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ABSTRACT 

We debate first the properties of quantum me-
chanics and its difficulties and the reasons re-
sulting in these diffuculties and its direction of 
development. The fundamental principles of 
nonlinear quantum mechanics are proposed 
and established based on these shortcomings 
of quantum mechanics and real motions and 
interactions of microscopic particles and 
backgound field in physical systems. Subse-
quently, the motion laws and wave-corpuscle 
duality of microscopic particles described by 
nonlinear Schrödinger equation are studied 
completely in detail using these elementary 
principles and theories. Concretely speaking, 
we investigate the wave-particle duality of the 
solution of the nonlinear Schrödinger equation, 
the mechanism and rules of particle collision 
and the uncertainty relation of particle’s mo-
mentum and position, and so on. We obtained 
that the microscopic particles obey the classical 
rules of collision of motion and satisfy the 
minimum uncertainty relation of position and 
momentum, etc. From these studies we see 
clearly that the moved rules and features of mi-
croscopic particle in nonlinear quantum me-
chanics is different from those in linear quan-
tum mechanics. Therefore, nolinear quantum 
mechanics is a necessary result of development 
of quantum mechanics and represents correctly 
the properties of microscopic particles in 
nonlinear systems, which can solve difficulties 
and problems disputed for about a century by 
scientists in linear quantum mechanics field. 

Keywords: Microscopic Particle; Nonlinear 
Interaction; Quantum Mechanics; Nonlinear 
Schrödinger Equation; Basic Principle; Nonlinear 
Theory; Wave-Particle Duality; Motion Rule 

1. INTRODUCTION, WAVE FEATURE OF 
MICROSCOPIC PARTICLES AND 
DIFFICULTIES OF QUANTUM 
MECHANICS 

It is well known that several great scientists, such as 
Bohr, Born, Schrödinger and Heisenberg, etc. estab-
lished quantum mechanics in the early 1900s [1-9], 
which is the foundation and pillar of modern science and 
provides an unique way of describing the properties and 
rules of motion of microscopic particles (MIP) in mi-
croscopic systems. The elementary hypotheses of quan-
tum mechanics can be described as Eq.1. The states of 
microscopic particles is described by a wave func-
tion  , t r  or wave-vector,  , t r , which represents 
the state of the particle at position r and time t and sat-
isfies the following superposition principle:  

     1 1 2 2, , ,t c t c t   r r r  or 1 1 2 2C C     

(1)  
where 1  or 1  and 2 or 2  are two states of the 
microscopic particle, C1 and C2 are constants relating to 
its states of a microscopic particle. The superposition 
principle manifests that the linear superposition of two 
different states of the particle describes still it’s a state. 
Therefore, it is referred to as the linear superposition 
principle of states of the microscopic particle. The 
changed rules of the state of microscopic particle with 
varying of time and space satisfy the following Schrö- 
dinger equation: 

 
2

2 ,
2

i V t
t m

  
   


r

        (2) 

where 2 2 2m  is the kinetic energy operator, 
 ,V tr  is the externally applied potential operator, m is 

the mass of particles, In this theory the Hamiltonian op-
erator of the system corresponding dynamic Eq.2 is 

   2 2ˆ 2 ,H t m V t   r         (3) 

(2) The mechanical quantity, which denotes the prop-
erties of microscopic particle, is represented by an op-
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erator. The value of a physical quantity A in an arbitrary 
state   is given by some statistic average values, 
which are denoted by  

 A A    , or  A A  .  (4) 

Only if the particle is in its eigenstate, then its me-
chanical quantities have determinant values. Thus a pair 
conjugate mechanical quantities cannot be simultane-
ously determined in a same state, i.e., their fluctuations 
satisfy the following Heisenberg uncertainty relation:  

       

 

22 2ˆ ˆ 4 with ,

and

A B C iC A B

A A A

      

  
  (5) 

The quantum mechanics has achieved a great success 
in descriptions of motions of microscopic particles, such 
as, the electron, phonon, exciton, polaron, atom, mole-
cule, atomic nucleus and elementary particles, and in 
predictions of properties of matter based on the motions 
of these particles. For example, energy spectra of atoms 
(such as hydrogen atom, helium atom), molecules (such 
as hydrogen molecules) and compounds, electrical, op-
tical and magnetic properties of atoms and condensed 
matters can be calculated based on linear quantum me-
chanics and the calculated results are in basic agreement 
with experimental measurements. Thus considering that 
the quantum mechanics is thought of as the foundation 
of modern science, then the establishment of the theory 
of quantum mechanics has revolutionized not only 
physics, but also many other science branches such as 
chemistry, astronomy, biology, etc., and at the same time 
created many new branches of science, for instance, 
quantum statistics, quantum field theory, quantum elec-
tronics, quantum chemistry, quantum optics and quan-
tum biology, etc. Therefore, we can say the quantum 
mechanics has achieved a great progress in modern sci-
ence. One of the great successes of linear quantum me-
chanics is the explanation of the fine energy spectra of 
hydrogen atom, helium atom and hydrogen molecule. 
The energy spectra predicted by the quantum mechanics 
are in agreement with experimental data. Furthermore, 
new experiments have demonstrated that the results of 
the Lamb shift and superfine structure of hydrogen atom 
and the anomalous magnetic moment of the electron 
predicted by the theory of quantum electrodynamics are 
in agreement with experimental data. It is therefore be-
lieved that the quantum electrodynamics is one of the 
successful theories in modern physics [9-18]. Studying 
the above postulates in detail, we can find [7-13] that the 
quantum mechanics has the following characteristics. 

1) Linearity. The wave function of the particles, 

 , t r , satisfies the linear Schrödinger Eq.2 and linear 
superposition principle (1). In the meanwhile, the opera-
tors are some linear operators in the Hilbert space. This 
means that the quantum mechanics is a linear theory, 
thus it is quite reasonable to refer to the theory as the 
linear quantum mechanics. 

2) The independence of Hamiltonian operator on the 
wave function. From Eq.3 we see clearly that the Ham-
iltonian operator of the systems is independent on the 
wave function of state of the particles, in which the in-
teraction potential contained relates also not to the state 
of the particles. Thus the potential can change only the 
states of the particles, such as the amplitude, but not its 
natures. Therefore, the natures of the particles can only 
be determined by the kinetic energy term,  
 2 2 2T m   in Eqs.2 and 3.  

3) Simplicity. We can easily solve arbitrary compli-
cated quantum problems in the systems, only if their 
potential functions are obtained. Therefore, to solve 
quantum mechanical problems becomes almost to find 
the representations of the external potentials by means of 
various approximate methods. This theory states that 
once the externally applied potential field and initial 
states of the microscopic particles are given, the states of 
the particles at any time later and any position can be 
determined by the Schrödinger Eq.1 in the case of non-
relativistic motion. 

4) The wave feature. The Schrödinger Eq.2 is in es-
sence a wave equation and has only wave solutions, 
which do not include any corpuscle feature. In fact, let 
the wave function be  expf iEt     and substitute 
it into Eq.2, we can obtain 

2 2 2 2
0 0f x k n f    , where 

   2 2 2
0n E U E C k k    , C is a constant, 

 2 2
0 2k m E U   . This equation is nothing but that 

of a light wave propagating in a homogeneous medium. 
Thus, the linear Schrödinger Eq.2 is unique one able to 
describe the wave feature of the microscopic particle. In 
other words, when a particle moves continuously in the 
space-time, it follows the law of linear variation and 
disperses over the space-time in the form of a wave of 
microscopic particles. Therefore, the linear Schrödinger 
Eq.2 is a wave equation in essence, thus the microscopic 
particles are only a wave. This is a basic or essential 
nature of the microscopic particles in quantum mechan-
ics. 

This nature of the particles can be also verified by us-
ing the solutions of Eq.2 [7-18]. In fact, at  , 0V t r , 
its solution is a plane wave: 

   , expt A i t     r k r         (6) 

where k,  , A  and are the wavevector, frequency, 
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and amplitude of a wave, respectively. This solution de-
notes the state of a freely moving microscopic particle 
with an eigenenergy: 

   
2

2 2 21
, , ,

2 2 x y z x y y

p
E p p p p p p

m m
         

This is a continuous spectrum. It states that the prob-
ability of the particle to appear at any point in the space 
is same, thus a microscopic particle propagates freely in 
a wave and distributes in total space, this means that the 
microscopic particle cannot be localized and has nothing 
about corpuscle feature. 

If a free particle can be confined in a small finite 
space, such as, a rectangular box of dimension a, b and c, 
the solution of Eq.1 is standing waves as follows: 

  31 2 ππ π
, , , sin sin sin e iEtn zn x n y

x y z t A
a b c

           
     

  

where n1, n2 and n3 are three integers. In this case, the 
particle is still not localized, it appears also at each point 
in the box with a determinant probability. In this case the 
eigenenergy of the particle in this case is quantized as 
follows: 

22 22 2
31 2

2 2 2

π

2

nn n
E

m a b c

 
   

 


 

where n1, n2 and n3 are some integers. The corresponding 
momentum is also quantized. This means that the wave 
feature of microscopic particle has not been changed 
because of the variation of itself boundary condition. 

