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Abstract 
In this paper, we consider multiobjective two-person zero-sum games with vector payoffs and 
vector fuzzy payoffs. We translate such games into the corresponding multiobjective programming 
problems and introduce the pessimistic Pareto optimal solution concept by assuming that a player 
supposes the opponent adopts the most disadvantage strategy for the self. It is shown that any 
pessimistic Pareto optimal solution can be obtained on the basis of linear programming tech-
niques even if the membership functions for the objective functions are nonlinear. Moreover, we 
propose interactive algorithms based on the bisection method to obtain a pessimistic compromise 
solution from among the set of all pessimistic Pareto optimal solutions. In order to show the effi-
ciency of the proposed method, we illustrate interactive processes of an application to a vegetable 
shipment problem. 
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1. Introduction 
In this paper, we propose interactive algorithms for multiobjectve two-person zero-sum games with vector 
payoffs and vector fuzzy payoffs under the assumption that each player has fuzzy goals for his/her multiple 
expected payoffs. 

Shapley [1] first defined a Pareto equilibrium solution concept for two-person zero-sum games with vector 
payoffs, and proved the existence of a Pareto equilibrium solution by utilizing the weighting method for 
multiobjective optimization. Zeleny [2] formulated a two-person zero-sum game with vector payoffs as a single 
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objective optimization problem to obtain the minimax solution. Cook [3] also formulated a two-person zero-sum 
game with vector payoffs as a goal programming problem, in which each player sets goals for multiple expected 
payoffs and the distances between them are minimized. It was shown that such a goal progamming problem is 
reduced to a linear programming problem. Moreover, Ghose and Prasad [4] proposed a solution concept incor- 
porating not only the concept of Pareto optimality but also that of security levels. The concept of security levels 
is inherent in the definition of maximin solutions in two-person zero-sum games. Sakawa and Nishizaki [5] 
proposed a fuzzy approach for two-person zero-sum games with vector payoffs to obtain maximin solutions 
which are defined from the viewpoint of maximization of the degree of minimal goal attainment [6] [7]. They 
showed that such a problem is reduced to a linear programming problem. 

On the other hand, Campos [8] first formulated two-person zero-sum games with fuzzy payoffs as fuzzy 
linear programming problems to obtain the maximin solutions. Li [9] [10] also formulated special types of two- 
person zero-sum games with fuzzy payoffs which are represented by triangular fuzzy numbers as three-objective 
linear programming problems, and proposed the corresponding computation method. Bector et al. [11], Bector 
and Chandra [12], and Vijay et al. [13] [14] proposed computational methods for solving not only two-person 
zero-sum games with fuzzy payoffs but also two-person nonzero-sum games with fuzzy payoffs, which are 
based on the duality of mathematical programming techniques. Maeda [15] introduced an order relationship 
between fuzzy numbers with respect to two-person zero-sum games with fuzzy payoffs, and proposed a solution 
concept.  

As a natural extension to multiobjective programming problems, Nishizaki and Sakawa [16]-[18] focused on 
two-person zero-sum games with vector payoffs. By introducing the fuzzy goals, they formulated two-person 
zero-sum games with vector payoffs as a linear programming problem to obtain maximin solutions. They also 
investigated the equilibrium solutions in two-person non-zero-sum games with fuzzy goals and vector fuzzy 
payoffs. However, to deal with such games as linear programming problems, they assumed that fuzzy goals for 
each player are defined as linear membership functions, each element of fuzzy payoffs is also defined as a linear 
type fuzzy number, and each player adopts the fuzzy decision [7] [19] to integrate vector payoff or vector fuzzy 
payoffs. Therefore, the proposed methods cannot be applied if each player adopts fuzzy goals whose member- 
ship functions are nonlinear, each element of fuzzy payoffs is defined as a nonlinear type fuzzy number, or 
player does not adopt the fuzzy decision to integrate vector payoff or vector fuzzy payoffs.  

