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ABSTRACT 

A continuing challenge for software designers is to develop efficient and cost-effective software implementations. Many 
see software reuse as a potential solution; however, the cost of reuse tends to outweigh the potential benefits. The costs 
of software reuse include establishing and maintaining a library of reusable components, searching for applicable 
components to be reused in a design, as well as adapting components toward a proper implementation. In this context, 
a new method is suggested here for component classification and retrieval which consists of K-nearest Neighbor (KNN) 
algorithm and Vector space Model Approach. We found that this new approach gives a higher accuracy and precision 
in component selection and retrieval process compared to the existing formal approaches. 
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1. Introduction 

Many software organizations realized that developing the 
software using reusable components could dramatically 
reduce development effort, cost and accelerate delivery. 
But the non-existence of a standard searching technique 
for finding the suitable component and also the lack of 
appropriate tool in this field contributed towards in large- 
scale failures in their approach. From the past studies on 
this field, it is found that researchers are tried with dif-
ferent approaches to improve the adaptability of the 
component but very few studied had taken place in im-
proving the efficiency of component retrieval. Fuzzy 
linguistic approach is familiar in the information retrieval 
process [1]. In this paper we have used an algebraic 
model namely Vector Space model in which text docu-
ments are represented as vectors of identifiers, such as, 
index terms which is used in information filtering, in-
formation retrieval, indexing and relevancy rankings 
along with K-Nearest Neighbor(KNN) algorithm for 
classification of documents. The paper is structured as 
follows. Section 1 starts with a discussion of what is 
meant by software reuse and a reusable component. Sec-
tion 2 talks about present scenario in the component re-
trieval process. Section 3 presents methodology adopted. 

Section 4 mentions some concluding remarks and the 
relevance of related models which can be extended from 
the vector space model and various combination algo-
rithms which can contribute towards further extension of 
this work are pointed out. 

1.1. What Is Software Reuse? 

Software reuse at its most basic level consists of mak-
ing use of any existing information, component or prod-
uct when designing and implementing a new system or 
product. 

There are differing opinions as to which activities con-
stitute genuine software reuse. Replication of an entire 
software program does not count as reuse. Reuse of as-
sets is dependent upon both similarities and differences 
between the applications in which the component is be-
ing used [2].   

Many organizations already practice a limited form of 
reuse, for example, most developers have libraries of 
components that they have developed in previous pro-
jects, or they use standard libraries, which are available 
with many programming languages [1]. About 30% of 
the cases, it is a very ad-hoc method of reuse, and it will 
work very well on a small scale and it will not be suitable 
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for entire organizations [3]. Instead, businesses need to 
implement a systematic reuse program in order to gain 
the full advantages of reuse. 

1.2. What Can Be Reused? 

The definition of a reusable component is “any com-
ponent that is specifically developed to be used, and is 
actually used, in more than one context” [3]. This does 
not just include code; other products from the system 
lifecycle can also be reused, such as specifications and 
designs, and even requirements on occasion [4]. 
‘Components’ in this case can be taken to include all 
potentially reusable products of the system lifecycle, 
including code, documentation, design, requirements etc.  

There are various criteria that should be satisfied in 
order for an asset to be successfully reusable. These are 
grouped into General, Functional and Technical require-
ments [5]. General requirements focus on aspects such as 
compliance with relevant standards, completeness, mod-
ularity and simplicity. All components should conform to 
the General requirements. Functional requirements in-
clude such concerns as which business processes it will 
simulate or automate, and how well it does this. Func-
tional requirements mainly concern Vertical or Domain- 
specific assets and tend to be very specific to each in-
formation domain. Lastly, Technical requirements refer 
to criteria such as interoperability, portability, commu-
nication, security etc [2].   

There are different levels of reuse, which can be 
considered [3]. At the highest level, entire applications 
can be reused on different platforms provided they are 
portable. Sub-systems can be reused within different ap-
plications, possibly within different domains. Reusable 
assets can be also being built in-house, retrieved from 
legacy systems or can be bought from an external 
source. 

2. Present Scenario in the Component  
Retrieval Process  

Existing approaches to software component retrieval 
process cover a wide spectrum of component encoding 
methods and search or matching algorithms. The en-
coding methods differ with respect to their soundness, 
completeness, and the extent to which they support an 
estimate of the effort it takes to modify a component. 
Text-based encoding and retrieval is neither sound nor 
complete. Its disadvantages have been thoroughly in the 
information retrieval literature [5,6]. Lexical descrip-
tor-based encoding approach also suffers from a number 
of problems about developing and using classification 
vocabulary [7]. Software specific challenges include the 
fact that one-word or one-phrase abstractions are hard to 
come by in the software domain [8]. From the user’s 

point of view, lack of familiarity with the vocabulary is 
also pointed out as draw back in using a component 
retrieval system effectively [9]. In this context Vector 
space Model will be a promising solution for component 
retrieval process [10,11].  

3. Methods Used 

3.1. Vector Space Model Approach  

It is an algebraic model in which documents and que-
ries are represented as vectors [12] as follows: 

dj = (w1,j,w2,j,...,wt,j) 

q = (w1,q,w2,q,...,wt,q) 

Each dimension corresponds to a separate term. If a 
term occurs in the document, its value in the vector is 
non-zero. An indexed collection of documents is repre- 
sented as a term table which has documents as fields 
and words as primary key for row. The (D)i(Word)j-th 
entry of this table records how many times the j-th 
search term appeared in the i-th document. The fol-
lowing Figure 1 shows a sample vector space model. 

