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Abstract

We develop higher order accurate estimators of integrated volatility in a stochastic volatility models by using
kernel smoothing method and using different weights to kernels. The weights have some relationship to
moment problem. As the bandwidth of the kernel vanishes, an estimator of the instantaneous stochastic vola-
tility is obtained. We also develop some new estimators based on smoothing splines.
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1. Introduction

These days high frequency intradaily data of asset re-
turns are available. Hence realized volatility which is a
measure of the integrated volatility has received consid-
erable interest in recent days’ empirical finance. The
realized volatility is defined as the sum of squared in-
crements of returns. In order to improve the realized
volatility, we estimate the integrated volatility by kernel
method and spline method. We obtain higher order non-
parametric estimator of kernel smooth integrated volatil-
ity. We simply take a kernel weighted average of the
squared increments of return. The method to choose
weight has relation to moment problem.

2. Weighted Kernel Estimators

Consider the stochastic volatility model with asset price
process {Y,} and volatility process {c,} satisfying the
stochastic differential equations

dY, = (u+ Bo,)dt +o, dW, + p dZ, (2.1)
do? =0 o7 dt+dz, (2.2)

where {W,,teR,} isastandard Brownian, {Z,teR,},
a subordinator, that is, a Levy process with only positive
jumps, and 0<0,uecR,feR,p<0 are the parame-
ters. If p <0 the model can express leverage-effect.
We denote by v, , supported by R, , the Levy measure

of Z and assume that j (logz)v, (dz) <.

z>1
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This model has been studied in [1]. The integrated
volatility is defined as

V= [ ot (2.3)

In stochastic volatility model, calculation of condi-
tional cummulants of the integrated volatility condi-
tioned on the initial value is enough to be able to com-
pute European style options.

When the Levy process is an inverse Gaussian process
with parameters (&,7), the cummulant functions of
IGOU process are given by

k(0)=logE [e—az(l)] =-05y" (1+ 20y )-1/2 ,

k'(6) = log E(e'f’vt ) = 5;/—57(1+ 20y7° )]/2 .

We assume that the parameters of the Levy process are
known. We study estimation of integrated volatility by
kernel method. Observe that the realized volatility esti-
mator is a histogram estimator of the integrated volatility
where h>0 is the binwidth. Here we extend the real-
ized volatility to include kernel weights. We take kernel
weighted average of the squared increments of the ob-
servations. Our estimator includes as a special case the
rolling window estimator of [2] and [3], the kernel can be
chosen to satisfy the weighting schemes proposed there
while the bandwidth determines the laglength. The paper
also generalizes [4,5] to include weighting. The weight-
ing scheme is jointly determined by the choice of K
and h. With a two-sided kernel, kernel volatility (KV)
takes a weighted average of the instantaneous volatility
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over the whole sample period. We will choose one-sided
kernel.

For fixed h>0, KV gives a weighted measure of the
integrated volatility. As h— 0, we recover the instan-
taneous volatility at any point of continuity of o7 .

We have the following assumptions about the kernel.
Consider a continuously differentiable kernel K with
shrinking bandwidth h — 0. Let

1 X
K,(X):=—K| — 2.4
(0= F ) (24)
where K:R — R isakernel which normalize to
jRK (x)dx =1. (2.5)
For example consider the Epanechikov kernel
3 2

—(1- <1
K(x)={20™) i (2.6)

0 . otherwise

and the kernel suggested in [6]

6(1+3x+2x2) © —1<x<0
K(x)= (2.7)
0 . otherwise

We consider kernel weighted average of the quadratic
variation. The kernel estimators converge to the inte-
grated variance as the bandwith h vanishes. In order to
improve the rate of convergence of kernel estimators, we
consider its relation to a moment problem.

For simplicity of notation, we will denote

Ky ((t-T))=K(t) and K(X,)=K(t).