In such situations, in this paper, we focus on two-person zero-sum games with vector fuzzy payoffs under the 
assumption that a player has fuzzy goals for the expected payoffs which are defined as nonlinear membership 
functions. In Section 2, introducing the pessimistic Pareto optimal solution concept by assuming that a player 
supposes the opponent adopts the most disadvantage strategy for the self, we translate two-person zero-sum 
games with vector payoffs into the corresponding multiobjective programming problems. We propose an inter- 
active algorithm based on the bisection method and linear programming techniques to obtain a pessimistic com- 
promise solution from among the set of all pessimistic Pareto optimal solutions. In Section 3, we also consider 
multiobjectve two-person zero-sum games with vector fuzzy payoffs, and propose an extended interactive algo- 
rithm to obtain a pessimistic compromise solution from among the pessimistic Pareto optimal solution set on the 
basis of the possibility measure [20]. In Section 4, as an application of our method, we consider a multi-variety 
vegetable shipment planning problem, which is formulated as a two-person zero-sum game with vector payoffs, 
and show the efficiency of the proposed algorithm. 

2. Two-Person Zero-Sum Games with Vector Payoffs 
We consider two-person zero-sum games with multiple payoffs which are defined by m n×  matrices 

R , 1, ,k m nA k K×∈ =  . For each ( ),i j -element k
ija  of the payoff matrices kA , 1, ,k K=  , a row 

{ }1,2, ,i m∈   is interpreted as a pure strategy of Player 1 and a column { }1,2, ,j n∈   is also a pure strategy 
of Player 2. When Player 1 chooses a pure strategy i and Player 2 chooses a pure strategy j, Players 1 and 2 
receive K-dimensional payoff vectors ( )1 , , K

ij ija a  and ( )1 , , K
ij ija a− − , respectively. Let  

( ){ }def

1 =1, , | 1, 0, 1, ,m
m i iiX x x x x i m∈ = = = ≥ =∑x x    be a mixed strategy for Player 1 and let  

{ }def

1 1( , , ) | 1, 0, 1, ,n
n j jjY y y y y j n

=
∈ = = = ≥ =∑y y    be a mixed strategy for Player 2. 



H. Yano, I. Nishizaki 
 

 
389 

In this section, we assume that each player has fuzzy goals for his/her expected payoffs T , 1, ,kA k K=x y  , 
where x  and y  are mixed strategies specified by two players. 

Assumption 1. Let { }
def

T 1
1 R | , , 1, ,k kD A X Y k K= ∈ ∈ ∈ =x y x y   be the set of Player 1’s payoffs. Then, 

Player 1’s fuzzy goal 1
kG  for the k-th payoff is a fuzzy set defined on the set 1

kD  characterized by the 
following strictly increasing and continuous membership functions:  

[ ]
1 1: 0,1 , 1, , .

k

k
G D k Kµ → =


  

Similarly, the nonlinear membership functions ( )
2

, 1, ,
kG k Kµ ⋅ =



  of Player 2's fuzzy goals are defined on 

{ }
def

T 1
2 R | , , 1, ,k kD A X Y k K= − ∈ ∈ ∈ =x y x y  , and they are strictly increasing and continuous.          ◊  

Then, we can formulate the following multiobjective programming problem for Player 1 under the assumption 
that Player 1 supposes Player 2 adopts the most disadvantage strategy for the self.  

( )
1 1

1 1

T

1 1

1 1 1 1

max min max min

max min max min

max

k k

k k

m n
k k

i ij jG GY YX X i j

n m n m
k k

i ij j i ij jG GY YX Xj i j i

GX

A x a y

x a y x a y

µ µ

µ µ

µ

∈ ∈∈ ∈ = =

∈ ∈∈ ∈= = = =

∈

   =   
   
            = =         

            

=

∑∑

∑ ∑ ∑ ∑

 

 



y yx x

y yx x

x

x y

1 1, , 1
min , 1, , .

k

m
k

i ijj n i
x a k K

= =

     =   
    
∑





     (1) 

To deal with the multiobjective minimax problem (1), the following Pareto optimal solution concept can be 
defined. 

Definition 1. * X∈x  is said to be a Player 1’s pessimistic Pareto optimal solution to (1) if and only if there 
does not exist another X∈x  such that  

( ) ( )
1 1

* T Tmin min , 1, , ,
k k

k k
G GY Y

A A k Kµ µ
∈ ∈

≤ =
y y

x y x y
 

  

with strict inequality holding for at least one k.                                                   ◊  
We assume that Player 1 can find a pessimistic compromise solution from among the pessimistic Pareto 

optimal solution set. It should be noted here that a pessimistic compromise solution concept is different from a 
satisfactory solution concept employed in usual multiobjective programming problems. A pessimistic com- 
promise solution can be interpreted as a most better solution among the pessimistic Pareto optimal solution set in 
his/her preference. 

For generating a candidate of a pessimistic compromise solution, Player 1 is asked to specify the reference 
membership values [19]. Once the reference membership values 1ˆ , 1, ,k k Kµ =   are specified, the corres- 
ponding pessimistic Pareto optimal solution is obtained by solving the minmax problem  

11
1

ˆmin max min .
k

m
k k

i ijGX jk i
x aµ µ

∈ =

    −   
    
∑

x


                           (2) 

By introducing auxiliary variable λ , the problem (2) can be equivalently transformed into the nonlinear 
programming problem  

11
=1

def

1 1 11, , 1, ,

min

ˆs.t. min , 1, ,

ˆ ˆ, max 1, max .

k

m
k k

i ijG j i

k k

k K k K

x a k K

X

λ

µ µ λ

λ µ µ
= =





   − ≤ =   
   

 ∈ ∈Λ = −    

∑

x



 

                       (3) 
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Since the inverse functions ( ) ( )
1

1
, 1, ,

kG k Kµ
−

⋅ =


  always exist because of Assumption 1, the constraints 

of (3) is transformed into the following equivalent inequalities:  

( ) ( )

( ) ( )

1 1

1

1

1 1
=1 1

1

1
1

ˆ ˆmin min

ˆ , 1, , , 1, , .

k k

k

m m
k k k k

i ij i ijG Gj ji i

m
k k

i ij G
i

x a x a

x a j n k K

µ µ λ µ µ λ

µ µ λ

−

=

−

=

    ≥ − ⇔ ≥ −    
    

⇔ ≥ − = =

∑ ∑

∑

 



 

              (4) 

As a result, the problem (3) is expressed as the following problem:  

( ) ( )
1

1

1
1

1

min

ˆs.t. , 1, , , 1, ,

, .

k

m
k k

i ij G
i

x a j n k K

X

λ

µ µ λ

λ

−

=


≥ − = = 

∈ ∈Λ 

∑
x



                     (5) 

It should be noted here that the problem (5) can be easily solved by combined use of the bisection method and 
the first-phase of the two-phase simplex method of linear programming. 

The relationship between the optimal solution ( )* *,λx  of the problem (5) and pessimistic Pareto optimal 
solutions can be characterized by the following theorem. 

Theorem 1.  
(i) If * *

1,X λ∈ ∈Λx  is a unique optimal solution of (5), then * X∈x  is a pessimistic Pareto optimal 
solution to (1).  

(ii) If * X∈x  is a pessimistic Pareto optimal solution to (1), then * ,X∈x   

( )( )1

def
* *

1 1
ˆ min , 1, ,

k

mk k
i ijG ij

x a k Kλ µ µ
=

= − =∑

  is an optimal solution of (5) for some reference membership 

values 1ˆ , 1, ,k k Kµ =  .                                                                     ◊  
Proof: 
(i) Since * *

1,X λ∈ ∈Λx  is an optimal solution to (5), the following inequalities hold.  

1

* *
1

=1
ˆ , 1, , , 1, , .

k

m
k k

i ijG
i

x a j n k Kµ µ λ  ≥ − = = 
 
∑

   

Assume that * X∈x  is not a pessimistic Pareto optimal solution to (1). Then, there exists X∈x  such that  

1 1

*

1 1
min , 1, , ,min

k k

m m
k k

i ij i ijG Gj ji i
x a x a k Kµ µ

= =

      ≤ =      
      
∑ ∑ 

  

with strict inequality holding for at least one k . From Assumption 1, it holds that  

1

*
1

1
ˆ , 1, , , 1, , .

k

m
k k

i ijG
i

x a j n k Kµ µ λ
=

  ≥ − = = 
 
∑

   

This contradicts the fact that * *
1,X λ∈ ∈Λx  is a unique optimal solution to (5). 

(ii) Assume that * *
1,X λ∈ ∈Λx  is not an optimal solution to (5) for any reference membership values 

1ˆ , 1, ,k k Kµ =  , which satisfy the inequalities  

1

def
* *

1
1

ˆ min , 1, , .
k

m
k k

i ijG j i
x a k Kλ µ µ

=

  = − =  
  
∑

  

Then, there exists some *,X λ λ∈ <x  such that  

1 1
1

ˆ , 1, , , 1, , .
k

m
k k

i ijG
i

x a j n k Kµ µ λ
=

  ≥ − = = 
 
∑
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From Assumption 1 and the fact that *
1 1ˆ ˆ , 1, ,k k k Kµ λ µ λ− > − =  , the following relation holds.  

