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Abstract 
The Wisconsin Breast Cancer Dataset has been heavily cited as a benchmark dataset for classifica-
tion. Neural Network techniques such as Neural Networks, Probabilistic Neural Networks, and Re-
gression Neural Networks have been shown to perform very well on this dataset. However, despite 
its obvious practical importance and implications for cancer research, a thorough investigation of 
all modern classification techniques on this dataset remains to be done. In this paper we examine 
the efficacy of classifiers such as Random Forests with varying number of trees, Support Vector 
Machines with different kernels, Naïve Bayes model and neural networks on the accuracy of clas-
sifying the masses in the dataset as benign/malignant. Results indicate that Support Vector ma-
chines with a Radial Basis function kernel give the best accuracy of all the models attempted. This 
indicates that there are non-linearities present in the dataset and that the Support vector machine 
does a good job of mapping the data into a higher dimensional space in which the non-linearities 
fade away and the data becomes linearly separable by large margin classifier like the support vec- 
tor machine. These methods show that modern machine learning methods could provide for im-
proved accuracy for early prediction of cancerous tumors. 
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1. Introduction 
Breast cancer remains one of the biggest health concerns for women across the world today. Although the risk 
factors vary with race, location, lifestyle and diet, it remains one of the biggest health concerns for women 
across the globe. According to an estimate by the National Cancer Insititute of the United States, 13.4 per cent 
of women born today will be diagnosed with breast cancer at some stage of their lives [1]. Many techniques for 
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the diagnosis and prognosis of breast cancer have been discussed [2]-[8]. However, even today the method that 
can confirm malignancy accurately with a high sensitivity is a surgical biopsy, a costly and painful procedure. 
To this end modern classification techniques attempt to replicate the accuracy of a biopsy, without the negative 
aspects of a surgical biopsy. 

This paper looks at the breast cancer diagnosis problem using the Wisconsin Diagnostic Breast Cancer 
(WDBC) data set which is available publicly on the web [9]. The data set involves recordings from a Fine 
Needle Aspirate (FNA) test. The aim of the classification is to provide a distinction between the malignant and 
the benign masses. The WDBC dataset is the result of the efforts made at the University of Wisconsin Hospital 
for the diagnosis of breast tumours solely based on FNA test. This test involves fluid extraction from a breast 
mass using a small-gauge needle and then visual inspection of the fluid under a microscope. Figure 1 depicts 
two images, which were taken from fine needle biopsies of breast tumours [10]. Figure 1(a) shows a benign in-
stance and Figure 1(b) a malignant tumour image. These sample images are provided as part of the dataset. 
Several modern classifiers were evaluated on this benchmark dataset including Support Vector Machines 
(SVMs), Neural Networks, Random Forests and Naïve Bayes models. 

2. Materials and Methods 
2.1. The WDBC Dataset 
The Wisconsin Diagnostic Breast Cancer (WDBC) dataset consist of 569 observations with 357 negative (be-
nign) and 212 positive (malignant) observations, where each one represents FNA test measurements for one 
sample. Each observation has 32 attributes, where the first two attributes correspond to a unique identification 
number and the diagnosis status (benign/malignant). The remaining 30 features are values of ten real-valued 
features, along with their mean, standard error and the mean of the three largest values (“worst” value) for each 
cell nucleus respectively. These ten real values, which are depicted in Table 1, are computed from a digitized  
 

 
(a)                                                    (b) 

Figure 1. Images taken using the FNA test: (a) Benign; (b) Malignant. Images reproduced from [11].                                  
 
Table 1. WDBC/WPBC cell nuclei characteristics attributes.                                                            

Cell Nuclei Characteristics 
1) radius [mean of distances from centre to points on the perimeter], 
2) Texture [standard deviation of grey scale values], 
3) perimeter, 
4) area, 
5) smoothness [local variation in radius lengths], 
6) compactness[(perimenter)2/area −1], 
7) concavity [severity of concave portions of the contour], 
8) concave points [number of concave portions of the contour], 
9) symmetry, 
10) fractal dimension [“coastline approximation” −1]. 

http://dx.doi.org/10.4236/oalib.1100660


L. Vig 
 

OALibJ | DOI:10.4236/oalib.1100660 3 September 2014 | Volume 1 | e660 
 

image of a fine needle aspirate (FNA) of breast tumor, describing characteristics of the cell nuclei present in the 
image and are recorded upto four significant digits. For the current problem, the WDBC dataset was used in 
several publications in the medical literature [10]-[15]. In addition, due to its consistency and robust creation, 
this dataset has also been used for verification purposes over the classification or prediction performance of in-
formation systems in other scientific areas [16] [17]. 

2.2. Neural Networks 
The field of neural networks was initiated due to the efforts by early computer scientists to replicate the neurons 
in the human brain in an effort to mimic human intelligence. The perceptron [18] by Rosenblatt was the first 
neural network architecture that was capable of learning a hyperplane for classification. However, the limitation 
of the perceptron as pointed out by Minsky and Pappart [19] was that it could only learn boundaries for linearly 
seperable datasets. This limitation was wrongly construed to imply that all neural network architectures suffered 
from this limitation and this led to a drop in research funding for artificial neural networks. However, in 1985 
Rummelhart, Hinton rediscovered the back propagation algorithm [20] and this allowed feedforward neural ar-
chitectures to learn non-linear decision boundaries. In fact Kolgomorovs theorem [21] shows that any function 
can be learnt using a three layer feedforward neural network. 

Figure 2 shows a typical three layer feedforward network where each layer has a set of independent units that 
receive weighted inputs from the preceding layer (and direct inputs in the case of the first input layer). The in-
puts are then combined and an activation function is applied to the weighted sum of the inputs and this is the 
output of the unit that is sent to the next successive layer (or to the outputs in the case of the output layer). The 
weights between units in successive layers are the parameters to the network. In order to learn these parameters 
the backpropagation algorithm is employed. 

Backpropagation works by modifying the weights of the feedforward network in proportion to the error sensi-
tivity of the network with respect to a particular weight. The weight update rule for a weight wij, also called the 
delta rule is given by: 

d
dij

ij

Ew
w

∆ =α                                          (1) 

where α is the learning rate. 
For the given WDBC dataset the inputs are the features and the outputs will have two units corresponding to 

benign and malignant instance. The correct output unit will have a value 1 and the incorrect output should have 
a value 0. After training the test set error is evaluated as explained in Section 3. 

2.3. Random Forests 
Random forest are an ensemble learning method for classification that combine the predictions of several deci-
sion trees. Random forests grow a forest of decision trees where each tree is mapped onto a different feature 
space. Leo Breiman. [22] introduced the idea of random forests [23]. The paper describes a method of building a  
 

 
Figure 2. A three layer neural network.                  
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forest of uncorrelated trees using a CART [24] like procedure, combined with randomized node optimization 
and bagging [25]. 

The technique of bootstrap aggregating, or bagging, is applied for random forests to generate tree learners. 
Given a training set 1, nX x x=   with responses Y = y1 through yn, bagging repeatedly selects a bootstrap sam-
ple of the training set and fits B trees to these samples: 

For b = 1 through B: 
1) Sample, with replacement, n training examples from X, Y; call these Xb, Yb. 
2) Train a decision or regression tree fb on Xb, Yb. 
After training, predictions for unseen samples x' can be made by taking the majority vote of the predictions 

from all the individual trees on x': Figure 3 shows the combination of a set of trees to generate a prediction 
membership probability. 

2.4. Support Vector Machines 
Support Vector Machines are an example of a large margin classifier, utilizing the notion of functional and 
geometric margins. The geometric margin is simply the smallest distance of the decision boundary from all of 
the data points in either class. The closest points to the decision boundary are called support vectors. The objec-
tive is to find the decision boundary that maximizes the geometric margin. The traditional method to achieve 
this is by reducing the problem to a convex optimization problem, formulating the dual of the problem and 
solving it using an efficient algorithm called the SMO algorithm [26]. Figure 4 shows how a large margin clas-
sifier operates while separating two classes of data and how a larger margin allows for reduced overfitting. 

In order to map the input to a higher dimension often a function called the kernel function is employed. This 
function allows for an efficient mapping that can be computed efficiently in terms of the inner product for solv-
ing the optimization problem to obtain the optimal geometric margin. This is often called the kernel trick [27]. 
Many kernel functions exist such as the linear, radial basis function and quadratic kernels used in this paper. 

2.5. Naïve Bayes Classifier 
This is a generative model of classification, which means it does not directly attempt to predict the probability of 
the class given the data, but attempts to model the data itself and then uses Bayes theorem to extrapolate the re-
sults. 

 

 
Figure 3. A random forest classifier.                                            

 

 
Figure 4. Margins and support vectors for a two class problem.                       
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Here a prior probability over the class to be predicted is evaluated i.e. P(y) is estimated from the training data 
as the probability of any instance in the training data being positive or negative, subsequently the probability of 
the feature vector x is evaluated given the value of y. This is where the Naïve Bayes assumption plays a role, the 
Naïve Bayes assumption implies that all of the features of x are independent given the class of the feature vector 
y. The probabilities of each of the features of x can be easily evaluated by only considering the instances with 
the correct value of y and the proportion of each feature value in the set. The denominator in Equation (2) need 
not be evaluated as it is simply a normalizing constant. 

3. Experiments 
The data was split into a training set (70%), testing set (15%) and validation sets (15%) several times and a 
Double Cross Validation (DCV) Approach was utilized to evaluate the accuracy, sensitivity and specificity of 
each of the classifiers. The proportion of positive and negative examples was kept the same in each of the splits. 
Simple Cross Validation (CV) has been shown to have a high bias and is therefore not considered an adequate 
measure of classification accuracy. In DCV we divide the dataset several times into a test set and a training set, 
and perform a K(10) fold cross validation within the training set and use the model generated to predict on the 
test set.  

4. Results 
Experimental Results for Accuracy, Sensitivity, Specificity are provided in Table 2. From the table it is evident 
that a random forest classifier with 100 decision trees provides the best results with 95.64% accuracy. The true 
positive rate and true negative rate are also very accurate for this classifier. Support vector machines seem to al-
so work well for this kind of classification and ANN’s tend to give a high accuracy as well. Naïve Bayes does 
quite poorly in comparison to the other classifiers and reason could be that the naïve bayes assumption is too 
strong for this dataset. 

Figure 5 shows the Receiver Operating Characteristics (ROC) curve of the different classifiers and the curves 
of the Random Forest Classifier have much greater area than the other classifiers. 

5. Conclusion 
The WBCD dataset has been at the focus of several research efforts aimed at improving accuracy for Breast 
Cancer detection. However, to the best of our knowledge a comprehensive analysis using the latest techniques 
had not been performed. This paper presents an analysis using Random Forest classifiers, Artificial Neural 
Networks, Naïve Bayes and Support Vector Machines. Results show that ANN’s, Random Forests and SVMs 
are able to yield models with high accuracy, sensitivity and specificity whereas Naïve Bayes performs poorly.  

 
Table 2. Accuracy, sensitivity, specificity for the different classifiers.                                                      

Classifier Accuracy (%) TPR TNR 

SVM (linear) 78.45 0.72 0.81 

SVM (rbf) 93.63 0.94 0.92 

SVM (quadratic) 72.93 0.68 0.75 

Random Forest (100) 95.64 0.97 0.94 

Random Forest (10) 90.13 0.92 0.89 

ANN 92.44 0.93 0.92 

Naïve Bayes 65.27 0.57 0.72 
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Figure 5. ROC curves for the different classifiers.                         

 
These could be incorporated in the medical research field to potentially benefit patients suspected of having 
breast cancer. 
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