If the potential field is further varied, for example, the 
microscopic particle is subject to a conservative 
time-independent field,    , 0V t V r r , then the 
microscopic particle satisfies the time-independent linear 
Schrödinger equation 

 
2

2

2
V E

m
       r


 

where  ' e iEt   r  . When V  F r , here F  is a 
constant field force, such as, a one dimensional uniform 
electric field E’ , then   eV x E x  , thus its solution is  

  3 21
1 2

2
,

3

x
A H

l
             

   
 

where    1H x  is the first kind of Hankel function, A is 
a normalized constant, l is the characteristic length, and 
  is a dimensionless quantity. The solution remains a 
dispersed wave. When    , it approaches 
  3 21 4 2 3' eA      ,which is a damped wave.  
If   2V x ax , the eigenenergy and eigenwave fun- 

ction are    2 2 2a x
n nx N e H x    with  

1
,

2nE n    
 

  (n = 0,1,2,…),  

respectively, here  nH x  is the Hermite polynomial. 
The solution obviously has a decaying feature. If the 
potential fields are successively varied, we find that the 
wave nature of the solutions in Eq.2 does not change no 
matter what the forms of interaction potential. This 
shows clearly that the wave nature of the particles is 
intrinsic in quantum mechanics.  

5) Quantization. The properties of microscopic parti-
cles are quantized in the microscopic systems. Con-
cretely, the eigenvalues of physical quantities of the par-
ticles are quantized. For instance, the eigenenergy at 
 , 0V t r  is quantized as mentioned above, when 
  2V x ax , its eigenenergy,  1 2 ,nE n     is also 

quantized, and so on. In practice, the momentum, mo-
ment of momentum and spin of the microscopic particles 
are all quantized in quantum mechanics. These quantized 
effects refer to as microscopic quantum effects,which 
occur on the microscopic scale. 

Very sorry, the wave nature of the particles obtained 
from this theory is not only incompatible with de Broglie 
relation, E h     and p k ,of wave-corpuscle 
duality for microscopic particles and Davisson and 
Germer’s experimental result of electron diffraction on 
double seam in 1927 [9-13], but also contradictory to the 
traditional concept of particles. Thus a lot of difficulties 
and problems occur in quantum mechanics, among them 
the central problem is how we represent the corpuscle 
feature of the microscopic particles. Aimed at this issue, 
Born introduce a statistic explanation for the wave func-
tion, and use   2

, t r  to represent the probability of 
the particles occurring the position r  at time t in the 
space-time. However, the microscopic particles have a 
wave feature and can disperse over total system, thus the 
probability   2

, t r  has a certain value at every point, 
for example, the probability of the particle denoted by 
Eq.5 is same at all points. This means that the particle 
can occur at every point at same time in the space. In 
this case, a fraction of particle must appear in the sys-
tems, which is a very strange phenomenon and is quite 
difficult to understand. However, in experiments, the 
particles are always captured as a whole one not a frac-
tional one by a detector placed at an exact position. 
Therefore, the concept of probability representing the 
corpuscle behavior of the particles cannot be accepted 
[15-18].  

On the other hand, we know from Eqs.2 and 3 that the 
quantum mechanics requires to incorporate all interac-
tions among particles or between particles and back-
ground field, such as the lattices in solids and nuclei in 
atoms and molecules, including nonlinear and compli-
cated interactions, into the external potential by means 
of various approximate methods, such as, the free elec-
tron and average field approximations, Born-Oppenhei- 
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mer approximation, Hartree-Fock approximation, Tho-
mas Fermi approximation, and so on. This is obviously 
incorrect. The method replacing these real interactions 
by an average field amounts to freeze or blot out real 
motions and interactions of the microscopic particles and 
background fields, which was often used in the quantum 
mechanics to study the properties of the particles in the 
systems of many particles and many bodies [15-18]. 
This indicates that the quantum mechanics is only an 
approximate theory and therefore quantum mechanics 
cannot be used to solve the properties of the microscopic 
particles, such as electrons in atoms. In contrast, since 
the electron denoting by  , t r  in atoms is a wave, 
then it does not have a determinant position in quantum 
mechanics, but the vector r  is use to denote the posi-
tion of the electron with charge e and mass m in the 
wave function and the Coulemb potential, V(r) = –Ze2/ r . 
Thus it is difficult to understand correctly these contra-
dictory representations in quantum mechanics. 

These difficulties and problems of the quantum me-
chanics mentioned above inevitably evoked the conten-
tions and further doubts about the theory among physi-
cists. Actually, taking a closer look at the history of 
physics, we could find that not so many fundamental 
assumptions were required for a physical theory but the 
linear quantum mechanics. Obviously, these assumptions 
of linear quantum mechanics caused its incompleteness 
and limited its applicability. However, the disputations 
continued and expanded mainly between the group in 
Copenhagen School headed by Bohr representing the 
view of the main stream and other physicists, including 
Einstein, de Broglie, Schrödinger, Lorentz, etc. [7-18]. 

Why does quantum mechanics have these questions? 
This is worth studying deeply and in detail. As is known, 
dynamic Eq.2 describes the motion of a particle and 
Hamiltonian operator of the system, Eq.3, consist only 
of kinetic and potential operator of particles; the poten-
tial is only determined by an externally applied field, and 
not related to the state or wavefunction of the particle, 
thus the potential can only change the states of MIP, and 
cannot change its nature and essence. Therefore, the na-
tures and features of MIP are only determined by the 
kinetic term. Thus there is no force or energy to obstruct 
and suppress the dispersing effect of kinetic energy in 
the system, then the MIP disperses and propagates in 
total space, and cannot be localized at all. This is the 
main reason why MIP has only wave feature in quantum 
mechanics. Meanwhile, the Hamiltonian in Eq.3 does 
not represent practical essences and features of MIP. In 
real physics, the energy operator of the systems and 
number operator of particles are always associated with 
the states of particles, i.e., they are related to the wave-
function of MIP. On the other hand, Eq.2 or 3 can de-

scribe only the states and feature of a single particle, and 
cannot describe the states of many particles. However, a 
system composed of one particle does not exist in nature. 
The simplest system in nature is the hydrogen atom, but 
it consists of two particles. In such a case, when we 
study the states of particles in realistic systems com-
posed of many particles and many bodies using quantum 
mechanics, we have to use a simplified and uniform av-
erage-potential unassociated with the states of particles 
to replace the complicated and nonlinear interaction 
among these particles [19-25]. This means that the mo-
tions of MIP and background field as well as the interac-
tions between them are completely frozen in such a case. 
Thus, these complicated effects and nonlinear interac-
tions determining essences and natures of particles are 
ignored completely, to use only a simplified or average 
potential replaces these complicated and nonlinear in-
teractions. This is obviously not reasonable. Thus nature 
of MIP is determined by the kinetic energy term in Eq.2. 
Therefore, the microscopic particles described by quan-
tum mechanics possess only a wave feature, not corpus-
cle feature. This is just the essence of quantum mechan-
ics. Then we can only say that quantum mechanics is an 
approximate and linear theory and cannot represent 
completely the properties of motion of MIPs.  

However, what is its direction of development? From 
the above studies we know that a key shortcoming or 
defect of LQM is its ignoring of dynamic states of other 
particles or background field and the dependence of the 
Hamiltonian or energy operator of the systems on the 
states of particles as well as nonlinear interactions 
among these particles. As a matter of fact, the nonlinear 
interactions always exist in any physics systems includ-
ing the hydrogen atom, if only the real motions of the 
particles and background as well as their interactions are 
completely considered [17-30]. At the same time, it is 
also a reasonable assumption that the Hamiltonian or 
energy operator of the systems depend on the states of 
particles [19-32]. Hence, to establish a correct new 
quantum theory, we must break through the elementary 
hypotheses of LQM, and use the above reasonable as-
sumptions to include the nonlinear interactions among 
the particles or between the particles and background 
field as well as the dependences of the Hamiltonian of 
the systems on the state of particles. Thus, we must es-
tablish nonlinear quantum mechanism (NLQM) to study 
the rules of motion of MIPs in realistic systems with 
nonlinear interactions by using the above method 
[19-32]. 

2. ESTABLISHMENT OF NONLINEAR 
QUANTUM MECHANICS 

Pang worked out the NLQM describing the properties 
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of motion of MIPs in nonlinear systems [17-30]. The 
elementary principles, theory, calculated rules and ap-
plications of NLQM are proposed and established based 
on the relations among the nonlinear interaction and 
soliton motions and macroscopic quantum effect through 
incorporating modern theories of superconductors, su-
perfluids and solitons [23-27]. In these physical systems 
the Hamiltonian, free energy or Lagrangian functions of 
the systems are all nonlinear functions of the wave func-
tion of the microscopic particles which break down the 
hypotheses for the independence of the Hamiltonian of 
the systems on the states of the particles and the linearity 
of the theory in the LQM, the dynamic equations  of 
microscopic particles, such as superconductive electrons 
and superfluid heliem atoms which were depicted by a 
macroscopic wave function,      ,, , ei tt t   rr r , are 
the time-independent and time-dependent Ginzburg-Lan- 
dau equations (G-L) and Gross-Pitaerskii (G-P) equation 
[33-38], which are in essence the nonlinear Schrödinger 
equation and have a soliton solution with a 
wave-corpuscle duality because the nonlinear interac-
tions can balance and suppress the dispersive effect of 
the kinetic energy in these dynamic equations [23-27]. 
Therefore, the investigations of essences and properties 
of macroscopic quantum mechanics, superconductivity 
and superfluid provide direction for establishing nonlin-
ear quantum mechanics [23-27]. 