Integrated volatility has to be estimated on the basis of
discrete observations of the process {Y,} attimes

0=t, <t <-t,=T with t -t :I,i =1,2---.n .
n
Denote
2
AYtiz_l = (Yti _Y‘i-l) . (2.8)
The realized volatility is defined as
Vor = DAY (2.9)
i=1

The following theorem is well known in the literature,
see [1].
Theorem 2.1 p—Iim\fn,T =V;.

In order to improve the realized volatility with faster
rate of convergence we follow the following path. The
ideas are used in [7] for parametric drift estimation in
diffusion processes. Define a weighted sum of squares

n n+l
M, r = 2w K () A +;Wti K(t.)AY? (210)

i=1
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where w, >0 is a weight function.
Denote

Ly = iK (ta)AY (2.11)

i=1

n+l

Jor = 2K (tg)AY
i=2

General weighted kernel volatility (KV) is defined as

(2.12)

V=M, (2.13)
With w, =1, we obtain the forward KV as

A (2.14)
With w, =0, we obtain the backward KV as

Virs =y (2.15)

[8] studied asymptotics of the estimator \7n,T,F and
obtained the rate of convergence along with asymptotic
distribution of the estimator Vn,T,F .

Our plan is to improve the rate of convergence by
using appropriate weights for the kernel. With w, =0.5,
the simple symmetric KV is defined as '

~ n K(t_,)+K(t

Vv L [lor+d,r = ;wm@zl. (2.16)

nT,z ==
2

With the weight function
0 =1
W, = ﬂ = 2,3,...,n
i n
1 i=n+l
the weighted symmetric KV is defined as

- n n

Virw = 2K (60)AY + 2 K(64)AY . (2.17)

i=2 i=1

Note that estimator (2.16) is analogous to the
trapezoidal rule in numerical integration. One can instead
use the midpoint rule to define another estimator

. n(t o+t
V.o .= DK (%) AYZ .
i=1

We can use the Simpson’s rule to define another
estimator which is a convex combination of the midpoint
estimator and the trapezoidal estimator

Vipg0= %i{K (t.,)+4K (%) FK(t )}Avtfl.
i=1

(2.19)
In general, one can generalize Simpson’s rule as

s =B L)

. AYti:

(2.18)

(2.20)
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forany 0<a<1.
The case « =0 produces the estimator (2.18). The
case a =1 produces the estimator (2.17). The case

a= % produces the estimator (2.19).

| propose a very general form of the quadrature based
KV as

Vorw= 20 (1-5,) K () +s, K(t)] p,AY2, (2.20)

i=1j=1
where p;,je{1,2,---,m} is a probability mass func-
tion of a discrete random variable S on
0<s <s,<---<s, <1 with
P(S :sj):: P, je{l,2,--,m}.

Denote the k -th moment of the random variable S
as = Z sip, k=12,

If one chooses the probablllty distribution as uniform
distribution for which the moments are a harmonic
sequence

111111
(tul Moy Hgy Hys sy Mg ) (—7—7—,—,—,—, j then

there is no change in rate of convergence than second
order. If one can construct a probability distribution for
which the harmonic sequence is truncated at a point, then
there is a rate of convergence improvement at the point
of truncation.

Given a positive integer m, construct a probability
mass function p;, je{1,2,---,m} on
0<s <s,<---<s <1 suchthat

n 1
'pi=—— rel0.m-20 (2.22
JZ:;stJ ] ref m-2}  (2.22)

m n_ 1
>, . (2.23)
j=1

Neither the probabilities p; nor the atoms, s;, of
the distribution are specified in advance.

This problem is related to the truncated Hausdorff
moment problem. | obtain examples of such probability
distributions and use them to get higher order accurate
(up to sixth order) KVs.

The order of approximation error (rate of convergence)
ofaKVis n™ where

. 1 1 .
=infikipy #——, u=——,j=1,2,---, k=14,
Y { ST 1+ ] : }

(2.24)

| construct probability distributions satisfying these

moment conditions and obtain KVs of the rate of
convergence up to order 6.

Theorem 2.2 Assume that the kernel K is suffi-
ciently smooth, continuously differentiable of order 6.
The moment based estimators of integrated volatility
which are given by
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nT,7"

24192 )

+2950K

+5675K

1 n

2t

5
5

+ 2t
4t

{1471K( _l)+6925K( 5” j

(
(4t_

| )+1721K (t )}Avtf_l,

! ] +5450K (—3ti-15+ 3 J

~ 1 3t +t +1
nM::Q_; K (t_ )+32K(%) 12K( 12 j

(B

<

nT.9

%i[m( L)+ 75K(4tig+tij

=1

+EOK (St”; 2t, jJ“F’OK (2ti15+ 3, j

4t

i j+19K (t ):|AY[i2—l

+75K [til

+
5

K(t; )} A
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Proof We use (2.22)-(2.24). Probability p, =1 at the
point s, =0 gives the KV (2.11) for which gz =0.

Note that Mi%.ThUS v =1. This is gives (a).
Probability p, =1 at the point s =1 gives the
KV(2.12) for which 4 =1. Note that Wt%. Thus
v =1. This gives (b).
Probabilities (p,, p,)= (%%) at the respective points
(s,s,)=(0,1) producesthe KV V., forwhich
(14, 10) = (%%) . Thus v =2. This gives (c).

Probability p; =1 at the point s; :% produce the

KV V., . for which (M,yz){%éj. Thus v=2.
This gives (d).
Probabilities (p,, p,) = (%%) at the respective points

(s18,)= (O%) produce the asymmetric KV

=38 ka2 g, e

i=1
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Wl
N

j. Thus v =3. This

N |-

for which (,ul,,uz,,%):(

gives (e).

| w
| —

Probabilities (p,, p,)= 27 at the respective points

(s.,8,)= (%1) produce asymmetric KV

V4= %i[3K (ZMTH} K (t )}AYtizl (2.26)

for which (M,yz,%):(%é,%j. Thus v=3. This
gives (f).

Probabilities (pl,pz,p3)=[£,g,lj at the respec-
6 36
tive points (51,52,33):[0,%,1j produce the KV V,;

for which (,LLl,,LlZ,ILlB,ILl4):(—,—,—,—J.ThUS v=4.
This gives (g).
Probabilities (pl,pz,p3,p4):(—,—,—,—j at the re-

spective points (31,52,53,34):[0,3,—,1) produce the

symmetric KV

. 2t +t
V., ::§Z[K(til)+3K(lTj

i=1

+3K [%) +K(t )} INA

11111

for which (M,yz,,uy,u‘l) = (5,5,2,5—4) .Thus v=4.

(2.27)

This gives (h).
Probabilities
( Py Py Pss Py Ps)
_ (1471 6925 1475 2725 5675 1721
- (24192 '24192'12096 '12096 ' 24192 ' 24192

at the

. . 1234
respective points (s;,s,,S;,5,,5)=|0,=,—,—,=,1
pective p (12345)[5555j
produce the asymmetric KV

~ 1 3 t, +t
Vooo=——3'1471K (t )+ 6925K | 42—
"7 24192 J () ( 5 j

(2.28)

+2950K [M}

+5450K (—3t‘-1 3% j

+5675K [u) +1721K (4 )}Avf
5 i-1
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. 1111 841
for which (44, sttt 5.0 =| 31335 "50a0
Thus v =5. This gives (i).

7 16 2 16 7)

Probabilities (p;, p,. Ps, P, ps)_(% TR

at the respective points (s,,s,,S;,5,,Ss) = [0%%%1}
produce the symmetric KV V, ;, given by

Vo= 7K (t,, )+ 32K [ S th
T8 904 4
+12K(t +tj+32K(ij+7K(ti)}AYf
2 4 i

(2.29)

11111110

ortin (st i)~ 5 3475 57 )

Thus v =6. This gives (j).
Probabilities
19 75 50 50 75 19
(Pus P2y Pss Pa ps)_(ﬁ ">88' 288’ 288 288’ @j
at the respective points

(5115;,55,54,55) = [0%%%%1} produce symmetric

KV
vV 13 at. . +t.
= 19K (t_, )+ 75K | 2
Vars 288%[ (t:) ( 5 ]
+50K(3til+2tij+50K(2ti1+3ti)
5 5
+75K(ti1+4t‘J+19K(ti)}AYf
5 i-1
(2.30)
: 11111 3219
for which ey My e 1 )= =2 =22 .
(s 1y Mg 1y s 15 )= (2 3255 22500)

Thus v =6. This gives (k).

The KV V.., is based on the arithmetic mean of
l,r and J ;. One can use geometric mean and
harmonic mean instead.

Theorem 2.4 The geometric mean based symmetric
KV (which is based on the ideas of partial autoco-
rrelation) is given by
(2.31)

Vite = allardnr

The harmonic mean based symmetric KV is given by

(2.32)
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3. Spline Estimators

In order to improve the realized volatility estimator of
integrated volatility, we use an alternative method, the
method of splines, see [9], [10] and [11]. This is the first
step towards the use of splines for volatility estimation.
Since these are based on analysis of variance for
diffusion models, we call it DANOVA models.
DANOVA stands for ANOVA for Diffusions.
In the stochastic volatility model, the log-price
y =logS with S being the asset price, follows

dy™(t) = a(t)dt+o(t)dw (t)

daz(t):

where o and « are assumed to be independent of the
standard Brownian motion W . The process o is
called the instantaneous volatility or spot volatility
and o is called the mean process and the Brownian
motions W and W are allowed to be correlated. A
simple example of this is

a(t)= put+po” (t) where ¥ (t)=[o?(u)du

in which case g is called the risk premium and &% is
called the integrated variance.

Over an interval of time length h>0,
defined as

yo=y )=y (D)), =127

which implies that

a(t)dt+&(t)dwW (t)

returns are

where
a; = a(ih)-a((i-1)h)
and
of = o” (in)—o ((i-1)n)= [, o (u)u.
Here o is called the actual variance and «; is

called the actual mean.

Suppose one is interested in estimating the actual
volatility o, using m intra-h observations. A natural
candidate is the realized volatility given by

where

Y= y*((i—1)h+%j—y*((i_l)h+(j_1)h}
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Denote

and

Y= y*((i—l)h+(j_1)hj.

Thus the realized volatility is given by

~ n 2
6= > (Y -Yia) -
j=1

When h — 0, realized volatility converges in L, to
the integrated volatility. We consider the fixed h case.
The realized variance is a quadratic form.

Note that the realized volatility is based on first order
difference.

We introduce some new estimators:

G, = \/%Zm:[(Ym‘Yj)_(YJ _Yi-l)T'

=1

The above estimator is based on second order

difference.
2
_ m-n, ny
o, ;:\/ Z { deYkﬂ»)
j=m 41\ k=-n

where n, and n, are non-negative integers,
n=n+n, iscalled the order, and the difference

sequence {d,} satisfies

k=—
2, 40=007 di=1and d,d, #0.
Note that for difference based estimators
57— 07| = 0p (m™2).

To improve this error bound, we introduce the lag- K
estimator

- 1 m 2
5, \/2(n—k),-§+1(Y’ Yo ) k=1,2m-1
In practice, the choice of the order N and an
appropriate difference sequence which minimizes the
finite sample MSE is difficult.
Theorem 3.1 The spline estimator of integrated
volatility is given by

where

Copyright © 2011 SciRes.

and

Proof We fit the following regression model:
6Z=a+pd +e, k=1,2,---,n

using the weighted least squares estimate
N _ 2
sz (Of _a_ﬂdk)
k=1

where (&) isasequence of i.i.d. random variables.
Let

n
—2 _ ~2
Oy~ ZWkO'k
k=1

and
d, =Y wd,.
i=1
Then
5° = =5, - pd,
where

is the estimate of the intercept £.
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