The first major component of a vector space search 
model is the concept of a term space. A term space con-
sists of every unique word that appears in a collection of 
documents. The second major component of a vector 
space search model is term counts. Term counts are sim-
ply records of how many times each term occurs in an 
individual document. This is represented as a table. By 
using the term space as a coordinate space, and the term 
counts as coordinates within that space, we can create a 
vector for each document. As the number of terms in-
creases, the dimensionality of VSM also increases. Fig-
ure 2 shows the structure of the word database and Fig-
ure 3 shows the structure of the rank table. 

For these words documents and corresponding ranks 
will be stored in the rank table. 

Based on the ranking terms are compared as “ranked 
higher than”, “ranked lower than” or “ranked equal to” the 
second, making it possible to evaluate complex informa-
tion according to query criteria. Here search vector space  
 

 
Figure 1. A sample vector space model. 
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Words d1 d2 d3 d4 … dn 
 1 1 1 1 0 1 
 3 0 2 1 0 1 
 0 1 3 0 0 2 
 0 0 0 0 0 0 

Figure 2. Structure of word database. 
 

Dno Rank 
d1 1 
d2 3 
… … 
dn 1 

Figure 3. Structure of rank table. 
 
search model ranks the documents it finds according to 
the estimation of their relevance, making it possible for  
the user quickly to select the components according to 
their requirements [7,13]. 

Relevancy rankings of documents in a keyword search 
can be calculated, using the assumptions of document 
similarities theory, by comparing the deviation of angles 
between each document vector and the original query 
vector where the query is represented as same kind of 
vector as the documents. 

It is easier to calculate the cosine of the angle between 
the vectors instead of the angle: 

2

2

cos
d q

d q



  

A cosine value of zero means that the query and doc-
ument vector are orthogonal and have no match (i.e. the 
query term does not exist in the document being consid-
ered).  

3.2. The Document Classification Algorithm 
Employed 

KNN classifier is an instance-based learning algorithm 
that is based on a distance function for pairs of observa-
tions, such as the Euclidean distance or Cosine. The 
k-Nearest Neighbour (kNN) classifier algorithm has been 
studied extensively for text categorization by Yang and 
Liu [6]. In this classification paradigm, k nearest neigh-
bors of a training data are computed first. Then the simi-
larities of one sample from testing data to the k nearest 
neighbors are aggregated according to the class of the 
neighbors, and the testing sample is assigned to the most 
similar class. The similarity in score of each neighbour 
document to the test document is used as the weight of 
the categories of the neighbour document [8]. If there are 
several training documents in the k nearest neighbour, 
which share a category, the category gets a higher weight. 
In this work, we used the Cosine distance to calculate the 
similarity score for the document representation.  

One of advantages of KNN is that it is well suited for 

multi-modal classes as its classification decision is based 
on a small neighborhood of similar objects (i.e., the ma-
jor class). So, even if the target class is multi-modal (i.e., 
consists of objects whose independent variables have 
different characteristics for different subsets), it can still 
lead to good accuracy. A major drawback of the similar-
ity measure used in KNN is that it uses all features 
equally in computing similarities. This can lead to poor 
similarity measures and classification errors, when only a 
small subset of the features is useful for classification 
[5]. 

3.2.1. Steps for KNN Using Average Cosine 
Step 1: Select k nearest training documents, where the 
similarity is measured by the cosine between a given 
testing document and a training document.  

Step 2: Using cosine values of k nearest neighbors and 
frequency of documents of each class i in k nearest 
neighbors, compute average cosine value for each class i, 
Avg_Cosine (i).  

Step 3: Classify the testing document a class label 
which has largest average cosine. 

In order to reduce the dimensionality of VSM and 
keep useful information, we first compute concept vec-
tors for given categories. Then, using the concept vectors 
as projection matrix, projection of both training and test-
ing data is done. Finally, we apply KNN algorithm on the 
projected VSM model that has reduced dimensionality.  

3.2.2. Steps of Combined Approach for Vector Based 
Algorithm and K-Nearest Neighbor Algorithm  

Step 1: Compute a concept vector for each category us-
ing true label information of training documents and then 
construct concept vector matrix C (w-by-c), where c is 
the number of categories.  

Step 2: Do projection of VSM model A (w-by-d) using 
concept vector matrix C (w-by-c) (i.e., C^T * A ). 

Step 3: Apply KNN with the projected VSM model 
(i.e., c-by-d matrix).  

4. Conclusions and Future Work 

A novel KNN classification algorithm combining model 
and evidence theory is proposed in this paper. The new 
method not only overcomes the main shortage of lazy 
learning in traditional KNN, but also takes the distances 
between samples to be recognized and samples in 
k-neighbors into account. At the same time the method 
resolves the unrecognizable cases of unknown samples. 
Applying the classification algorithm into the document 
recognition, experimental results show its satisfied rec-
ognition rate and fast categorization speed. 

There are also models based on and extending the 
vector space model such as generalized vector space 
model, Topic-based Vector Space Model and latent se-

Copyright © 2011 SciRes.                                                                              JSEA 



A Mixed Method Approach for Efficient Component Retrieval from a Component Repository 

Copyright © 2011 SciRes.                                                                               JSEA 

445

mantic indexing etc and also combination algorithms 
which consists of clustering, Singular Value Decomposi-
tion(SVD)-based Algorithm, Naive Bayesian Algorithm 
and variations of KNN algorithm. Future work can be 
aimed in these directions. 
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