Based on the above discussions, the fundamental 
principles of nonlinear quantum mechanics (NLQM) 
proposed by Pang can be summarized as follows [19- 
32]. 

1) Microscopic particles are represented by the fol-
lowing wave function, 

     ,, , ei tt t   rr r         (7) 

where both the amplitude  , t r and phase  , t r  of 
the wave function are functions of space and time, and 
satisfy different equation of motion. 

2) In the nonrelativistic case, the wave function 
 , t r  satisfies the generalized nonlinear Schrödinger 

equation (NLSE), i.e., 

   
2

22 ,
2

i b V t A
t m

     
     


r

   (8) 

or 

   
2

22 ,
2

b V t A
t m

     
     


r


  (9) 

where μ is a complex number, V is an external potential 
field, A is a function of  , t r , and b is a coefficient 
indicating the strength of nonlinear interaction. 

In the relativistic case, the wave function  , t r  
satisfies the nonlinear Klein-Gordon equation (NLKGE), 
including the generalized Sine-Gordon equation (SGE) 

and the 4 -field equation, i.e., 

 
2 2

2 2
sin

j

A
tt x

       
   

 
 (j = 1, 2, 3) (10) 

and 

 
2 2

2

2 2
j

A
t x

       
  

 
  (j = 1, 2, 3)  (11) 

where γ represents a dissipative or frictional effects,   
is a constant, β is a coefficient indicating the strength of 
nonlinear interaction and A is a function of  , t r . 

The Lagrange density function corresponding to Eq.8 
at   0A    is given by [23-27]: 

   
   

2

t t

2

i
L =

2 2m

V x (b/2)

    

   

  

 

    

 

 
    (12) 

where L’ = L is the Lagrange density function. The mo-
mentum density of the particle system is defined as 
P    . Thus, the Hamiltonian density of the sys-
tems is as follows 

 

      

t t

2
2

i

2

2
2m

H L

V b

   

   

 

  

    

    x






  (13) 

where H’ = H is the Hamiltonian density. Eqs.12 and 13 
show clearly that the Lagrange density function and 
Hamiltonian density of the systems are all related to the 
wave function of state of the particles and involve a 
nonlinear interaction, (b/2)  2

* . From the above 
fundamental principles, we see clearly that the NLQM 
breaks through the fundamental hypotheses of LQM in 
two aspects, namely the linearity of dynamic equations 
and independence of the Hamiltonian operator with the 
wave function of the particles. In the NLQM, the dy-
namic equations are all some nonlinear partial differen-
tial equations, in which nonlinear interactions, 

2
b   , 

related to state wave function   are involved; the 
Hamiltonian and Lagrangian operators in Eqs.12 and 13 
corresponding to these equations also are all related to 
the state wave function  . Hence, so far as this point is 
concerned, the NLQM [23-27] is really a break-through 
or a new development in quantum mechanics. In 
nonlinear quantum mechanics the natures of microscopic 
particles are simultaneously determined by the kinetic 
and nonlinear interaction terms. Thus we expect [38-40] 
that the nonlinear interaction could suppress and balance 
the dispersive effect of kinetic energy of the particles in 
dynamics equations and make the particles be localized 
as soliton with wave-corpuscle feature. However, the 
nonlinear Schrödinger equation and nonlinear Klein- 
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Gordon equation are evolved from linear Schrödinger 
equation and linear Klein-Gordon equation in linear 
quantum mechanics. Therefore, nonlinear quantum me- 
chanics is a development of linear quantum mechanics. 
The superconductivity, superfluidity, macroscopic quan- 
tum effects of materials are the experimental foundation 
of nonlinear quantum mechanics, its theoretical basis is 
modern superconductive, superfluid and soliton theo- 
ries [33-40], the mathematical foundation is the nonlin-
ear partial differential equations and the soliton theory. 

Based on the elementary principle Pang [23-27] estab-
lished the theory of nonlinear quantum mechanics, 
which includes the superposition theorem of state of the 
particles, relation of nonlinear Fourier transformation, 
nonlinear perturbation theory, theory of nonlinear quan-
tization, eigenvalue theory of nonlinear Schrödinger 
equation, calculated method of eigenenergy of Hamilto-
nian operator and relativistic theory of nonlinear quan-
tum mechanics, collision and scattering theory of mi-
croscopic particles, and so on [25-27]. Thus a complete 
nonlinear quantum mechanics was established. Then we 
can investigate the rules and properties of motion of mi-
croscopic particles in any physical systems using these 
principle and theories of nonlinear quantum mechanics.  

3. THE WAVE-CORPUSCLE 
PROPERTIES OF MICROSCOPIC 
PARTICLES  

3.1. Wave-Corpuscle Duality of Solution of 
Simple Nonlinear Schrödinger 
Equation 

As it is known, the microscopic particles have only 
the wave feature, but not corpuscle property in the 
quantum mechanics. Thus, it is very interesting what are 
the properties of the microscopic particles in the nonlin-
ear quantum mechanics? We now study firstly the prop-
erties of the microscopic particles described by nonlinear 
Schrödinger equation in Eq.8. In the one-dimensional 
case, the Eq.8 at V(x,t)= A( )=0 becomes as  

2
0t x xi b               (14) 

where 2 2x x m   , t t   . We now assume the 
solution of Eq.11 to be of the form 

     0, eik x x i tx t                 (15) 

where 0 ex x v t       . Inserting Eq.16 into Eq.15 we 
can obtain  

     
 

2 22 ( ) 0,

0

ei k v k b

b

                 


 (16) 

If the imaginary coefficient of    vanishes, then 
2ek v . Let 2A k    we get from Eq.16 

3 0b A              （17） 

This equation can be integrated, which results in  

 2 2 4 2D A b              (18) 

where D is an integral constant. The solution      of 
Eq.18 is obtained by inverting an elliptic integral:  

0 2 4

d

2D A b





 
 

 
 

          (19) 

Let 

      1/22 2 4 2
1 2 2P A b D                 , 

where  1/4
2b   , from Eq.19 we can get  

   ,K k F k       , where K(k) and  ,F k  

are the first associated elliptic integral and incomplete 
elliptic integral, respectively, and 

  1/2

1 2 1k   


    , 

    1/21/2 2
1,2 2 2A b D A b      . Using these and 

,2
1,2  , we have  

 

    

1/4

1

1/2
2 2 2 1/4

1 2

2

1 1 ( 2) ,

b

sn b k

  

  

    

      

 (20)  

when 
1/4

1 0 0 00, , 1, sec ( 2)D k h b                 , 

where  1/42
0 2A b  , the soliton solution of Eq.14 

can be obtained and represented finally by 

 

    0 0

2
,

sec [ ]exp

s

e

A
x t

b

h A x x v t i k x x t





  

           

 (21) 

Pang [19,23-32] represented eventually the solution of 
nonlinear Schrödinger equation in Eq.14 in the coordi-
nate of (x,t) by 

     0[ ]/0
0 0, sec ei mv x x EtA bm

x t A h x x vt         
  




 

(22) 

where  2
0 2 2A mv E b  , v is the velocity of mo-

tion of the particle, E   . This solution is completely 
different from Eq.6, and consists of a envelop and car-
rier waves, the former is 
    0 0 0, secx t A h A bm x x vt        and a bell- 

type non-topological soliton with an amplitude A0, the 
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latter is the   0exp i mv x x Et     . This solution 
is shown in Figure 1(a). Therefore, the particles de-
scribed by nonlinear Schrödinger Eq.14 are solitons. 
The envelop φ(x, t) is a slow varying function and is a 
mass centre of the particles; the position of the mass 
centre is just at x0, A0 is its amplitude, and its width is 
given by 02π 2W A m   .Thus, the size of the particle 
is 0 2π 2A W m    and a constant. This shows that 
the particle has exactly a determinant size and is local-
ized at x0. Its form resemble a wave packet, but differ in 
essence from both the wave solution in Eq.6 and the 
wave packet mentioned above in linear quantum me-
chanics due to invariance of form and size in its propa-
gation process. According to the soliton theory [39-40], 
the bell-type soliton in Eq.22 can move freely over 
macroscopic distances in a uniform velocity v in 
space-time retaining its form, energy, momentum and 
other quasi-particle properties. However, the wave pac- 
ket in linear quantum mechanics is not so and will be 
decaying and dispersing with increasing time. Just so, 
the vector r



or x in the representation in Eq.22 has 
definitively a physical significance, and denotes exactly 
the positions of the particles at time t. Thus, the wave- 
function  , t r or φ(x,t) can represent exactly the states 
of the particle at the position r


 or x at time t. These 

features are consistent with the concept of particles. 
Thus the microscopic particles depicted by Eq.14 dis-
play outright a corpuscle feature. 