1 1

*

1 1
min min , 1, , .

k k

m m
k k

i ij i ijG Gj ji i
x a x a k Kµ µ

= =

      < =      
      
∑ ∑ 

  

This contradict that the fact that * X∈x , *
1λ ∈Λ  is a pessimistic Pareto optimal solution to (1).       ♦  

Unfortunately, from Theorem 1, it is not guaranteed that the optimal solution * *
1,X λ∈ ∈Λx  of (5) is 

pessimistic Pareto optimal, if ( )* *,λx  is not unique. In order to guarantee the pessimistic Pareto optimality, we 
assume that the following K constraints of (5) are active at the optimal solution,  i.e.,  

1

* *
1

1
ˆ min , 1, ,

k

m
k k

i ijG j i
x a k Kλ µ µ

=

  = − =  
  
∑

                           (6) 

simultaneously hold. For the optimal solution ( )* *,λx  of (5), where the active conditions (6) are satisfied, we 
solve the following pessimistic Pareto optimality test problem: 

Test problem 1:  

( ) ( )
1

def

1

1
*

1
1

1

max

ˆs.t. , 1, , , 1, ,

, , 0, 1, , .

k

K

k
k

m
k k

i ij kG
i

k

w

x a j n k K

X k K

µ µ λ

λ

=

−

=

= 



≥ − + = = 

∈ ∈Λ ≥ =



∑

∑
x



 









                (7) 

Theorem 2. For the optimal solution , , 1, ,k k K=x    of Test problem 1 (7), if 0w = , then * X∈x  is a 
pessimistic Pareto optimal solution.                                                           ◊  

Now, from the above discussions, we can present an interactive algorithm for deriving a pessimistic 
compromise solution from among the pessimistic Pareto optimal solution set. 

Interactive algorithm 1:   
Step 1: Player 1 sets his/her membership functions ( )

1
, 1, ,

kG k Kµ ⋅ =


  for the expected payoffs, which 
satisfy Assumption 1. 

Step 2: Set the initial reference membership values as 1ˆ 1, 1, ,k k Kµ = =  . 
Step 3: Solve the problem (5) by combined use of the bisection method and the first-phase of the two-phase 

simplex method of linear programming. For an optimal solution ( )* *,λx , the corresponding Test problem 1 (7) 
is solved. 

Step 4: If Player 1 agrees to the current pessimistic Pareto optimal solution, then stop. Otherwise, Player 1 
updates his/her reference membership values 1ˆ , 1, ,k k Kµ =  , and return to Step 3.  

3. Two-Person Zero-Sum Games with Vector Fuzzy Payoffs   
In this section, we consider two-person zero-sum games with vector fuzzy payoffs which are defined by m n×  
matrices , 1, ,kA k K=

 , whose ( ),i j -element , 1, , , 1, ,k
ija i m j n= =

   is an LR fuzzy number [20], and the 
corresponding membership function is defined as  

( )
,

, ,
k
ij

k
ij k

ijk
ij

a k
ij k

ijk
ij

a s
L s a

s
s a

R s a

α
µ

β

  −
≤     = 

 −
>     



 

where the function ( ) ( ){ }
def

max 0,L t l t=  is a real-valued continuous function from [ )0,∞  to [ ]0,1 , and ( )l t  
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is a strictly decreasing continuous function satisfying ( )0 1l = . Also, the function ( ) ( ){ }
def

max 0,R t r t=  

satisfies the same conditions. k
ija  is the mean value, 0k

ijα >  and 0k
ijβ >  are called the left and right spreads, 

respectively [20]. Similar to the previous section, let ( ){ }def

1 1, , | 1, 0, 1, ,m
m i iiX x x x x i m

=
∈ = = = ≥ =∑x x    

be a mixed strategy for Player 1 and let ( ){ }def

1 1, , | 1, 0, 1, ,n
n j jjY y y y y j n

=
∈ = = = ≥ =∑y y    be a mixed 

strategy for Player 2. Then, according to operations of fuzzy numbers based on the extension principle [20], the 
k-th fuzzy expected payoff of Player 1 becomes an LR fuzzy number whose membership function is defined by  

( )T

1 1

1 1

1 1

1 1

1 1

1 1

,

, .

k

m n
k
ij i j m n

i j k
ij i jm n

k i j
ij i j

i j

A m n
k
ij i j m n

i j k
ij i jm n

k i j
ij i j

i j

a x y t
L t a x y

x y
t

t a x y
R t a x y

x y

α

µ

β

= =

= =

= =

= =

= =

= =

  −  
   ≤
  
  
  = 

  − 
  >
 
   

∑∑
∑∑

∑∑

∑∑
∑∑

∑∑

x y

 

In this section, we assume that Player 1 has fuzzy goals for his/her fuzzy expected payoffs T , 1, ,kA k K=x y  , 
whose membership functions are defined as follows. 

