mean 0.488 0.555 0.488 0.514 0.462 2.990 2.671 2.990 2.987 3.289 

2 Mean 0.494 0.580 0.495 0.549 0.496 2.985 2.421 2.976 2.850 3.275 

3 Mean 0.490 0.529 0.486 0.500 0.500 2.912 2.802 2.889 2.918 2.890 

4 Mean 0.491 0.521 0.476 0.504 0.502 2.917 2.746 2.848 2.920 2.894 

1 Bias 0.008 0.075 0.008 0.034 0.018 0.060 0.258 0.060 0.057 0.359 

2 Bias 0.014 0.100 0.015 0.069 0.016 0.055 0.509 0.046 0.080 0.345 

3 Bias 0.010 0.049 0.006 0.020 0.020 0.018 0.128 0.041 0.012 0.040 

4 Bias 0.011 0.041 0.004 0.024 0.022 0.013 0.184 0.082 0.010 0.036 

1 SD 0.084 0.062 0.085 0.133 0.131 0.545 0.371 0.549 0.794 0.930 

2 SD 0.095 0.080 0.097 0.153 0.173 0.742 0.720 0.765 1.256 1.898 

3 SD 0.064 0.070 0.077 0.106 0.083 0.249 0.352 0.377 0.313 0.268 

4 SD 0.067 0.096 0.098 0.110 0.091 0.291 0.528 0.560 0.372 0.314 

1 MSE 0.007 0.009 0.007 0.019 0.018 0.304 0.205 0.300 0.633 0.993 

2 MSE 0.009 0.016 0.010 0.028 0.030 0.553 0.777 0.588 1.584 3.722 

3 MSE 0.004 0.007 0.006 0.012 0.007 0.062 0.140 0.144 0.098 0.074 

4 MSE 0.005 0.011 0.010 0.013 0.009 0.085 0.312 0.320 0.138 0.100 

 
4. R al Da nal
 
4.1 he D

with plasma 
ell myeloma treated at the National Cancer Institute 

 for modelling the two-parameter GRD. 
his data had been discussed in [15], [16] and [22]. To 

ived at the right end of each 
tim

e ta A ysis 

. T ata 
 
A data set which consists of 112 patients 
c
(See [21]) is used
T
be self-contained, the data are re-produced here in the 
Table 2 for easy reference. 

The most right side column in Table 2 shows the 
number of patients who were dropped out from the study 
at the right end of each time interval. These dropped 
patients are known to be surv

e interval but no follow-up. Hence, the most right side 
column in Table 2 provides the values of 

, = 1, , = 9iR i m . The number of failures, 
, = 1, ,iX i m , can be easily calculated to be 
 = 18,16,18,10,11,8,13, 4,1X  from the number at risk 

and the number of withdrawals. 

omparisons 

Weibull distribution from [15] a

 
4.2. Model C
 

nd generalized expon- 
ntial distribution from [16] have been used to model the 

a cell m  
 C d 6] p e 

lling sse een bul ibut d 
generalized exponential distribution by using presche- 

h. Chen and Lio [16] indi- 
ted that the generalized exponential distribution pro- 

plasm yeloma data set with prescheduled times in 
terms of month. hen an Lio [1 also com are th
mode proce s betw  Wei l distr ion an

duled times in terms of mont
ca
vided better model fit than the Weibull distribution does. 
In this paper, we would like to compare the modelling 
processes among Weibull distribution, generalized ex- 
ponential distribution and generalized Rayleigh distri- 
bution. To compare the modelling processes among these 
three distributions, the prescheduled times are converted 
into in terms of year. Here, it is for easy reference that 
the pdfs of Weibull distribution and generalized expon- 
ential distribution are given, respectively, below: 

   1, , = exp , > 0, > 0, > 0,wf t t t x         (4.1) 

and 

       1

GED , , = exp 1 exp , 

> 0, > 0, > 0.

f t t t

t


    

 


  

 (4.2) 

The model fitting to the classical Weibull distribution 
(1) yields the estimated parameters 

   ˆ ˆ, = 0.447,1.23   and log likelihood,  D ,  log WLe
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Table 2. Plasma cell myeloma survival times. 