Using the inverse scattering method Zakharov and 
Shabat [41,42] obtained also the solution of Eq.14, 
which was represented as  

   

 

1 2

0

2 2

2
, 2 sec 2 8

exp 4 2 '

x t h x x t
b

i t i x i

   

   

            
      

 (23) 

in the coordinate of (x’,t’), where   is related to the 
amplitude of the microscopic particle,   relates to the 
velocity of the particle， arg  , i    , 

   1

0 2 log 2 ,x       is a constant. We now re- 
write it as following form [23-29]: 

       2
0

2
, 2 sec 2 ' e e civ x x v t

ex t k h k x x v t
b

             

(24) 

where ve is the group velocity of the electron, vc is the 
phase speed of the carrier wave in the coordinate of 
(x’,t’). For a certain system, ve and vc are determinant 
and do not change with time. We can obtain 23/2k/b1/2 = 

A0, 

2

0

2

2
e c ev v v

A
b


 . According to the soliton theory, 

the soliton in Eq.24 has determinant mass, momentum 

and energy, which are represented by [23-29] 
2

0d 2 2sN x A



  , 

 * *
0d 2 2x x e

s e

p i x A v

N v const

  


 
   

 
 ,  (25) 

2 4 2
0

1 1
d

2 2x sol eE x E M v 




           (26) 

where 02 2sol sM N A   is just effective mass of the 
particles, which is a constant. Thus we can confirm that 
the energy, mass and momentum of the particle cannot 
be dispersed in its motion, which embodies concretely 
the corpuscle features of the microscopic particles. This 
is completely consistent with the concept of classical 
particles. This means that the nonlinear interaction, 

2
b   , related to the wave function of the particles, 
balances and suppresses really the dispersion effect of 
the kinetic term in Eq.14 to make the particles become 
eventually localized. Thus the position of the particles, 
r  or x, has a determinately physical significance.  

However, the envelope of the solution in Eqs.22-24 is 
a solitary wave. It has a certain wave vector and fre-
quency as shown in Figure 1(b), and can propagate in 
space-time, which is accompanied with the carrier wave. 
Its feature of propagation depends on the concrete nature 
of the particles. Figure 1(b) shows the width of the fre-
quency spectrum of the envelope φ(x,t) which has a lo-
calized distribution around the carrier frequency ω0. This 
shows that the particle has also a wave feature [23-29]. 
Thus we believe that the microscopic particles described 
by nonlinear quantum mechanics have simultaneously a 
wave-corpuscle duality. Eqs.22-24 and Figure 1(a) are 
just the most beautiful and perfect representation of this 
property, which consists also of de Broglie relation, 
E h     and p k , wave-corpuscle duality and 
Davisson and Germer’s experimental result of electron 
diffraction on double seam in 1927 as well as the tradi-
tional concept of particles in physics [11-15]. Thus we 
have reasons to believe the correctness of nonlinear 
quantum mechanics proposed by Pang.[23-29] 

3.2. Classical Natures of Collision of 
Microscopic Particles with Attractive 
Nonlinear Interactions 

(1). The features of collision of microscopic parti-
cles  
As a matter of fact, Zakharov and Shabat [41,42] dis-
cussed firstly the properties of collision of two particles 
depicted by the nonlinear Schrödinger Eq.14 at b = 1 > 0 
and b < 0. 
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Figure 1. The solution of Eq.14 and its features. 
 
According to Lax method [43], if two linear operators 
L  and B  corresponding to Eq.14,which depend on 
 , satisfy the following Lax operator equation: 

ˆ ˆ ˆ ˆ ˆ ˆ,tiL BL LB B L        

where B  is a self-adjoint operator, then the eigenvalue 
k  and eigenfunction   of the operator L  satisfy the 
equation: 

L̂ k    with   1

2

,x t
 

     
,       (27)  

but B  satisfies the equation: ˆ
tB i    . 

Zakharov and Shabat [41,42] found out that the con-
crete representations of L  and B  for Eq.14, which 
are as follows  

2

2
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




    
         

 
 

               

,  (28) 

where  2 1 2s b  ，  , t r satisfies Eq.14. We rep-
resent   in Eq.28 in one-dimensional case by  

 expS ikx            (29) 

where 
 

 

1 2

1 2

0 1

1 0

s
S

s

 
 
  

，
2

2
1

k
k b k

s
 


. 

Inserting Eq.91 and L  in Eq.90 into Eq.27 the 
Zakharov-Shabat (ZS) equation [41,42] can be obtained 
as follows: 

1 2 1x q i              (30) 

2 1 2x q i  
           (31) 

where 
 

1

2

1 22 21

i b
q i

s

     
 

, ks  . 

Zakharov and Shabat found out the soliton solution of 
Eq.14 using the inverse scattering method from ZS Eqs. 
30 and 31, which is denoted in Eq.22, and studied fur-
ther the properties of collision of these soliton solutions 
in these cases. In the studies of b = 1 > 0, they gave first 
this single soliton solution of this equation, where 
2 2  is the amplitude of the soliton, 2 2  denotes 
its velocity, i       is the eigenvalues of the 
linear operator L  in Eq.90, 0x  and    are the mass 
centre and phase of microscopic particle. In such a case 
they found further out the N-soliton solution of Eq.15 
and studied thus the collision features of two solitons in 
the system. We here adopted their results of research to 
explain the rules and properties of collision between the 
microscopic particles in the nonlinear quantum mechan-
ics. They [41,42] find from calculation that the mass 
centre and phase of particle occur only change after this 
collision. The translations of the mass centre 0mx   and 
phase m

  of mth particles, which moves to a positive 
direction after this collision, can be represented, respec-
tively, by 

0 0 *
1

*
1

1
0, and

2 arg

N
m p

m m
p mm m p

N
m p

m m
p m m p

x x
 

  

 
 

 



 



 


   



 
      




  (32) 

where m  and m  are some constants related to the 
amplitude and eigenvalue of mth particles, respectively. 
The equations show that shift of position of mass centre 
of the particles and their variation of phase are a con-
stants after the collision of two particles moving with 
different velocities and amplitudes. The collision process 
of the two particles can be described from Eq.32 as fol-
lows. Before the collision and in the case of t    
the slowest soliton is in the front while the fastest at the 
rear, they collide with each other at t’=0, after the colli-
sion and t   , they are separated and the positions 
just reversed. Thus Zakharov and Shabat[41-42] obtained 
that as the time t varies from   to  , the relative 
change of mass centre of two particles, 0mx , and their 
relative change of phases, m , can, respectively, de-
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noted as 

0 0 0

1

* *
1 1

1
ln ln

m m m

N m
m p m p

k m km m p m p

x x x

   
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 



  

    

  
  
   
 

  (33) 

and 

1
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1 1

2 arg 2 arg

m m m

m N
m p m p

k k mm p m p
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   
   

 



  

  

    
           
 

 (34) 

where 0mx   and phase m
  are the mass centre and 

phase of mth particles at inverse direction or initial posi-
tion, respectively. Eq.34 can be interpreted by assuming 
that the microscopic particles collide pair wise and every 
microscopic particle collides with others. In each paired 
collision, the faster microscopic particle moves forward 
by an amount of 

 1 *lnm m k m k       , m k  , and the slower one 
shifts backwards by an amount of 

 1 *lnk m k m k       . The total shift is equal to the 
algebraic sum of their shifts during the paired collisions. 
So that there is no effect of multi-particle collisions at all. 
In other word, in the collision process in each time the 
faster particle moves forward by an amount of phase 
shift, and the slower one shifts backwards by an amount 
of phase. The total shift of the particles is equal to the 
algebraic sum of those of the pair during the paired col-
lisions. The situation is the same with the phases. This 
rule of collision of the microscopic particles described 
by the nonlinear Schrödinger Eq.14 is the same as that 
of classical particles, or speaking, meet also the collision 
law of macroscopic particles, i.e., during the collision 
these microscopic particles interact and exchange their 
positions in the space-time trajectory as if they had 
passed through each other. After the collision, the two 
microscopic particles may appear to be instantly trans-
lated in space and/or time but otherwise unaffected by 
their interaction. The translation is called a phase shift as 
mentioned above. In one dimension, this process results 
from two microscopic particles colliding head-on from 
opposite directions, or in one direction between two par-
ticles with different amplitudes or velocities. This is 
possible because the velocity of a particle depends on 
the amplitude. The two microscopic particles surviving a 
collision completely unscathed demonstrate clearly the 
corpuscle feature of the microscopic particles. This 
property separates the microscopic particles (solitons) 
described by the nonlinear quantum mechanics from the 
particles in the linear quantum mechanical regime. Thus 
this demonstrates the classical feature of the microscopic 
particles.  