Assumption 2. Let { }
def

T
1 | , , 1, ,k kD A X Y k K= ∈ ∈ =x y x y

  be the set of Player 1’s fuzzy payoffs. Then, 

Player 1’s fuzzy goal 1
kG  for the k-th fuzzy payoff is a fuzzy set defined on the set ( )1 0

kD
α =

  characterized by 

the following strictly increasing and continuous membership functions:  

( ) [ ]
1 1 0

: 0,1 , 1, , ,
k

k
G D k K

α
µ

=
→ =





  

where ( )α⋅  means an α-cut set for fuzzy sets [20]. Similarly, Player 2’s membership functions  
( )

2
, 1, ,

kG k Kµ ⋅ =


  are defined on { }
def

T
2 | , , 1, ,k kD A X Y k K= − ∈ ∈ =x y x y

 , which are strictly increasing 
and continuous.                                                                           ◊  

Using the concept of the possibility measure [20], we define the value of the membership function  

( )
1

T
k

k
G Aµ x y


  as follows:  

( ) ( ) ( ) ( ){ }T T1 1

def
T

1 max min , , 1, , ,k kk k

k
kG GA Au

A G u u k Kµ µ µ= Π = =
x y x y

x y
 

 

 

              (8) 

where ( )
1kG uµ


 is a membership function of Player 1’s fuzzy goal for the k-th payoff. Then, we can formulate 
the following multiobjective programming problem for Player 1 under the assumption that Player 1 supposes 
Player 2 adopts the most disadvantage strategy for the self.  

( ){ }T 1max min , 1, , .k kAYX
G k K

∈∈
Π =

x yyx 



                             (9) 

In order to deal with the multiobjective maximin problem (9), we introduce the pessimistic Pareto optimality 
concept. 

Definition 2. * X∈x  is said to be a Player 1’s pessimistic Pareto optimal solution to (9) if and only if there 
does not exist another X∈x  such that  

( ) ( )T T1 1min min , 1, , ,k kk kA AY Y
G G k K

∈ ∈
Π ≤ Π =

x y x yy y 

 

                     (10) 

with strict inequality holding for at least one k.                                                   ◊   
The constraints (10) are transformed into the following forms, where , 1, ,k

j j n=a   means the j-th column 
vectors of kA .  
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( ) ( )* 1 1=1, , =1, ,
min mink k

j j
k kj n j n

G GΠ ≤ Π
x a xa 

 

                              (11) 

It should be noted here that the decision vector y  disappeared in the constraints (11). 
Similar to the previous section, we assume that Player 1 can find a pessimistic compromise solution from 

among the pessimistic Pareto optimal solution set. 
For generating a candidate of a pessimistic compromise solution, Player 1 is asked to specify the reference 

membership values [19]. Once the reference membership values 1ˆ , 1, ,k k Kµ =   are specified, the corres- 
ponding pessimistic Pareto optimal solution is obtained by solving the minmax problem  

( ){ }1 1=1, ,
ˆmin max min .k

j

k
kX j nk

Gµ
∈

− Π
xax 



                              (12) 

This problem can be equivalently transformed into the following form:  

( )
1,

1 11, ,

min

ˆs.t. min , 1, , ,k
j

X

k
kj n

G k K

λ
λ

µ λ

∈ ∈Λ

=





− Π ≤ = 

x

xa






                       (13) 

where 
def

1 1, , 1 1, , 1ˆ ˆmax 1,maxk k
k K k Kµ µ= = Λ = −  

. Since not only the inverse functions ( ) ( )
1

1
, 1, ,

kG k Kµ
−

⋅ =


  

but also ( )1L− ⋅  and ( )1R− ⋅  always exist, the k-th constraint of (13) is transformed into the following.  

( ) ( ) ( ){ }11 1 11, , 1, ,
ˆ ˆmin min max min ,k k kj j

k k kGj n j n u
G u uµ λ µ µ µ λ

= =
Π ≥ − ⇔ ≥ −

xa xa 

 

 

  

( ) ( ){ }1 11, ,
ˆmax min min ,k kj

kGj nu
u uµ µ µ λ

=
⇔ ≥ −

xa 





 

( )

( )
1

1ˆmax

, 1, ,k
j

k

k ku

k

kG

h

u h j n

u h

µ λ

µ

µ

⇔ ≥ −

≥ =

≥

xa



  

( )
1

1

1

1

1

1

ˆmax

, 1, ,

, 1, ,

k

k ku

m
k
ij i

i
km

k
ij i

i

m
k
ij i

i
km

k
ij i

i

kG

h

a x u
L h j n

x

u a x
R h j n

x

u h

µ λ

α

β

µ

=

=

=

=

⇔ ≥ −

 − 
  ≥ =
 
 
 
 − 
  ≥ =
 
 
 

≥

∑

∑

∑

∑







 

   
( ) ( )

1

1

1 1

1 1

ˆ

, 1, ,
k

k k
m m

k k
k ij i k ij iG

i i

h

h a x R h x j n

µ λ

µ β− −

= =

⇔ ≥ −

≤ + ⋅ =∑ ∑



 

           
( ) ( )

1

1 1
1 1

1 1
ˆ ˆ , 1, ,

k

m m
k k

k ij i k ij iG
i i

a x R x j nµ µ λ µ λ β− −

= =

⇔ − ≤ + − ⋅ =∑ ∑

  

From the above discussion, the problem (13) for Player 1 can be expressed as  

( ) ( )
1

1

,

1 1
1 1

1 1

min

ˆ ˆs.t. , 1, , , 1, , .
k

X

m m
k k

k ij i k ij iG
i i

a x R x j n k K

λ
λ

µ µ λ µ λ β

∈ ∈Λ

− −

= =





− ≤ + − ⋅ = = 


∑ ∑

x



 

         (14) 
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It should be noted here that the problem (14) can be easily solved by combined use of the bisection method 
with respect to 1λ ∈Λ  and the first-phase of the two-phase simplex method of linear programming. 

The relationship between the optimal solution ( )* *,λx  of (14) and pessimistic Pareto optimal solutions to (9) 
can be characterized by the following theorem. 

Theorem 3. 
(i) If * *

1,X λ∈ ∈Λx  is a unique optimal solution of (14), then * X∈x  is a pessimistic Pareto optimal 
solution to (9).  

(ii) If * X∈x  is a pessimistic Pareto optimal solution to (9), then there exists * X∈x , *
1λ ∈Λ  such that  

( ) ( )
1

1 * * 1 * *
1 11, , 1 1

ˆ ˆmin
k

m m
k k k k

ij i ij iG j n i i
a x R xµ µ λ µ λ β− −

= = =

 − = + − ⋅ 
 
∑ ∑



 

is an optimal solution of (14) for some reference membership values 1ˆ , 1, ,k k Kµ =  .  
Proof: 
(i) Since * *

1,X λ∈ ∈Λx  is an optimal solution to (14), the following inequalities hold for any 
1, , , 1, ,j n k K= =  .  

( ) ( )
1

1 * * 1 * *
1 1

1 1
ˆ ˆ .

k

m m
k k

k ij i k ij iG
i i

a x R xµ µ λ µ λ β− −

= =

− ≤ + − ⋅∑ ∑

 

Since the constraints of (13) are equivalent to those of (14), the following relations hold.  

( )*
1 11, ,

ˆ min , 1, , .k
j

k kj n
G k Kµ λ ∗

=
− ≤ Π =

x a




  

Assume that * X∈x  is not a pessimistic Pareto optimal solution to (9). Then, there exists X∈x  such that  

( ) ( )1 11, , 1, ,
min min , 1, , ,k k

j j
k kj n j n

G G k K∗
= =

Π ≤ Π =
x a xa 

 

 

  

with strict inequality holding for at least one k. Therefore, it holds that  

( )*
1 11, ,

ˆ min , 1, , .k
j

k kj n
G k Kµ λ

=
− ≤ Π =

xa




  

This contradicts the fact that * *
1,X λ∈ ∈Λx  is a unique optimal solution to (14). 

(ii) Assume that * X∈x , *
1λ ∈Λ  is not an optimal solution to (14) for any reference membership values 

1ˆ , 1, ,k k Kµ =   which satisfy  

( ) ( )
1

1 * * 1 * *
1 11, , 1 1

ˆ ˆmin , 1, , .
k

m m
k k

k ij i k ij iG j n i i
a x R x k Kµ µ λ µ λ β− −

= = =

 − = + − ⋅ = 
 
∑ ∑



  

Then, there exists some *,X λ λ∈ <x  such that  

( ) ( )
1

1 1
1 1

1 1
ˆ ˆ ,

k

m m
k k

k ij i k ij iG
i i

a x R xµ µ λ µ λ β− −

= =

− ≤ + − ⋅∑ ∑

 

1, , , 1, ,j n k K= =  . This means that there exists some *,X λ λ∈ <x  such that  

( )1 11, ,
ˆ min , 1, , .k

j
k kj n

G k Kµ λ
=

− ≤ Π =
xa





  

Because of *
1 1ˆ ˆ , 1, ,k k k Kµ λ µ λ− > − =  , there exists X∈x  such that  

( ) ( )1 11, , 1, ,
min min , 1, , .k k

j j
k kj n j n

G G k K∗
= =

Π < Π =
x a xa 

 

 

  

This contradict that the fact that * X∈x , *
1λ ∈Λ  is a pessimistic Pareto optimal solution to (9).       ♦  

Unfortunately, from Theorem 3, it is not guaranteed that the optimal solution * *
1,X λ∈ ∈Λx  of (14) is 

pessimistic Pareto optimal, if ( )* *,λx  is not unique. In order to guarantee the pessimistic Pareto optimality, we 
assume that the following K constraints of (14) are active at the optimal solution, i.e.,  

( ) ( )
1

1 * * 1 * *
1 11, , 1 1

ˆ ˆmin , 1, ,
k

m m
k k

k ij i k ij iG j n i i
a x R x k Kµ µ λ µ λ β− −

= = =

 − = + − ⋅ = 
 
∑ ∑



                (15) 
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simultaneously hold. For the optimal solution ( )* *,λx  of (14) which satisfies the active conditions (15), we 
solve the pessimistic Pareto optimality test problem defined as follows: 

Test problem 2:  

( ) ( )
1

def

1

1 * 1 *
1 1

1 1

1

max

ˆ ˆs.t. , 1, , , 1, ,

, , 0, 1, , .

k

K

k
k

m m
k k

k k ij i k ij iG
i i

k

w

a x R x j n k K

X k K

ε

µ µ λ ε µ λ β

λ ε

=

− −

= =

= 



− + ≤ + − ⋅ = = 

∈ ∈Λ ≥ =



∑

∑ ∑
x



 



        (16) 

Theorem 4. For the optimal solution , , 1, ,k k K=x    of Test problem 2 (16), if 0w = , then * X∈x  is a 
pessimistic Pareto optimal solution.                                                           ◊  

Now, from the above discussions, we can present an interactive algorithm for deriving a pessimistic 
compromise solution from among the pessimistic Pareto optimal solution set to (9). 

Interactive algorithm 2: 
Step 1: Player 1 sets his/her membership functions ( )

1
, 1, ,

kG k Kµ ⋅ =


  for the fuzzy expected payoffs, 
which satisfy Assumption 2. 

Step 2: Set the initial reference membership values as 1ˆ 1, 1, ,k k Kµ = =  . 
Step 3: For the reference membership values 1ˆ 1, 1, ,k k Kµ = =  , solve the problem (14) by combined use of 

the bisection method and the first-phase of the two-phase simplex method of linear programming. For the 
optimal solution ( )* *,λx , the corresponding test problem (16) is solved. 

Step 4: If Player 1 agrees to the current pessimistic Pareto optimal solution, then stop. Otherwise, Player 1 
updates his/her reference membership values 1ˆ 1, 1, ,k k Kµ = =  , and return to Step 3.  

4. An Application to Multi-Variety Vegetable Shipment Planning   
In this section, we apply the proposed method to multi-variety vegetable shipment planning problems. We 
assume that a farmer (Player 1) must decide a ratio of the shipment amount between tomato and cucumber. 
Table 1 and Table 2 show price lists 1B  and 2B  (Japanease yen/kg) of tomato and cucumber in Nagoya 
Central Wholesale Market in Japan for each period (from January to December) from 2009 to 2013 [21]. 

 
Table 1. A price list 1B  of tomato in Nagoya Central Wholesale Market in Japan (yen/kg).                              

year 2009 2010 2011 2012 2013 

January 323 306 293 371 317 

February 316 349 285 444 361 

March 423 385 296 500 383 

April 377 415 268 448 356 

May 281 249 183 329 217 

June 216 226 259 263 221 

July 225 226 305 272 314 

August 303 302 364 247 277 

September 377 555 424 415 412 

October 278 458 446 555 440 

November 212 433 383 518 455 

December 259 277 413 389 402 
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Table 2. A price list 2B  of cucumber in Nagoya Central Wholesale Market in Japan (yen/kg).                         

year 2009 2010 2011 2012 2013 

January 340 320 293 423 437 

February 318 371 285 421 292 

March 368 375 296 412 208 

April 206 295 268 232 222 

May 156 172 183 206 145 

June 162 196 259 169 220 

July 149 165 305 168 205 

August 234 195 364 136 165 

September 160 307 424 194 370 

October 221 289 446 256 313 

November 355 331 383 335 423 

December 371 326 413 510 360 

 
We assume that some column of the price lists arises in the future (in other words, Nature (Player 2) selects 

some year between 2009 to 2013). We also assume that miscellaneous costs to cultivate vegetables with manure 
can be ignored. Utilizing the ( )12 5× -dimensional matrices , 1, 2kB k =  of the price lists of tomato and 
cucumber, we define ( )24 5× -dimensional profit matrices , 1, 2kA k =  as follows:  

1
1 2

2, ,
BA A

B
   

= =   
  

0
0

 

where 0  means a ( )12 5× -dimensional zero matrix. Then, we formulate such a shipment planning problem as 

a two-person zero-some matrix game [22]. Let ( )1 24, ,x x=x   be a mixed strategy of Player 1 (the farmer), 

where ( )1 12, ,x x=x   for tomato and ( )13 24, ,x x=x   for cucumber. Also, let ( )1 5, ,y y=y   be a mixed  
strategy of Player 2 (Nature). For example, if 1jy = , it follows that Nature selects the j-th year, 2008 j+ . This 
model means that the farmer wishes to maximize its expected income taking into account the worst-cost 
scenario. At Step 1 of Interactive algorithm 1, suppose that Player 1 sets his/her membership functions for the 
expected profits T , 1, 2kA k =x y  as follows:  

1
12 3

1
12

11 1
1

1

183min
,min 555 183

i ij
j i

i ij
j i

x a
x aµ =

=

   −       =    −  
 
 

∑
∑  

1
12 3

2
12

12 2
1

1

136min
.min 510 136

i ij
j i

i ij
j i

x a
x aµ =

=

   −       =    −  
 
 

∑
∑  

According to Interactive algorithm 1, Player 1 updates his/her reference membership values to obtain a 
candidate of the pessimistic compromise solution from among the pessimistic Pareto optimal solution set. The 
interactive process with a hypothetical Player 1 is summarized in Table 3. 
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Table 3. An interactive process with a hypothetical Player 1.                                                      

 1 2 3 
1
1µ̂  1. 0.45 0.5 
2

1µ̂  1. 0.4 0.35 
1
1µ  0.40911 0.43406 0.47474 
2

1µ  0.40911 0.38406 0.32474 

( )12 * 1

1
min j i iji

x a
=∑  208.47 213.42 222.80 

( )12 * 2

1
min j i iji

x a
=∑  161.61 157.19 148.81 

*
3x  0.14460 0.14803 0.15454 
*
9x  0.39073 0.40001 0.41759 
*
14x  0.04932 0.04797 0.04541 
*
15x  0.13249 0.12887 0.12200 
*
23x  0.28286 0.27512 0.26045 

5. Conclusion  
In this paper, we propose interactive algorithms for multiobjectve two-person zero-sum games with vector 
payoffs and vector fuzzy payoffs under the assumption that each player has fuzzy goals for his/her multiple 
expected payoffs. In the proposed method, we translate multiobjective two-person zero-sum games with fuzzy 
goals into the corresponding multiobjective programming problems and introduce the pessimistic Pareto optimal 
solution concept. The player can adopt nonlinear membership functions for fuzzy goals, and he/she can be 
guaranteed to obtain multiple expected payoffs, which are better than a pessimistic Pareto optimal solution 
whatever the other player does. 
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