Interval in Months Number at risk Number of withdr

has 

awals 

 0,5.5  112 1 

 5.5,10.5  93 1 

 10.5,15.5  76 3 

15.5, 20.5  55 

45 

0 

0  20.5, 25.5  

25 .5,30.5  34 1 

 30.5, 40.5  


25 2 

540.5,50.  10 3 

 50.5,60.5  3 2 

 60.5,  0 0 

 2log WD = 230. 1L  
the generalized exponentia

mated parameters 

340 and the model fitting to 
l distribution 

esti
(2) has the 

 ˆ =
ihood, 

 1.433,0.686ˆ,  and log 
likel  log GED ,L  has 

 2log GED = 230.4704L . The model fitting results for 
both Weibull distributi xponential 
distribution re  are d

on 
ported here

reported in [16]. For th

and generalized e
ifferent from the results 

e GRD model fitting, the 
estimated parameters are    ˆˆ , = 0.4746,2.9318   and 
log likelihood,  log GRD ,L  has 

 2log GRD = 231.0055L . It could be seen that all 
three maximum likelihood bility 
modelling proce ally ide 

 values for these proba
sses are virtu ntical. Since all these 

 

from 1000 simulations for the five estimation methods and four simulation schemes for . α = 0.48Figure 1. Boxplot for   
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Figure 2. Boxplot for from 1000 simulations for the five estimation methods and four simulation schemes for 
 
three distributions have no sub-model relationship, the 
chi-square test ca
a d
set. Although Kundu and Raqab [5] and Raqab and 
Kundu [7] had detail comparison among these 
distribution for a random sample, statistical inference to 
discriminate among these distributions has not been 
developed for the progressively type-I interval censored 
data, yet. Therefore, a more detail comparison among 
these three distributions under progressive type-I interval 
censoring is not available according to our best know- 
ledge. 

To apply the Kolmogorov-Smironov goodness-of-fit 
test for fitting a given complete data set with a dis- 

tribution, 

λ  λ = 2.93 . 

n not be applied directly to select 
mong these three mo els for modeling the given data 

 F x  , the maximum distance, 

     0 <
ˆˆ= supn nxD F F x F x    , between the 

empirical distribution,  n̂F x , of the given data set and 

the population distribution,  ˆF x   with ̂  as the 

MLE of  , must be obtained. When a progressively 
censore  is given, the empirical distribution is 
replaced b  the product-limit distribution defined 
through E ion (19) in the formula . Fitting 
the give a set with the Weibull di

d data
y

quat
n dat

 nD F
stribution wF , 

  .15737n wD F = 0 , with the GE distribution GEDF , 
 GED = 0.1618nD F  and with the GRD GRDF , 
 GRD = 0.1708nD F . Again, the reports of the 
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Kolmogorov-Smironov goodness-of-fit test for the Wei- 
bull distribution and generalized exponential distribution 
are different from the reports of [16]. The sampling 
distribution of should have been applied to find 
the critical val e goodness-of-fit tests mentioned. 
Although the ling distribution for  under 
any progre ing has not been d, we 
can see that no gnificant differe these 
three numerical  
 
5. Discussio s and Conclusions 
 
In this paper, t thods to estim ters of 
the two-para neralized Rayleigh bution 
under progress nterval censori n de- 
veloped. They mum likelihood est on, esti- 
mation of me ents and the estim d on 
the probability plot. 

The simu  in the case of mode large size 
data set i regular MLE and m ximum 

algorithm relatively 
more accurate ter estimation an ximum 
likelihood estimate via EM algorithm ost 
precise estima ummarized in the  and 
Figures 1 and  therefore recom  EM 
algorithm proc be used to estima eters 
in the GRD un essive type-I interval ng. 

The develo  are also applied t  data 
which contains 112 patients with plasma eloma 

 Institute to demonstrate 
the applicabilit  the process of GRD m
found that the of likelihood functi ses to 
zero when the duled times in term onth and 
the estima eters are senstive to the initial 
parameter inputs for iterative proce rescales 
for the presch es have been trie  found 
that the presc es mu nto in 
t

ropulation pa ter estimations. The ter esti- 

pone n and gene yleigh 
di

difference among these three modelling processes. Hence, 
the discriminate process among these three distibutions 
under progressive type-I censoring could be an important 
future research. 
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