(2). The results of numerical simulation of collision 
of microscopic particles  

Pang et al..[23-29,44] who further simulated numeri-
cally the collision behaviors of two particles described 
nonlinear Schrödinger Eq.8 at V(x) = constant and 
  0A    using the fourth-order Runge_Kutta me- 

thod[45-46].  
For the purpose we now divide Eq.8 at   0A    

and b > 0 in one-dimensional case into the following 
two-equations  

2 2

2
,

2

u
i

t m xx

    
 

 
       (35) 

 
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2

02 2
.

u u
M v

xt x
 

   
     

    (36) 

Eqs.35 and 36 describe the features of motion of 
studied soliton and another particle ( such as, phonon) or 
background field (such as, lattice) with mass M and ve-
locity v0, respectively, where u is the characteristic quan-
tity of another particle (as phonon) or of vibration (such 
as, displacement) of the background field. The coupling 
between the two modes of motion is caused by the de-
formation of the background field through the studied 
soliton – background field coupling, such as, di-
pole-dipole interaction,   is the coupling coefficient 
between them and represents the change of interaction 
energy between the studied soliton and background field 
due to an unit variation of the background field. The 
relation between the two modes of motion can be ob-
tained from Eq.36 and represented by 

 
2

2 2
0

u
A

x M v v

 
 

           (37) 

If inserting Eq.37 into Eq.35 yields just the nonlinear 
Schrödinger Eq.8 at V(x) = constant, where 

 
2

2 2
0

b
M v v





 is a nonlinear coupling coefficient, 

 V x A , A is an integral constant. This result shows 
clearly that the nonlinear interaction

 
2

b    comes 
from the coupling interaction between the studied soliton 
and background field. This is the reason what 

2
b    is 

referred to as nonlinear interaction.  
In order to use fourth–order Runge-Kutta method[45-46]. 

to solve numerically Eqs.35 and 36 we must further dis-
cretize them, thus they are now denoted as  

       
       

.

1 1

0 1 12

n n n n

n n n

i t t J t t

r u t u t t

   

 
 

 

    
   


  (38) 

       

 

..

1 1

2 2

0 1 1

2

2

n n n n

n n

M u t W u t u t u t

r  

 

 

    
   

   (39) 
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where    n
n

t
t

t








 ,    2..

2

n
n

u t
u t

t





 and the follow- 

ing transformation relation between continuous and dis-
crete functions are used  

   , nx t t   and    , nu x t u t , 

       2
2

1 0 0 2

1

2!
n n

n n

t t
t t r r

x x

 
 

 
   

 
  

       2
2

1 0 0 2

1

2!
n n

n n

u t u t
u t u t r r

x x

 
   

 
   (40) 

where 2 2 2 2 2
0 0 0 0, 2 ,mr A J mr W M v r     

, 
0r  is distance between neighboring two lattice points. If 

using transformation:  expn n i t     we can 
eliminate the term  n t  in Eq.38. Again making a 
transformation:        n n n nt a t a t r ia t i    , then 
Eqs.38 and 39 become  

    1 1 0 1 12n n n n n nar J ai ai r u u ai         (41) 

    1 1 0 1 12n n n n n nai J ar ar r u u ar         (42) 

.

n nu y M               (43) 

 
  

1 1

2 2 2 2
0 1 1 1 1

2

2

n n n n

n n n n

y W u u u

r ar ai ar ai
 

   

  

   


  (44) 

2 2 2 2

n n n na ar ai         (45) 

where arn and ain are real and imaginary parts of an. 
Eqs.41-45 can determine states and behaviors of the 
microscopic particle. Their solutions can be found out 
from the four equations. There are four equations for one 
structure unit. Therefore, for the quantum systems con-
structed by N structure units there are 4N associated 
equations. When the fourth-order Runge-Kutta method 
[45,46] is used to numerically calculate these solutions 
we must further discretize them, in which n is replaced 
by j and let the time be denoted by n, the step length of 
the space variable is denoted by h in the above equations. 
An initial excitation is required in this calculation, which 
is chosen as, an(o)=ASech[(n-n0)  2

02 4JWr ] 
(where A is the normalization constant) at the size n, for 
the applied lattice, un(0) = yn(0) = 0. In the numerical 
simulation it is required that the total energy and the 
norm (or particle number) of the system must be con-
served. The system of units, ev for energy, 

0

A  for 
length and ps for time are proven to be suitable for the 
numerical solutions of Eqs.41-44. The one dimensional 
system is composed of N units and fixed, where N is 
chosen to be N = 200, and a time step size of 0.0195 is 
used in the simulations. Total numerical simulation is 
performed through data parallel algorithms and MALAB 

language. 
If the values of the parameters, , , , ,M J W   and 

0r  in Eqs.38 and 39 are appropriately chosen we can 
calculate the numerical solution of the associated 
Eqs.41-44 by using the fourth-order Runge-Kutta 
method [45,46], thus the changes of    2 2

n nt a t  , 
which is probability or number density of the particle 
occurring at the nth structure unit, with increasing time 
and position in time-place can be obtained. This result is 
shown in Figure 3, which shows that the amplitude of 
the solution can retain constancy in motion process, i.e., 
the solution of Eqs.38 and 39 or Eq.8 at V(x) = constant 
is very stable while in motion. In the meanwhile, we 
give the propagation feature of the solutions of Eqs.41- 
44 in the cases of a long time period of 250ps and long 
spacings of 400 in Figure 3, which indicates that the 
states of solution are also stable in the long propagation. 
According to the soliton theory [39,40] we can obtain 
that Eqs.38 and 39 have exactly a soliton solution, 
which have a feature of classical particles. 

In order to verify the corpuscle feature of the solution 
of nonlinear Schrödinger Eq.8 we study their collision 
property in accordance with the soliton theory[39-40]. Thus 
we further simulated numerically the collision behaviors 
of two solitonn solutions of Eq.8 at  
V(x) = 2

0mr A  
 
= constant using the fourth-order 

Runge-Kutta method[45-46]. This process resulting from 
two particles colliding head-on from opposite directions, 
which are set up from opposite ends of the channel, is 
shown Figure 4, where the above initial conditions si-
multaneously motivate the opposite ends of the channels. 
From this figure we see clearly that the initial two parti-
cles having clock shapes and separating 50 unit spacings 
in the channel collide with each other at about 8 ps and 
25 units. After this collision, the two solitons in the 
channel go through each other without scattering ob-
tained by Zakharov and Shabat [41,42] as mentioned 
above. Clearly, the property of collision of the and retain 
their clock shapes to propagate toward and separately 
along itself channels. The collision properties of the 
solitons described by the nonlinear Schrödinger Eq.8 are 
same with those solutions of Eq.8 is same with the rules 
of collision of macroscopic particles. Thus, we can con-
clude that microscopic particles described by nonlinear 
Schrödinger Eq.8 have a corpuscle feature. 

However, we see clearly that there is a wave peak with 
large amplitude in the colliding process in Figure 4. 
Obviously, this is a result of complicated superposition of 
solitary waves of two particles. This result displays the 
wave feature of the particles. Therefore, the collision 
process shown in Figure 3 represent obviously that the 
soliton solutions of the nonlinear Schrödinger equation 
have a both corpuscle and wave feature, which is due to 
the nonlinear interaction 

2
b   . 
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One words, the above properties of propagation and 
collision of particles described by the nonlinear 
Schrödinger equation with an external applied potential 
show that the particles are stable in propagation, and they 
can go through each other retaining their form after the 
collision of head-on from opposite directions, This fea-
ture is the same with that of the classical particles. 

However, a wave peak with large amplitude, which is a 
result of complicated superposition of two solitary waves, 
occur in the colliding process. This displays the wave 
feature of the solitons. Therefore, the collision property 
of the solitons shows clearly that the solutions of the 
nonlinear Schrödinger equation have a both corpuscle 
and wave feature. Obviously, this is due to the nonlinear 

 

 

Figure 2. Motion of soliton solution of Eqs.38 and 39. 
 

 

Figure 3. State of motion of microscopic particle described by Eqs.38 and 39 in the cases of a long time period 
and long spacings. 

 

 

Figure 4. the features of collision of microscopic particles. 
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interaction 

2
b  

,
, which suppresses the dispersive 

effect of kinetic energy in the dynamic equation. Thus the 
microscopic particles have a wave-corpuscle duality in 
this case. 

3.3. The Uncertainty Relationship for the 
Position and Momentum 

(1). Correct form of uncertainty relation in the 
linear quantum mechanics  

As it is known, the microscopic particle has not a de-
terminant position, disperses always in total space in a 
wave form in the linear quantum mechanics. Hence, the 
position and momentum of the microscopic particles 
cannot be simultaneously determined. This is just the 
well-known uncertainty relation. The uncertainty rela-
tion is an important formulae and also an important 
problem in the linear quantum mechanics that troubled 
many scientists. Whether this is an intrinsic property of 
microscopic particle or an artifact of the linear quantum 
mechanics or measuring instruments has been a long- 
lasting controversy. Obviously, it is closely related to 
elementary features of microscopic particles. Since we 
have established the nonlinear quantum mechanics, in 
which the natures of the microscopic particles occur 
considerable variations relative to that in the linear quan- 
tum mechanics, thus we expect that the uncertainty rela- 
tion in nonlinear quantum mechanics could be changed 
relative to that in the linear quantum mechanics. Then 
the significance and essence of the uncertainty relation 
can be revealed by comparing the results of linear and 
nonlinear quantum theories. 

The uncertainty relation in the linear quantum me-
chanics can be obtained from [25-29,47]  

     
2

ˆ ˆI ' A+i B ,t d 0       r r  

or 

         * ˆˆ ˆF = ,t F A ,t , B ,t ,t d      r r r r r


  (46)  

In the coordinate representation,   and  A B  are op-
erators of two physical quantities, for example, position 
and momentum, or energy and time, and satisfy the 
commuta t ion re la t ion  ˆ ˆˆ,A B iC    ,   ,t r  and 

 ,t r are wave functions of the microscopic particle 
satisfying the Schrödinger equation 1.7 and its conju- 

gate equation, respectively,   2

F̂= A '+ B ,   

( ˆ ˆ ˆ ˆA=A A, B=B B, A and  B     are the average values 
of the physical quantities in the state denoted by 
 ,t r ), is an operator of physical quantity related to 

A and  B ,   is a real parameter. After some simplifica-
tions, we can get from Eq.46 

2 2 2

2 2 2

ˆ ˆ ˆ ˆI=F= A 2 A B B 0 or

ˆ ˆ ˆA ' C ' B 0

 

 

       

    
  (47) 

Using mathematical identities, this can be written as  

2 2 2ˆ ˆˆA B C 4            (48) 

This is the uncertainty relation which is often used in 
the linear quantum mechanics. From the above deriva-
tion we see that the uncertainty relation was obtained 
based on the fundamental hypotheses of the linear quan-
tum mechanics, including properties of operators of the 
mechanical quantities, the state of particle represented 
by the wave function, which satisfies the Schrodinger  
Eq.2, the concept of average values of mechanical quan-
tities and the commutation relations and eigenequation 
of operators. Therefore, we can conclude that the uncer-
tainty relation in Eq.48 is a necessary result of the 
quantum mechanics. Since the linear quantum mechan-
ics only describes the wave nature of microscopic parti-
cles, the uncertainty relation is a result of the wave fea-
ture of microscopic particles, and it inherits the wave 
nature of microscopic particles. This is why its coordi-
nate and momentum cannot be determined simultane-
ously. This is an essential interpretation for the uncer-
tainty relation Eq.48 in the linear quantum mechanics. It 
is not related to measurement, but closely related to the 
linear quantum mechanics. In other words, if the linear 
quantum mechanics could correctly describe the states of 
microscopic particles, then the uncertainty relation 
should also reflect the peculiarities of microscopic parti-
cles. 

Eq.48 can be written in the following form [25-29,47]: 

 
 

2
2 2

2
2 2

ˆ ˆ ˆˆ ˆF= A ' A B / A

ˆ ˆˆ ˆB A B A 0

    

      
    (49) 

or 

   2 2
2 2 2 2ˆ ˆ ˆ ˆ ˆˆA 4 A B 4 A 0C C          (50) 

This shows that 2Â 0  , if  2
ˆ ˆA B  or 2ˆ 4C  is 

not zero, else, we cannot obtain Eq.48 and 

  2
2 2ˆ ˆA B A B      because when 2ˆ 0A  , Eq.50 

does not hold. Therefore,  2ˆ 0A   is a necessary 
condition for the uncertainty relation Eq.48, 2Â  can 
approach zero, but cannot be equal to zero. Therefore, in 
the linear quantum mechanics, the right uncertainty rela-
tion should take the form: 

 2
2 2 2ˆ ˆˆ 4A B C               (51) 
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(2). Uncertainty relation of microscopic particle in 
nonlinear quantum mechanics 

We now return to study the uncertainty relation of the 
microscopic particles described by the nonlinear quan-
tum mechanics. In such a case the microscopic particles 
is a soliton and have a wave-corpuscle duality. Thus we 
have the reasons to believe that the uncertainty relation 
in this case should be different from equation (115) in 
the linear quantum theory. 

Pang [26-29,67] derived this relation for position and 
momentum of a microscopic particle depicted by the 
nonlinear Schrödinger Eq.14 with a solution, s , as 
given in Eq.22. The function  ,s x t    is a square in-
tegral function localized at 0 0x   in the coordinate 
space. The Fourier transform of this function is given by 

   1
, , e d

2π
ip x

s sp t x t x 
  


          (52) 

Using Eq.22, then the Fourier transform is explicitly 
represented as  

   

   2 2 '
0

π π
, sec h 2 2

2 4 2

exp 4 2 2 ) ' 2 2

s p t p

i p t i p x i

 


    

 
   

 

      

 

(53) 
It shows that  ,s p t    is also localized at p in mo-

mentum space. Eqs.22 and 53 show that the microscopic 
particle is localized in the shape of soliton not only in 
position space but also in the momentum space. For 
convenience, we introduce the normalization coefficient 

0B in Eqs.22 and 53, then obviously 2 4 2oB  , the 
position of the mass center of the microscopic particle, 

x , and its square, 
2 ,   0x at t   are given by  

   2 22 2d ,  ds sx x x x x x x x 
 

 
          . (54) 

We can thus find that 
2 2

2 2 2 20
0 0 0 0

π
4 2 ,  4 2

12 2

A
x A x x A x 


        (55)  

respectively. Similarly, the momentum of the mass cen-
ter of the microscopic particle, p , and its square , 

2p , are given by 

   
2 2

2 2ˆ ˆd ,  ds sp p p p p p p p 
 

 
           

(56) 
which yield 

2 2 2 3 2 3
0 0 0

32 2
16 ,   + 32 2  

3
p A p A A     (57) 

The standard deviations of position 

22   x x x     and momentum 

22p p p      are given by 

   

   

2 2
2 2 2 2

0 0 0 2

2 2 3 3 2 2
0 0

π π
4 1 4 2 ,

12 96

1 8
32 2 1 4 2 ,

3 3

x A x A

p A A

 
 

   

 
      

 
       

(58) 

respectively. Thus Pang [27-29,47] obtain the uncer-
tainty relation between position and momentum for the 
microscopic particle depicted by the nonlinear 
Schrödinger equation in Eq.15  

π 6x p                 (59) 

This result is not related to the features of the micro-
scopic particle (soliton) depicted by the nonlinear 
Schrödinger equation because Eq.59 has nothing to do 
with characteristic parameters of the nonlinear 
Schrödinger equation. π  in Eq.59 comes from of the 
integral coefficient 1 2π .  For a quantized micro-
scopic particle, π  in Eq.59 should be replaced by 
π , because Eq.52 is replaced by 

   1
, d , e .

2π
ipx

s sp t x x t 
 


  


     (60) 

Thus the corresponding uncertainty relation of quan-
tum microscopic particle is given by[24-27,47]  

π 6 12x p h              (61) 

This uncertainty principle also suggests that the posi-
tion and momentum of the microscopic particle can be 
simultaneously determined in a certain degree. It is pos-
sible to estimate roughly the sizes of the uncertainty of 
these physical quantities. If it is required that 

 s , tx   in Eq.22 or  s p , t   in Eq.53 satisfies the 
admissibility condition i.e.,  s 0 0  ,we choose 

140,  = 300 0.253 2 2   and 0 0 x  in Eq.22 
(In fact, in such a case we can get   7

s 0 10  , thus the 
admissibility condition can be satisfied). We then get 

0.02624  x   and 19.893,p  according to Eqs.59 
and 60. This result shows that the position and momen-
tum of the microscopic particles in the nonlinear quan-
tum mechanics could be determined simultaneously 
within a certain approximation, one of these cannot ap-
proach infinite. 

Also, the uncertainty relation in Eq.61 or Eq.59 differ 
from the 2x p     in Eq.61 in the linear quantum 
mechanics. However, the minimum value 2x p     
has not been obtained from both the solutions of linear 
Schrödinger equation and experimental measurement up 
to now, except for the coherent and squeezed states of 
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microscopic particles. Therefore we can draw a conclu-
sion that the minimum uncertainty relationship is a 
nonlinear effect, instead of linear effect, and a result of 
wave-corpuscle duality.  

From this result we see that when the microscopic 
particles satisfy 2x p    , then their motions obey 
laws of the linear quantum mechanics, the particles are 
some waves. When the uncertainty relationship of 

12  or π 6  x p     is satisfied, the microscopic par-
ticles should be described by nonlinear quantum me-
chanics, and have a wave-corpuscle duality. If the posi-
tion and momentum of the particles meets 0x p   , 
then the particles have only a corpuscle feature, i.e., they 
are the classical particles. Therefore, the minimum un-
certainty relation in Eqs.61 and 59 exhibits clearly the 
wave-corpuscle duality of microscopic particles de-
scribed by nonlinear quantum mechanics, which bridges 
also the gap between the classical and linear quantum 
mechanics. This is a very interesting result in physics.  

