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Abstract

For a w-hyponormal operator T acting on a separable complex Hilbert space H, we prove that: 1)
the quasi-nilpotent part H (T -A41) is equal to ker(T-A41);2) 7T has Bishop’s property f; 3)

if o, (T)={0}, then it is a compact normal operator; 4) If T is an algebraically w-hyponormal

operator, then it is polaroid and reguloid. Among other things, we prove thatif T" and T " are
w -hyponormal, then 7 is normal.
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1. Introduction

Let H be a complex Hilbert space and let B(H) be the algebra of all bounded linear operators actingon H.
If TeB(H) we shall write ker(T) and ®R(T) for the null spaceand range of T, respectively. Also, let
a(T):=dimker(T), A(T):=codimR(T), and let o(T), 0,(T), o,(T) denote the spectrum, approximate
point spectrum andpoint spectrum of T, respectively. An operator T is said to be positive (denoted by T >0)
if (Tx, x)zO forall xeH and also T is said to be strictly positive (denoted by T >0) if T is positive

T*
see that every p-hyponormal is q-hyponormal for p>q>0 by Léwner-Heinz theorem “A>B>0 en-
sures A“ >B“ for any ae[O,l] ”. Let T be a p-hyponormal operator whose polar decomposition is

and invertible. An operator T is called p-hyponormal if |T|zp >IT[* for every 0< p<1. Itis easily to

- 1 1
T =U[T|. Aluthge [1] introduced the operator T =|T[2U|T|2, which called the Aluthge transformation, and
also showed the following result.
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Proposition 1.1. Let T =U |T| € B(H) be the polar decomposition of a p-hyponormal for 0 < p<1 and
U is unitary. Then the following assertions hold:

1) 'I::|T|%U|T|% is (p+%)-hyponormal if 0< p<%.

2) T=T |% ulr |% is 1-hyponormal if %s p<l.

As a natural generalization of Aluthge transformation Ito [2] introduced the operator T,, =([T[*U[T[* for

S,
s>0 and t>0. Recall [3], an operator T e B(H) is said to be w -hyponormal if |f|2|T|2 T . We

- 1 1
remark that w -hyponormal operator is defined by using Aluthge transformation T =[T2U[T]2. w -

hyponormal was defined by Aluthge and Wang [3] and the following theorem is shown in [3].
Theorem 1.2. Let T e B(H).
DIf T isa p-hyponormal operator for p>0,then T is w-hyponormal.

T*[ >T*| hold.

3)If T is w-hyponormal operator,then T~ isalso w -hyponormal.
Let 1 eC.The quasinilpotent part of T —Al is defined as
L
- o}.

In general, ker(T—Al)cHy(T—A41) and Hy(T—A4l) is not closed. However, it is known that if T is

hyponormal, then H, (T —Al1)=ker(T A1) cker(T -41)".

In this paper, we characterize the quasinilpotent part of w-hyponormal. This is a generalization of the
hyponormal operator case.

2) If T is w-hyponormal operator, then |T2|2|T|2 and £

(T-A1)"x

n—oo

HO(T—/“)={X€H:|im

2. Basic Properties of w -Hyponormal Operators

In this section we prove basic properties of w-hyponormal operators. These properties are induced by the
following famous inequalities.

Lemma 2.1. (Hansen inequality). If A, BeB(H) satisfy A>0 and |B||<1, then (B*AB)“ >B*A“B
forall o <(0,1].

Theorem 2.2. Let T e B(H) be a w-hyponormal operator and M be its invariant subspace. Then the
restriction T|M of Tto M isalsoa w-hyponormal operator.

Proof. Decompose T as

A B N
T= on H=M®oM-.
0 C

10
Let Q:(O Oj be the orthogonal projection onto M . Since A:TQ|M we have A'A=QT'TQ. By
Hansen’s inequality we have

{(A*OA)p SJ:(QT*TQ)" 2Q(TT)Q

while AA"=TQT" =QTQT'Q . So we have
(Aa)” =(1QT*)" =Q(1TQT*)’ Q< Q(TT*)"Q forall pe(0,1].
Since T is W-hyponormal then T is semi-hyponormal and hence A=f|M is semi-hyponormal by ([4],

Lemma 4). Hence
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A= | &
Now
=1, 217l -1
also
[A[=[7"], <[l =IA-

Therefore, A is w-hyponormal.
As a generalization of w -hyponormal operators, Ito [2] introduced a new class of operators as follows:
Definition 2.1. For each s>0 and t>0, an operator T belongs to class WA(s,t) if an operator T

satisfies

(e ) 2 @y
and

rs ot ez

The following theorem on T, is a generalization of Proposition 1.1.

Theorem 2.3. Let T =U |T| be the polar decomposition of a w -hyponormal operator. Then -l:s,t is
min{s,t}
S+t

In order to give the proof of Theorem 2.3, we need the following lemma from [2].

Lemma 2.4. Let A>0 and T =U[T| be the polar decomposition of T . Then for each >0 and
B >0, the following assertion holds:

-hyponormal for sz% and tz%.

(Ufr” AT Ue) =u (T AT ) U
Proof of Theorem 2.3. Suppose that T is w-hyponormal, then T belongs to class WA(s,t) for each
sz1 and tzl.Hence
2 2

min{s,t} min{s,t} min{s,t}

T|Zsu|T|‘) s+ =(U*U|T|tu*|T|25u|T|‘u*U) s+

(T:) = =(fu’

min{s,t}

~U(UfrfurTffuTfu) * U (By Lemma 24)

min{s,t}

ZU*(|T*|tU*|T|23U |T*|t) s+t U

«[2min{s,t}

>U"T

Thus
min{s,t}

|_|:St| e |T|2min{s,t} (2.3)

and the last inequality holds by Equation (2.2) and Léwner-Heinz theorem.
On the other hand

min{s,t} min{s,t} min{s,t}

T*|2t |T|s) st

(TT) =t =(r o orrr) = =(

s,t
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Hence

mln{s t} 2m|n st

st<[T| (2.4)

and the last inequality holds by Equation (2.1) and Léwner-Heinz theorem.
Therefore Equations (2.3) and (2.4) ensure

=
Ts,t

mln{s t} min{s,t}

S+t |T|2m|n {s.t} -I:*t
S,

s+t

r®
TS,t

min{s,t}
S+t
Theorem 2.5. Let T =U|T| be the polar decomposition of w -hyponormal operator. Then

B p
<o 2| mind R rZP’ldrde,iU ~ rdrdej .
' p T a'(TS t ) T p U(TS t )

Moreover, if T isinvertible w-hyponormal, then

That is, Tst is -hyponormal.

v

s,t

rdrdd.

21
ZLM
( ( )) we have also

() Avea(o(T))

min{s,t} P, if peN;
h = d =
where e s+t and ¢(p) {p+2, otherwise.
min {s, t}

S+t

If we use L( ridrd@ <|T.

T T -T.Te, T

s,t

Proof. Let p=

.Since T. st 1s p-hyponormal operator By Lemma 2 and Proposition 1 of [5]

ﬂl

J/pu ) ) ()

<4(

p

p m|n J' rz“drde—[ j rdrde}
71' "
(o)

‘7 Tst o(Tst

:¢(1/p) -l:st

p
“P) min J' r2p ldrd@—[ f rdrd&] .
K

0' Tst Ts,t)

Next, we assume that T. .t s invertible. Since every p-hyponormal operator is ¢-hyponormal operator if
0<q<p,byabove

T:,th,t -

s,t

< g (W)t [

4 rzq-ldrdez(Lz]ﬂ [ r*drdo.
75 Tst) q g o(Te:)

Letting q 0, we have the result.

Let iR(a(T)) denotes the set of all rational functions on a(T). The operator T is said to be n-
multicyclic if there are n vectors x;,---,x, € H , called generating vectors, such that

v{g(T)x i=L-.ngeR(c(T ))}:H.
Theorem 2.6. If T is w-hyponormal operator. Then

H(f:tfst )p - (fs,tf:,t )p

(1 Area( (TSI))jp
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min{s,t
where p:L.
S+t
. - . min{st} . . . .
Proof. Since T, is —t-hyponormal operator, let x be an arbitrary unit vector in H . We define
' S+

H, =v{g(T~svt)x ‘g ei}i(o('lzsyt))} :

Since H, is an invariant subspace for fs,tl Lemma 4 of [4] implies that T’ :T;t is a (1-multicyclic) p-

Ho
hyponormal operator. If 1< p(T, ), then for any yeH,, (T, —ﬂ,)fl y € Hy. Therefore, A€ p(T'). Hence,
o(T")< o(T,,). By Berger-Shaw’s Theorem [4],

tr {{(T ) —(TT’*)p}:] < lArea(a(T’)) < iArea(a(T}t )) :

v v

1
And the maximal eigenvalues of positive trace class operator {(T ”‘T’)p —(TT'*)p} P is equal to or less than

1 per 1\ P s \P -
;Area( o(T, )) Thus, the maximal eigenvalue of (T"T')" —(TT")" is equal to or less than

{% Area\(a(f&t ))}p . Therefore,

H(T’*T’)p—(TT'*)p

< {%Area(o(ﬂt ))}p :

Let P be the projection onto H,. Then, by Lemma 4 of [4],
p
{”Area( (Tst))} (T (7))
> <{P(T~’;tT;t ) P-P(T, 1) P} X, x>

=% = p
:<(Ts,th,t){0p _(Ts,tT s,t) }X'X>'
Since xeH s arbitrary unit vector,

H ot T T ) {lArea( (Tst))}p.

Corollary 2.7. Let T be w -hyponormal operator. Then

117

<= Area( (7).

Moreover, if Area(a(T)):O,then T isnormal.

Theorem 2.8. Let T bea w-hyponormal operator. If M is an invariant subspace of T and T|M is an
injective normal operator, then M reduces T.
Proof. Decompose T into

A B N
T= on H=M&M
0 C
and let A:T|M be injective normal operator. Let Q be the orthogonal projection of H onto M . Since

ker (A) = ker(A"):{O} ,we have M =%(A).
Then
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QT?[ Q

2
(|A| OJ:Q|T|2Q£Q|T2|Q£
0 0

§_|A2|o
Lo o

by Hansen’s inequality. Since A is normal we can write
2
m-s o)
S* D

4 4 2
(|/2| SJ:QT*T*TTQ=Q|T2|ZQ:{|A| S|C| 8}

Then

and S=0.Hence
2 *,
AL )-p v ] A7 (A8 +EC)
0 D’ (AB+BC) A* (AB+BC) (AB+BC)+[c?[

Since A is an injective normal operator, AB+BC =0 and D=|CZ|.
2 *
0<T?[-[Tf = #-1A" e
-B'A  -|Bf

thus B=0.
Theorem29.1f T and T" are w-hyponormal operators, then T is normal.
In order to give the proof of Theorem 2.9, we need the following lemma from [6].
Lemma 2.10. Let A>0 and B>0. If

1 1
B2AB2 > B® (2.5)
and
11
A2BA? > A (2.6)
then A=B.
Proof of Theorem 2.9. Since T is w -hyponormal then we have from ([7], Corollary 1.2) that
1 1
1 132 1 132
|T|2(|T|2|T*||T|2j and [T S(T* 2|T||T* 2] : 2.7)
Similarly, since T* is w -hyponormal, we have
1 1
1 12 1 132
T 2[T* 2|T||T” 2] and |T|s(|T|2 T T|2) : (2.8)

From Equations (2.7) and (2.8) and Lemma 2.10 we conclude |[T|=|T"|. Therefore, T is normal.

In the following result, 1) and 2) are due to [2], 3) and 4) to [8].

Lemma2.11. Let T e B(H).

1) For each s>0 and t>0. If T belongs to class WA(s,t), then T belongs to class wA(e,S) for

each a>s and f=>t.

2) T isaclass wA[%%} operator ifand only if T isa w -hyponormal operator.

3)Let T bea w-hyponormal operator. Then T" isalso w-hyponormal for all positive integer n.
4)Let T beaclass WA(s,t) operator for s€[0,1] and te(0,1].
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Then T" belongs to class wA(i,ij for all positive integer n.
nn

Let Hol(o-(T )) be the space of all functions that analytic inan open neighborhoods of a(T). Following
[9]. Wesay that T e B(H) has the single-valued extension property (SVEP) at point A e C if for every open
neighborhood U, of A, the only analytic function f:U, — H which satisfies the equation
(T—x)f(u)=0 isthe constant function f =0. Itiswell-known that T € B(H) has SVEP at every point of
the resolvent p(T):=C\o(T). Moreover, from the identity Theoremfor analytic function it easily follows that
Te B(H) has SVEP at every point of the boundary aa(T) of the spectrum. In particular, T has SVEP at
every isolated point of a(T). In ([10], Proposition 1.8), Laursen proved that if T is of finite ascent, then T
has SVEP.

Definition 2.2. [11] An operator T is said to have Bishop’s property (ﬂ) at A eC if for every open
neighborhood G of 4, the function f eHol(G) with (T—-A4)f, (#)—>0 uniformly on every compact
subset of G implies that f, (x)—0 uniformly on every compact subset of G, where Hol(G) means the
space of all analytic functions on G. When T has Bishop’s property (J) ateach AeC, simply say that
T has property (/).

Lemma 2.12. [12] Let G be open subset of complex plane C and let f e Hol(G) be functions such that
uf, (1) — 0 uniformly on every compact subset of G, then f, (x)— 0 uniformly on every compact subset
of G.

Remark: The relations between T and its transformation T are

Tz =[rfeu T =[TfeT @9
and
1 1 1
U[T|2T =U[T|U[T]2 =TU[T|2. (2.10)

It is shown in [13] that every p -hyponormal operator has Bishop’s property (ﬂ) .
Theorem 2.13. Let T e B(H) be w-hyponormal. Then T has the property (5).Hence T has SVEP.

Proof. Since T is semi-hyponormal by ([3], Theorem 2.4), it is suffices to show that T has property (ﬁ)

if and only if T has property (ﬁ) Suppose that T has property f. Let G be an open neighborhood of
A andlet f eHol(G) be functions such that (x—T)f, (x)— 0 uniformly on every compact subset of G.

. 1 1
By Equation (2.9), (T—,u)|T|5 f,(u)=T|2(T—u)f,(«)—>0 uniformly on every compact subset of G.

Hence Tf, (u)=U|T|f,(x)— 0 uniformly on every compact subset of G,and T having property 8 fol-
lows by Lemma 2.12. Suppose that T has property (ﬂ) Let G be an open neighborhood of A4 and let
f, eHol(G) be functions such that (,u—T)fn(,u)—>O uniformly on every compact subset of G. By

1 1
Equation (2.10), since (y—T)(|T|2 f(y)j =U|T[2(u~T)f,(x)—>0 uniformly on every compact subset of

G.Hence Tf (u)=U[T|f, (x)—0 uniformly on every compact subsetof G for T has property (8),so
that f (u«)— 0 uniformly on every compact subset of G, and T has property (4) follows by Lemma
2.12.

Theorem 2.14. Let T be w-hyponormal. Then H,(T —Al)=ker(T-4l) for 1eC.

Proof. Let F < C be closed set. Define the global spectral subspace by
X; (F)={xeH|3 analytic f(z):(T-zl)f(z)=xonC\F}.

It is known that H, (T —41)=X; ({ﬂ}) by ([14], Theorem 2.20). As T has Bishop’s property () by

Theorem 2.13, X;(F) is closed and 0'( )c F by ([15], Proposition 1.2.19). Hence H, (T —A4l) is

T|XT(F)

closedand T is w-hyponormal by Theorem 2.2. Since o(T it is normal by
H Ho(T-41)

o(T-A1) T|H0(T—/1I)

Corollary 2.7. If o(T|, ., )=, then Hy(T-41)={0} and ker(T-21)={0} If o(T|, ., ]={4},
then T|, ;=41 and H(T-Al)cker(T-Al).
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Remark 2.15. If 1#0,then H, (T —Al)=ker(T —Al)cker(T —4l)". Moreover, if A€o (T)\{0} isan
isolated point then H, (T —A1)=ker(T — A1) cker(T —Al)".

Example 2.16. Let A and B be nxn matrices and satisfy A>B>0.Let H = é H;, where
H,=C" forevery jeZ.Let U be the bilateral shifton H , thatis (Ux) :xn_l,vvjﬁé?e
X=( X1, %, %,--)€H . Let {P,} be

J
B if j<0
P = .
P olAeif j21.
We define (Px)j =P;x; for X=(-"",X4, %, %, -) and let T=UP. Then T is w-hyponormal and so
Ho(T-4)=Ker(T-4).
Proposition 2.17. [3] Let T be w -hyponormal. Then (T —A1)x=0 implies (T-A1) x=0.

3. Variants of Weyl’'s Theorems

An operator T e B(H) is called Fredholm if it has closed range, finite dimensional null space, and its range
has finite codimension. The index of a Fredholm operator is given by

i(T)=a(T)-B(T)

T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm “of finite ascent and descent”.
Recall that the ascent, a(T),of an operator T is the smallest non-negative integer p such that
ker(T p): ker(T p*l) . If such integer does not exist we put a(T)=oo. Analogously, the descent, d(T), of an

operator T is the smallest non-negative integer g such that %(T%)=%(T"), and if such integer does not

exist we put d(T)=oo. The essential spectrum o (T), the Weyl spectrum w(T) and the Browder spectrum
0, (T) of T aredefined by

o (T)={2eC:T -2 is not Fredholm}
oy (T)={2eC:T -4 is not Weyl}

and
0, (T)={AeC:T -2 is not Browder}
respectively. Evidently
or(T)c o, (T)c o, (T)c o (T)wacco (T)

where we write accK for the accumulation points of K < C. Following [16], we say that Weyl’s theorem
holds for T if o(T)\oy, (T)=E,(T), where E,(T) is the set of all eigenvalues A of finite multiplicity

isolated in o (T). And Browder’s theorem holds for T if o (T)\oy, (T)=7,(T), where 7,(T) is the set
of all poles of T of finite rank.
Theorem 3.1.If T is w-hyponormal operator with o, (T)={0}, then it is a compact normal operator.
Proof. Since Weyls theorem holds for T by ([17], Theorem 3.4), each elementin o (T )\, (T) =0 (T)\{0}

is an eigenvalue of T with finite multiplicity, and is isolated in o (T). This implies that o (T)\{0} is a
finite set or a countable infinite set with 0 as its only accumulation point. Put o (T)\{0} ={4,}, where

A, # A, whenever nzm and |/1n| is a non-increasing sequence. Since T is normaloid, we have
|4 =|T|. By ([3], Theorem 3.2), (T —4,)x=0 implies (T -4 ) x=0.In fact,

1
T = 2 x = TP e e =[x axi” =0

AT x=TTx=|T|' x=|4["x and T*x=74x. Hence ker(T-4) is a reducing subspace of T. Let P be
the orthogonal projection onto ker(T -4 ). Then T =4 ®T, on H=R(R)®R(I-R). Since T, is w-

hyponormal operator and o, (T)=0,(T,)U{4}, we have 4, €o,(T,). By the same argument as above,
ker(T —4,)=ker(T,—4,) is a finite dimensional reducing subspace of T which is included in R(I-F,).
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Put P, be the orthogonal projection onto ker(T —4,). Then T =AP, ® 4P, ®T, on
H=%R(P)®R(P,)®R(I -P,—P,). By repeating above argument, each ker(T —4,) is a reducing subspace
of T and

[T @i AR| =[T.] = A |0 a5 n—>o0.

Here P, isthe orthogonal projection onto ker(T —4,) and T = (@E;ﬂk Pk)@Tn on
H= (@Ezl*}{(Pk))@*.R(l —ZEZlPk). Hence T =@y 4, P, is compact and normal because each R, is a finite

rank orthogonal projection which satisfies BB =0 whenever k=1 by ([3], Corollary 3.4) and 4, —»0 as
n— o0,

Definition 3.1. An operator T e B(H) is called algebraically w -hyponormal operator if there exists a
nonconstant complex polynomial p such that p(T) is w -hyponormal operator.

In general, the following implications hold: class w -hyponormal = algebraically w -hyponormal.

The following facts follow from the above definition and some well known facts about class w -hyponormal.

1) If T eB(H) isalgebraically w-hyponormal thensois T-A1 foreach 2eC.

2) If TeB(H) isalgebraically w-hyponormal and M is a closed T-invariant subspace of H then T|
is algebraically w -hyponormal.

Lemma 3.2. Let T eB(H) belong to class w-hyponormal. Let 2 eC. Assume that o(T)={A}. Then
T=A4l.

Proof. We consider two cases:

Case (I). (2=0):Since T isan w-hyponormal, T isnormaloid. Therefore T =0.

Case (I1). (1#0): Here T is invertible, and since T is an w-hyponormal, we see that T~ is also

belongs class w -hyponormal. Therefore T is normaloid. On the other hand, a(Tl):{%}, S0

ITir=] =1

%‘:1. It follows that T is convexoid, so W (T)={A}. Therefore T =41.
Proposition 3.3. Let T be a quasinilpotent algebraically W -hyponormal operator. