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Abstract 
 
We develop higher order accurate estimators of integrated volatility in a stochastic volatility models by using 
kernel smoothing method and using different weights to kernels. The weights have some relationship to 
moment problem. As the bandwidth of the kernel vanishes, an estimator of the instantaneous stochastic vola-
tility is obtained. We also develop some new estimators based on smoothing splines. 
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1. Introduction 
 
These days high frequency intradaily data of asset re-
turns are available. Hence realized volatility which is a 
measure of the integrated volatility has received consid-
erable interest in recent days’ empirical finance. The 
realized volatility is defined as the sum of squared in-
crements of returns. In order to improve the realized 
volatility, we estimate the integrated volatility by kernel 
method and spline method. We obtain higher order non-
parametric estimator of kernel smooth integrated volatil-
ity. We simply take a kernel weighted average of the 
squared increments of return. The method to choose 
weight has relation to moment problem. 
 
2. Weighted Kernel Estimators 
 
Consider the stochastic volatility model with asset price 
process  and volatility process  tY t  satisfying the 
stochastic differential equations  

 d = d d dt t t tY t W      tZ

 

    (2.1) 

2 2d = d dt t t Z    t        (2.2) 

where  is a standard Brownian,  ,tW t R  ,tZ t R , 
a subordinator, that is, a Levy process with only positive 
jumps, and < 0, , , 0        are the parame-
ters. If < 0  the model can express leverage-effect. 
We denote by Z , supported by , the Levy measure 
of Z  and assume that     

>1
log d < .Zz

z z 

This model has been studied in [1]. The integrated 
volatility is defined as  

2

0
:= d .

T

T tV  t             (2.3) 

In stochastic volatility model, calculation of condi-
tional cummulants of the integrated volatility condi-
tioned on the initial value is enough to be able to com-
pute European style options. 

When the Levy process is an inverse Gaussian process 
with parameters  ,  , the cummulant functions of 
IGOU process are given by  

      1 21 1 2= log e = 1 2 ,Zk E  
         

     1 22= log e = 1 2 .Vtk E         

We assume that the parameters of the Levy process are 
known. We study estimation of integrated volatility by 
kernel method. Observe that the realized volatility esti-
mator is a histogram estimator of the integrated volatility 
where  is the binwidth. Here we extend the real-
ized volatility to include kernel weights. We take kernel 
weighted average of the squared increments of the ob-
servations. Our estimator includes as a special case the 
rolling window estimator of [2] and [3], the kernel can be 
chosen to satisfy the weighting schemes proposed there 
while the bandwidth determines the laglength. The paper 
also generalizes [4,5] to include weighting. The weight-
ing scheme is jointly determined by the choice of 

> 0h

K  
and . With a two-sided kernel, kernel volatility (KV) 
takes a weighted average of the instantaneous volatility 

h
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over the whole sample period. We will choose one-sided 
kernel. 

For fixed , KV gives a weighted measure of the 
integrated volatility. As , we recover the instan-
taneous volatility at any point of continuity of 

> 0h
0h 

2
t . 

We have the following assumptions about the kernel. 
Consider a continuously differentiable kernel  with 
shrinking bandwidth . Let  

K
0h 

1
( ) :=h

x
K x K

h h
 
 
 

         (2.4) 

where :K R R  is a kernel which normalize to  

 d = 1.K x x          (2.5) 

For example consider the Epanechikov kernel  

   23
1   :

= 4
0               :  otherwise

x
K x

  



1x
     (2.6) 

and the kernel suggested in [6]  

   26 1 3 2  : 1 0
=

0                        : otherwise

x x x
K x

     



 (2.7) 

We consider kernel weighted average of the quadratic 
variation. The kernel estimators converge to the inte-
grated variance as the bandwith  vanishes. In order to 
improve the rate of convergence of kernel estimators, we 
consider its relation to a moment problem. 

h

For simplicity of notation, we will denote 
    =hK t T K t  and    =tK X K t . 

Integrated volatility has to be estimated on the basis of 
discrete observations of the process  tY  at times 

0 10 = < < =nt t t T  with 1 = , = 1,2 ,i i

T
t t i n

n  . 

Denote  

 2
2

1
:= .t t ti i i

Y Y Y


 
1

i

       (2.8) 

The realized volatility is defined as  

2
, 1

=1

ˆ := .
n

n T ti
i

V Y


            (2.9) 

The following theorem is well known in the literature, 
see [1]. 

Theorem 2.1  ,
ˆlim = .n T T

n
p V V




In order to improve the realized volatility with faster 
rate of convergence we follow the following path. The 
ideas are used in [7] for parametric drift estimation in 
diffusion processes. Define a weighted sum of squares  

   
1

2 2
, 1 11 1

=1 =2

:=
n n

n T t i t t i ti i i
i i

M w K t Y w K t Y


  
     (2.10) 

where  is a weight function. 0tw 
i

Denote  

  2
, 1 1

=1

:= ,
n

n T i ti
i

I K t Y 
        (2.11) 

 
1

2
, 1 1

=2

:= .
n

n T i ti
i

J K t Y


 
       (2.12) 

General weighted kernel volatility (KV) is defined as  

, := .n T n TV M
,            (2.13) 

With , we obtain the forward KV as  = 1ti
w

, , ,:= .n T F n TV I            (2.14) 

With , we obtain the backward KV as  = 0ti
w

, , ,:= .n T B n TV J            (2.15) 

[8] studied asymptotics of the estimator , ,n T FV  and 
obtained the rate of convergence along with asymptotic 
distribution of the estimator . 



, ,n T F

Our plan is to improve the rate of convergence by 
using appropriate weights for the kernel. With , 
the simple symmetric KV is defined as  

V

= 0.5ti
w

   1 2
, , , , 1

=1

1
:= = .

2 2

n
i i

n T z n T n T ti
i

K t K t
V I J  Y




     (2.16) 

With the weight function  
0       : = 1

1
=   : = 2,3,

1        : = 1

ti

i

i
w i

n
i n


 





,n  

the weighted symmetric KV is defined as  

   2 2
, , 1 11 1

=2 =1

:= .
n n

n T w i t i ti i
i i

V K t Y K t Y  
     (2.17) 

Note that estimator (2.16) is analogous to the 
trapezoidal rule in numerical integration. One can instead 
use the midpoint rule to define another estimator  

21
, , 1

=1

:= .
2

n
i i

n T A ti
i

t t
V K 



  
 

 Y     (2.18) 

We can use the Simpson’s rule to define another 
estimator which is a convex combination of the midpoint 
estimator and the trapezoidal estimator  

    21
, ,5 1 1

=1

1
:= 4 .

6 2

n
i i

n T i i ti
i

t t
V K t K K t

 Y


     
  

 
  

(2.19) 
In general, one can generalize Simpson’s rule as  

     1 1
, ,

=1

2

1

:= 1
2 2

n
i i i i

n T GS
i

ti

K t K t t t
V K

Y

  



       
   




 

(2.20) 
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for any 0 1  . 
The case = 0  produces the estimator (2.18). The 

case = 1  produces the estimator (2.17). The case 
1

=
3

  produces the estimator (2.19). 

I propose a very general form of the quadrature based 
KV as  

      2
, , 1 1

=1 =1

:= 1
n m

n T w j i j i j ti
i j

V s K t s K t p Y


    



(2.21) 

where  is a probability mass func- 
tion of a discrete random variable  on 

 with 

, 1, 2, ,jp j m 

1 2 < < 1ms s s 
S

0 <

   = := , 1, 2, ,j jP S s p j m  . 

Denote the -th moment of the random variable  
as . 

k
k

k js p
S

=1 jj
If one chooses the probability distribution as uniform 

distribution for which the moments are a harmonic 
sequence  

:= , = 1,2,
m

k  

 1 2 3 4 5 6

1 1 1 1 1 1
, , , , , , = , , , , , ,

2 3 4 5 6 7
       

 
 

   then  

there is no change in rate of convergence than second 
order. If one can construct a probability distribution for 
which the harmonic sequence is truncated at a point, then 
there is a rate of convergence improvement at the point 
of truncation. 

Given a positive integer , construct a probability 
mass function  on 

 such that  

m
2, , 1, ,jp j m

< < 1ms 1 20 <s s 


=1

1
= , 0, ,

1
2r

j j
j

s p r m
r

 
 

m

   (2.22) 

1

=1

1
.

m
m
j j

j

s p
m

           (2.23) 

Neither the probabilities jp  nor the atoms, js , of 
the distribution are specified in advance. 

This problem is related to the truncated Hausdorff 
moment problem. I obtain examples of such probability 
distributions and use them to get higher order accurate 
(up to sixth order) KVs. 

The order of approximation error (rate of convergence) 
of a KV is n   where 

1 1
:= inf : , = , = 1,2, , 1 .

1 1k jk j
k j

  
 

  
  

 k

The moment based estimators of integrated volatility 
which are given by  

 

(2.24) 
I construct probability distributions satisfying these 

moment conditions and obtain KVs of the rate of 
convergence up to order 6. 

Theorem 2.2 Assume that the kernel  is suffi- 
ciently smooth, continuously differentiable of order 6. 

  2
, ,

n

n T BV K t Y  

K

1
=1

:= ,i ti
i



   1 2
, , 1

=1

:= ,
2

n
i i

n T z ti
i

K t K t
V Y




  

21
, , 1

=1

:= ,
2

n
i i

n T A ti
i

t t
V K Y



  
 

  

    21
, , 1 1

=1

1
:= 4 ,

6 2

n
i i

n T S i i ti
i

t t
V K t K K t Y

 

       
  

  

  21
, ,3 1 1

=1

21
:= 3 ,

4 3

n
i i

n T i ti
i

t t
V K t K 

 

     
  

  Y


  21
, ,4 1

=1

21
:= 3 ,

4 3

n
i i

n T i ti
i

t t
V K K t Y



       
  

  

    21
, ,5 1 1

=1

1
:= 4 ,

6 2

n
i i

n T i i ti
i

t t
V K t K K t Y

 

       
  

  

 

 

1
, ,6 1

=1

21

1

21
:= 3

8 3

2
3

3

n
i i

n T i
i

i i
i ti

t t
V K t K

t t
K K t Y







     
       



 





 

 

1
, ,7 1

=1

1 1

21

1

1
:= 1471 6925

24192 5

2 2 3 3
2950 5450

5 5

4 4
5675 1721 ,

5

n
i i

n T i
i

i i i i

i i
i ti

t t
V K t K

t t t t
K K

t t
K K t




 




      
      

  
       



 

Y







 

 

1 1
, ,8 1

=1

21

1

31
:= [7 32 12

90 4 2

3
32 7 ,

4

n
i i i i

n T i
i

i i
i ti

t t t t
V K t K K

t t
K K t Y

 





      
  

     
  

 



 

 

1
, ,9 1

=1

1 1

21

1

41
:= 19 75

288 5

3 2 2 3
50 50

5 5

4
75 19

5

n
i i

n T i
i

i i i i

i i
i ti

t t
V K t K

t t t t
K K

t t
K K t Y




 




      
        

   
        



 

satisfy  

, ,a) n T FV =T P

T
V O

n
   
 

 

, ,b) =n T B T P

T
V V O

n
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2

, ,c) =n T z T P

T
V V O

n
   
 

  

2

, ,d) =n T A T P

T
V V O

n
   
 

  

3

, ,3e) =n T T P

T
V V O

n

        
  

3

, ,4f) =n T T P

T
V V O

n

        
  

3

, ,5g) =n T T P

T
V V O

n

        
  

4

, ,6h) =n T T P

T
V V O

n

        
  

5

, ,7i) =n T T P

T
V V O

n

        
  

6

, ,8j) =n T T P

T
V V O

n

        
  

6

, ,9k) =n T T P

T
V V O

n

        
  

Proof We use (2.22)-(2.2 ability  at the 
point  gives the KV (2.11) for w

4). Prob
 

1 = 1p
hich 1 = 0s 1 = 0 . 

Note that 1

1

2
  . Thus = 1 . This is give

Prob = 1  at the point = 1s  gives  

s (a). 

ability the

KV

1 1p

h (2.12) for whic 1 = 1 . Note that 1
1

2
. Thus 

= 1 . This gives (b). 

Probabilities  1 2

1 1
, = ,p p

2 2
 
 
 

 at the respective points 

  produces the KV  for which   , = 0,1s s1 2 , ,n T ZV

 1 2

1 1
, = ,

2
  

 


. Thus 
4 

= 2 . This gives (c). 

Probability the p= 1 at oint jp
1

=
2js  produce the 

KV , ,n T AV  for    which 1 2, =
2

   
 

Thus = 2
1 1

,
2

 
.  . 

Probabilities  

This gives (d). 

1 2

1 3
, = ,

4 4
p p

 
 
 

 at the resp  points ective

 1 2

2
, = 0,

3
s

 
 
 

mmetric KV  s  produce the asy

  21
1

2
3

n
i i

i ti

t t
K t K Y



 1 2 3

1 1 2
, , = , ,

2 3 9
    

 
 

, ,3 1
=1

1
:=

4 3n T
i

V


      
  

  (2.25) 

for which . Thus = 3 . This 

gives (e). 

Probabilities  1 2

3 1
, = ,

4 4
p p  at the respective points 

 1 2, = ,1
3

s  
 

etric KV  
1

s
 

 produce asymm

 12
3

n
i i

i

t t
K K t 2

, ,4 1
=1

1
:=

4 3n T ti
i

V Y


       
  

  (2.26) 

for which  1 2 3

1 1 10
, , = , ,

2 3 36
    

 
 

. Thus = 3 . This 

gives (f). 

Probabilities  1 2 3

1 2 1
,  at the respec- , , = ,

6 3 6
p p p

 
 
 

tive points  1,s s ce the KV , ,5n TV  

for which 

2 3

1
, = 0, ,1

2
s

 
 
 

 produ

1 2 3 4

1 1 1 5
, , , = , , ,

3 4 25
. Thus 

2
     

 
 

= 4 . 

This gives (g). 

Probabilities  1 2 3 4

1 3 3 1
, , , = , , ,

8 8 8 8
p p p p

 
 
 

 at the re- 

spective points  1 2 3 4

1 2
, , , = 0, , ,1

3 3
s s s s

 



 


p

symmetric KV  

roduce the 

 

 

1
, ,6 :=n T

t
V K 1

=1

21

1

21
3

8 3

2
           3

3

n
i i

i
i

i i
i ti

t
t K

t t
K t Y




K


      
        



  (2.27) 

for which  1 2 3 4

1 1 1 11
, , , = , , ,

2 3 4 54
     

 
 

. Thus = 4 . 

This gives (h). 
ities Probabil

 1 2 3 4, , , ,p p p p 5

1475 2725 5675 1721
= , , , ,

24192 24192 12096 12096 24192 24192

p


 

 at the 

respective points 

1471 6925
,


 

 1 2 3 4 5

1 2 3 4
, , , , = 0, , , , ,1  

5 5 5 5
s s s s s

 
 
 

produce the asymmetric KV  

 

 

1
, ,7 1

=1

:= 1471
24192n T i

i

V K t 




1 1

21

1

6925
5

2 2 3 3
           2950 5450

5 5

4 4
           5675 1721

5

i i

i i i i

i i
i ti

t t
K

t t t t
K K

t t
K K t Y



 




    
 

        
   

        



(2.28) 

1 n
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for which  1 2 3 4 5 6

1 1 1 1 841
, , , , , = , , , ,

2 3 4 5 5040
      








. 

Thus = 5 . This gives (i). 

Probabilities  1 2 3 4 5

7 16 2 16 7
, , , , = , , , ,

90 45 15 45 90
p p p p p

 
 
 

 

at the respective points  1 2 3 4 5

1 1 3
, , , , = 0, , , ,1

4 2 4
s s s s s

 
 
 

 

produce the symmetric KV  given by  , ,8n TV

  1

21 1

1

31
:=

4

3
   12 32 7 ( )

4

i i

i i i i
i ti

t t
K

t t t t

, ,8 17 32
n

n T iV K t
=190

2

i

K K K t Y



 






  

 
 

            

(2.29) 

for which 



 
 

 

 1 2 3 4 5 6

1 1 1 1 1 110
, , , , , = , , , , ,

2 3 4 5 6 768
      

 
 

. 

Thus = 6 . This gives (j). 
Probabilities 

 1 2 3 4 5

19 75 50 50 75 19
, , , , = , , , , ,

288 288 288 288 288 288
p p p p p

 
 
 

 

at the respective points 

 1 2 3, , ,s s s s4 5

1 2 3 4
, = 0, , , , ,1

5 5 5 5
s

 
 
 

 produce symmetric 

KV  

 

 

1
, ,9 1

=1

1 1

21

1

41
:= 19 75

288 5

3
50

t t
K
 

2 2 3
50

5 5

4
75 19

5

n
i i

n T i
i

i i i i

i i
i ti

t t
V K t K

t t
K

t t
K K t Y




 




      
     

 
        



 

(2.30) 

for which 

 

 1 2 3 4 5 6

1 1 1 1 1 3219
, , , , , = , , , , ,

2 3 4 5 6 22500
       

 
 

. 

= 6Thus  . This gives (k).  
The KV is based on the arithmetic mean of , ,n T zV  

,n TI  and ,n TJ . One can use geometric mean and 
onic m stead. 

Theorem 2.4 The geometric mean based sym
KV (which is based on the ideas of partial autoco- 

 given by  

harm ean in
metric 

rrelation) is

, , :=n T GV , ,n T n TI J           (2.31) 

onicThe harm  mean based symmetric KV is given by  

, ,

, ,

2
:=

1 1n T H

n T n T

V

I J


        (2.32) 

3.

e realized volatility estimator of 
integrated volatility, we use an altern
method of splines, see [9], [10] and [1
ste
Since these are based on analysis of variance for 
diffusion models, we call it DAN
DANOVA stands for ANOVA for Diffusions. 

In the stochastic volatility model, the log-price 



 Spline Estimators 
 
In order to improve th

ative method, the 
1]. This is the first 

p towards the use of splines for volatility estimation. 

OVA models. 

* = logy S  with S  being the asset price, follows  

      *d = d dy t t t t W t   

       2d = d dt t t t W t      

where   and   are assumed to be independent of the 
standard Brownian motion W . The process   is 
called the  instantaneous volatility or  spot volatility 
and   is called the  mean process and the Br an 
m  A 
simp

du

in which case 

owni
ted.otions W  and W  are allowed to be correla

mple of this is  le exa

       2* 2* 2= where =t t t t u       
0

t

  is called the risk premium   and 2*  is 
called the inte ed variance. 

v
grat

Over an inter al of time length > 0h , returns are 
defined as  

    * *:= 1 , = 1, 2, , .iy y hi y i h i T    

which im es that pli  

 2, ~ ,i i i i iy N 2     

where  

    := 1i ih i h     

and  

2         2* 2* 2

1
:= 1 = d .

ih

i i h
ih i h u u   


    

Here 2
i  is called the  actual variance and i  is 

an. 
Suppose one is interested in estim g the actual 

called the  actual me
atin

 using  intra- observations. A natural 
e  rea vol  given by  

m
lized 

h  
atility

volatility i
candidate is th

2
,

=1

:=
m

m j
j

y y     i

where  

     * *
,

1
:= 1 1j i

j hjh
y y i h y i h

m m

 
,

= 1,2, , .j m
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Denote  

 *:= 1j

jh
Y y i h

m
   
 

 

and  

   *
1

1
:= 1 .j

j h
Y y i h

m

 
  

 
 

Thus the realized volatility is given by  

 2

1
=1

ˆ := .
m

i j j
j

Y Y   

When 0h 
rated vol

, realized volatility converges in  to 
the integ atility. We consider th fixed  
The realized variance is a quadratic form. 

 that the realized volatility is based on first order 
nce. 

We introduce some new estimators: 

2L
 case.e h

Note
differe

    21
.

m




 

The above estimator is based on second order 
difference.  

1 1
=1

:=
2i j j j j

j

Y Y Y Y  
   

2 2

1 1

2

= 1 =

:= d
m n n

i k k j
j n k n

Y



 

 
 
 

   

where 1n  and n  are non-negative integers, 
n

2

1 2= n n  is called the order, and the di
quence  d  satisfies 

fference 
se

 and 

Note that for difference based estimators  

1 2= , ,k k n n 

22 2
= =1 1

= 0,
n n

k kk n
d d

   = 1
k n 1 2

0.n nd d   

 2 2 1 2= .O m    i i P

To improve this error bound, we introduce the lag-
estimator  

k  

   2

= 1

1
= , = 1,2, ,

2i j j k
j k

Y Y k
n k

 



   1

m

m   

tice, the ch e order  and an 
appropriate difference seq which minimizes the 
finite sample MSE is diffic

 integrated 
volatility is given by  

In prac oice of th
uence 

ult. 

n

Theorem 3.1 The spline estimator of

2 2 ˆˆˆ = = ,w wd     

where  

2 2

=1

=
n

w k
k

w

=1

=
n

w k
i

d w  kd

and  

 

k    

 

2

=1ˆ =

n

k k k w
k

w d d


 

2
.

n

k

w d d
 

=1
k k w

Proof We fit the following regression model:  

, ,n

using the weighted least squares estimate  

where 

2 = , = 1, 2k k kd k       

 22

=1

n

k k k
k

w d      

 k  
 

is a sequence of i.i.d. random variables. 
Let 

2 2

=1

=
n

w k
k

w k    

and  

=1

= .w k k
i

d w d  
n

Then  
2 2 ˆˆˆ = = w wd     

where  

 

 

2

=1ˆ =
k k k w

k

w d d


 
 

2

=1

n

n

k k w
k

w d d

is the estimate of the intercept  .  
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