(3). The uncertainty relations of the coherent states 
As a matter of fact, we can represent one-quantum 

coherent state of harmonic oscillator by[48] 

  2 2

0

ˆ ˆ ˆexp 0 e 0
1

n
n

n

b b b
n

   


   



  


 , 

in the number picture, which is a coherent superposition 
of a large number of quanta. Thus 

   ˆ ˆ,
2

x p i m
m

        


    
  , 

and  

 

 

2 2 2

2 2 2

ˆ 2 1 ,
2

ˆ 2 1
2

x
m
m

p

    

    

 

 

   

   




, 

where    ˆ ˆ ˆ ˆˆˆ ,   p=i ,
2 2

m
x b b b b

m




   
 

 

and  ˆ ˆb b  is the creation (annihilation) operator of 
microscopic particle (quantum),   and   are some 
unknown functions,   is the frequency of the particle, 
m  is its mass. Thus we can get 

   
2

2 22 2 m
, p , x p

2 2 4
x

m




      
  

 (62) 

This is a minimum uncertainty relationship for the 
coherent state.  

For the squeezed state of the microscopic particle: 

 +2 2exp b b 0     , which is a two quanta cohe- 

rent state, we can find that 

2 4 2 4m
e , p e

2m 2
x     


   

 
, 

using a similar approach as the above. Here   is the 
squeezed coefficient and 1  . Thus,  

81
,  e ,

2

x
x p

p m





   



 or   8ep x m      (63) 

This shows that the squeezed state meets a minimum 
uncertainty relationship, the momentum of the micro-
scopic particle (quantum) is squeezed in the two-quanta 
coherent state compared to that in the one-quantum co-
herent state. 

The above results show that both one-quantum and 
two-quanta coherent states satisfy the minimal uncer-
tainty principle. This is the same with that of the micro-
scopic particles in the nonlinear quantum mechanics. 
This means that coherent and squeezed states are a 
nonlinear quantum state, the coherence and squeezing of 
quanta are a kind of nonlinear quantum effect. Just so, 
the states of a microscopic particles described by the 
nonlinear Schrödinger Eq.8, such as the Davydov’s 
wave functions [49], both 1 2ID > and ID >,  and Pang’s 
wave function of exciton-solitons[50-53] in protein mole-
cules and acetanilide; the wave function of proton trans-
fer in hydrogen-bonded systems and the BCS’s wave 
function in superconductors [34], etc., are always repre-
sented by a coherent state. Hence, the coherence of par-
ticles does not belong to the systems described by linear 
quantum mechanics, because the coherent state cannot 
be obtained by superposition of linear waves, such as 
plane wave, de Broglie wave, or Bloch wave. Then the 
minimal uncertainty relation Eq.61, as well as Eqs.59 
and 63, are only applicable to microscopic particles de-
scribed by the nonlinear quantum mechanics. Thus it 
reflects the wave-corpuscle duality of the microscopic 
particles. 

Also, the above results indicate not only the essences 
of nonlinear quantum effects of the coherent state or 
squeezing state but also that the minimal uncertainty 
relationship is an intrinsic feature of the nonlinear quan-
tum mechanics systems including the coherent and 
squeezing states. 

Pang et al. [50-53] also calculated the uncertainty re- 
lationship and quantum fluctuations and studied their 
properties in nonlinear electron-phonon systems based 
on the Holstein model by a new ansatz including the 
correlations among one-phonon coherent and two-pho- 
non squeezing states and polaron state. Many interesting 
results were obtained, such as the minimum uncertainty 
relationship is related to the properties of the micro-
scopic particles. The results enhanced the understanding 
of the significance and essences of the minimum uncer-
tainty relationship. 
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4. CONCLUSIONS, RESOLUTION OF 
DIFFICULTIES OF LINEAR QUANTUM 
MECHANICS 

As it is known, the states and properties of micro-
scopic particle were described by the linear Schrödinger 
Eq.3 in the quantum mechanics, but the microscopic 
particles have only a wave feature, not corpuscle feature 
as described in Introduction. In nonlinear quantum me-
chanics, we have broken through the hypothesis of in-
dependence of Hamiltonian operator of the systems on 
states of microscopic particles, forsaken the above line-
arity hypothesis of linear quantum mechanics and taken 
into account the true motions of each particle and back-
ground field and the interactions between them, thus the 
microscopic particles accepted a nonlinear interaction 
and their laws of motion are then described by Eqs.8-13 
Thus natures and properties of the microscopic particles 
appear considerable changes, when compared with those 
in linear quantum mechanics. The changes can be sum-
marized as follows [17-37]. 

1) In this new theory although the states of micro-
scopic particles are still represented as a wave function 
 t r, in Eq.7, its absolute square, 

     2 2
t t t   r, r, r, , denotes no longer the pro- 

bability of finding the microscopic particle at a given 
point in the space-time, and give just the mass density of 
the microscopic particles at that point. Thus we can find 
out the particle number or the mass of the particle from 

2

d N 



 , the concept of probability is abandoned 

thoroughly in nonlinear quantum mechanics. Then the 
difficulty of statistical interpretation for the wave func-
tion of microscopic particle in quantum mechanics is 
solved . 

2) The dynamic equations the particles satisfy are not 
the linear Schrödinger equation in Eq.2 and linear 
Klein-Gordon equation, but nonlinear Schrödinger equa-
tions in Eqs. 8 and 9 and nonlinear Klein-Gordon equa-
tions in Eqs.10 and 11. Their solutions have a wave- 
corpuscle duality, which is embedded by organic com-
bination of envelope and carrier wave as shown in Fig-
ure 1. In such a case the particle has not only a wave 
feature, such as a certain amplitude, velocity, frequency, 
and wavevector, but also corpuscle natures, such as, a 
determinant mass centre, size, mass, momentum and 
energy. This is the first time to explain physically the 
wave- corpuscle duality of microscopic particles in 
quantum systems. This is a great advance of modern 
quantum theory, thus it solved a most great difficulty of 
one century existed in quantum mechanics. 

3) In nonlinear quantum mechanics, * dx  


 , 

* dx
t

  





   and * dH x   or H   are no 

longer some average values of the physical quantities in 
linear quantum mechanics, but represent the position, 
velocity and acceleration of the mass center and energy 
of the microscopic particles, respectively, and have de- 
terminant values. Thus, the presentations of physical 
quantities in the nonlinear quantum mechanics appear 
considerably the variations relative to those in linear 
quantum mechanics. This has solved the difficulty aris-
ing from the average values, which represent the physi-
cal quantities in linear quantum mechanics. 

4) The microscopic particles have determinant mass, 
momentum and energy, and obey universal conservation 
laws of mass, momentum, energy and angular momen-
tum. This amount to bridge over the gap between the 
classical mechanics and linear quantum mechanics. 

5)The microscopic particles meet the classical colli-
sion rule, when they collide with each other. Although 
these particles are deformed in the collision, which de-
notes its wave feature, they can still retain their form and 
amplitude to move towards after collision, where a phase 
shift occurs only. This denotes that the microscopic par-
ticles in nonlinear quantum mechanics possess both 
corpuscle and wave property, but the corpuscle property 
differs from classical particles. 

6) The position and momentum of the mass centre of 
microscopic particles are determinant, but their uncer-
tainties obey only to a minimal uncertainty relation due 
to the wave-corpuscle duality, which differs from those 
in linear quantum mechanics. This means that the coor-
dinate and momentum of microscopic particles may be 
simultaneously determined at a certain degree. This 
amount to bridge over the gap between the classical 
mechanics and linear quantum mechanics. 

These show clearly the necessity, validity and impor-
tance of establishing nonlinear quantum mechanics. 
Thus the difficulties of linear quantum mechanics can be 
also solved thoroughly by nonlinear quantum mechanics. 
Therefore, to develop and to establish NLQM can solve 
problems disputed by scientists in the LQM field for 
about a century [7-9], can promote the development of 
physics and enhance and raise the knowledge and recog-
nition levels to the essences of microscopic matter. We 
can predict that nonlinear quantum mechanics has exten-
sive applications in physics, chemistry, biology, poly-
mers, etc. 

5. ACKNOWLEDGEMENTS 

I would like to acknowledge the Major State Basic Research Devel-

opment Program (973 program) of China for the financial support 



X. F. Pang / Natural Science 3 (2011) 600-616 

Copyright © 2011 SciRes.                                                                    OPEN ACCESS 

615

(grate No: 212011CB503 701). 

REFERENCES 

[1] Bohr, D. and Bub, J. (1966) A proposed solution of the 
measurement problem in quantum mechanics. Review of 
morden Physics, 6, 453-469.  
doi:10.1103/RevModPhys.38.453 

[2] Schrödinger, E. (1935) Die gegenwartige situation in der 
quantenmechanik, Naturwissenschaften, 23, 807-849.  
doi:10.1007/BF01491891 

[3] Schrödinger, E. (1935) The present situation in quantum 
mechanics, a translation of translation of Schrodinger. 
Proceedings of the American Philosophical Society, 124, 
323-338.  

[4] Schrödinger, E. (1926) An undulatory theory of the me-
chanics of atoms and molecules. Physical Review, 28, 
1049-1070. doi:10.1103/PhysRev.28.1049 

[5] Heisenberg, W. Z. (1925) Über die quantentheoretische 
umdeu- tung kinematischer und mechanischer beziehun-
gen. Zeitschrift der Physik, 33, 879-893.  
doi:10.1007/BF01328377 

[6] Heisenberg, W. and Euler, H. (1936) Folgerungen aus der 
Diracschen Theorie des Positrons. Physics and Astronomy, 
98, 714-732. doi:10.1007/BF01343663 

[7] Born, M. and Infeld, L. (1934) Foundations of the New 
Field Theory, Proceedings of the American Philosophical 
Society, 144, 425.  

[8] Dirac, P.A.M. (1948) Quantum Theory of Localizable 
Dynamical Systems, Physical Review, 73, 1092.  
doi:10.1103/PhysRev.73.1092 

[9] Diner, S., Farque, D., Lochak, G., and Selleri, F. (1984) 
The wave-particle dualism. Riedel, Dordrecht. 

[10] Ferrero, M. and Van der Merwe, A. (1997) New devel-
opments on fundamental problems in quantum physics. 
Kluwer, Dordrecht. 

[11] Ferrero, M. and Van der Merwe, A. (1995) Fundamental 
problems in quantum physics. Kluwer, Dordrecht. 

[12] de Broglie, L., (1960) Nonlinear wave mechanics: A 
causal interpretation, Elsevier, Amsterdam. 

[13] de Broglie, L., (1955) Une interpretation nouvelle de la 
mechanique ondulatoire: Est-elle possible? Nuovo Cimento, 
1, 37-50. 

[14] Bohm, D.A. (1952) Suggested interpretation of the 
quantum theory in terms of ‘hidden’ variables. Physical 
Review, 85, 166-180. 

[15] Potter, J. (1973) Quantum mechanics. North-Holland 
publishing Co. Amsterdam. 

[16] Jammer, M. (1989) The concettual development of 
quantum mechanics. Tomash Publishers, Los Angeles.  

[17] Einstein, A., Podolsky, B. and Rosen, N. (1935) The 
appearance of this work motivated the present–shall I say 
lecture or general confession? Physical. Review, 47, 
777-780. doi:10.1103/PhysRev.47.777 

[18] Einstein, A.P., (1979) A centenary Volume. Harvard Uni-
versity Press, Cambridge.  

[19] Pang, X.F. (1985) Problems of nonlinear quantum me-
chanics. Sichuan Normal University Press, Chengdu. 

[20] Pang, X.F. (2008) The Schrodinger equation only descry- 
bes approximately the properties of motion of micro- 
scopic particles in quantum mechanics. Nature Sciences, 

3, 29.  
[21] Pang, X.F. (1985) The fundamental principles and theory 

of nonlinear quantum mechanics. China Journal of Po-
tential Science, 5, 16.  

[22] Pang, X.F. (1982) Macroscopic quantum mechanics. 
China Nature Journal, 4, 254. 

[23] Pang, X.F. (1986) Bose-condensed properties in super-
con-ducors. Journal of Science Exploration, 4, 70. 

[24] Pang, X.F. (1991) The theory of nonlinear quantum me-
chanics: In research of new sciences, Science and 
Techbology Press, Hunan, 16-20. 

[25] Pang, X.F. (2008) The wave-corpuscle duality of micro-
scopic particles depicted by nonlinear Schrodinger equa-
tion. Physica B, 403, 4292-4300.  
doi:10.1016/j.physb.2008.09.031 

[26] Pang, X.F. (2008) Features and states of microscopic 
particles in nonlinear quantum–mechanics systems. Fron-
tiers of physics in China, 3, 413. 

[27] Pang, X.F. (2005) Quantum mechanics in nonlinear sys-
tems. World Scientific Publishing Co., Singapore.  
doi:10.1142/9789812567789 

[28] Pang, X.F. (2009) Nonlinear quantum mechanics. China 
Electronic Industry Press, Beijing.  

[29] Pang, X.F. (1994) The Theory of nonlinear quantum 
mechanics. Chinese Chongqing Press, Chongqing. 

[30] Pang, X.F. (2006) Establishment of nonlinear quantum 
mechanics. Research and Development and of World 
Science and Technology, 28, 11. 

[31] Pang, X.F. (2003) Rules of motion of microscopic parti-
cles in nonlinear systems. Research and Development 
and of World Science and Technology, 24, 54. 

[32] Pang, X.F. (2006) Features of motion of microscopic 
particles in nonlinear systems and nonlinear quantum 
mechanics in sciencetific proceding-physics and others. 
Atomic Energy Press, Beijing. 

[33] Parks, R. D. (1969) Superconductivity. Marcel, Dekker. 
[34] Josephson, D.A. (1965), Supercurrents through barriers, 

Advanced Physics, 14, 39-451. 
[35] Suint-James, D. et al., (1966) Type-II superconductivity, 

Pergamon, Oxford. 
[36] Bardeen, L.N., Cooper L.N. and Schrieffer, J. R. (1957) 

Superconductivity theory. Physical Review, 108, 1175- 
1204. doi:10.1103/PhysRev.108.1175 

[37] Barenghi, C.F., Donnerlly, R.J. and Vinen, W.F. (2001) 
Quantized vortex dynamics and superfluid turbulence. 
Springer, Berlin. doi:10.1007/3-540-45542-6 

[38] Donnely, R.J. (1991) Quantum vortices in heliem II. 
Cambridge University Press, Cambridge.  

[39] Pang, X.F. (2003) Soliton physics. Sichuan Science and 
Technology Press, Chengdu. 

[40] Guo, B.L. and Pang, X.F. (1987) Solitons. Chinese Sci-
ence Press, Beijing. 

[41] Zakharov, V.E. and Shabat, A.B. (1972) Exact theory of 
two-dimensional self-focusing and one-dimensional self- 
domulation of wave in nonlinear media. Soviet Physics 
JETP, 34, 62. 

[42] Zakharov, V.E. and Shabat, A.B. (1973) Interaction be-
tween solitons in a stable medium. Soviet Physics JETP, 
37, 823 

[43] Lax, P.D. (1992) Integrals of nonlinear equations of evo-
lution and solitary waves, Cambridge University Press, 
Cambridge, 107-351 

http://dx.doi.org/10.1007/BF01491891�
http://dx.doi.org/10.1103/PhysRev.28.1049�
http://dx.doi.org/10.1007/BF01328377�
http://dx.doi.org/10.1007/BF01343663�
http://dx.doi.org/10.1103/PhysRev.73.1092�
http://dx.doi.org/10.1103/PhysRev.47.777�
http://dx.doi.org/10.1016/j.physb.2008.09.031�
http://dx.doi.org/10.1142/9789812567789�
http://dx.doi.org/10.1103/PhysRev.108.1175�
http://dx.doi.org/10.1007/3-540-45542-6�


X. F. Pang / Natural Science 3 (2011) 600-616 

Copyright © 2011 SciRes.                                                                    OPEN ACCESS 

616 

[44] Pang, X.F. (2010) Collision properties of microscopic 
particles described by nonlinear Schrodinger equation. 
International Journal of Nonlinear science and numeri-
cal Simulation, 11, 1069-1075. 

[45] Stiefel, J. (1965) Einfuhrung in die numerische mathe-
matik. Teubner Verlag, Stuttgart.  

[46] Atkinson, K.E. (1987) An Introdution to numerical 
analysis. Wiley, New York. 

[47] Pang, X.F. (2009) Uncertainty features of microscopic 
particles described by nonlinear SchrÖdinger equation. 
Physica B, 405, 4327-4331.  
doi:10.1016/j.physb.2009.08.027 

[48] Glanber, R.J. (1963) Coherent and incoherent states of 
the radiation field. Physical Review, 13, 2766-2788.  
doi:10.1103/PhysRev.131.2766 

[49] Davydov, A. S. (1985) Solitons in molecular systems. D. 

Reidel Publishing, Dordrecht. 
[50] Pang, X.F. (2008) Properties of nonadiabatic quantum 

fluctuations for the strongly coupled electron-phonon 
system. Science in China Series G, 51, 225-336. 

[51] Pang, X.F. (1999) Influence of the soliton in anharmonic 
molecular crystals with temperature on Mossbauer effect. 
European Physical Journal B, 10, 415.  
doi:10.1007/s100510050871 

[52] Pang, X.F. (2001) The lifetime of the soliton in the im-
proved Davydov model at the biological temperature 
300K for protein molecules. Physics and Astronomy, 19, 
297-316. doi:10.1007/s100510170339 

[53] Pang, X.F. (1990) The properties of collective excitation 
in organic protein molecular system. Journal of Physics: 
Condensed Matter, 2, 9541.  
doi:10.1088/0953-8984/2/48/008 

 
 

http://dx.doi.org/10.1016/j.physb.2009.08.027�
http://dx.doi.org/10.1103/PhysRev.131.2766�
http://dx.doi.org/10.1007/s100510050871�
http://dx.doi.org/10.1007/s100510170339�
http://dx.doi.org/10.1088/0953-8984/2/48/008�

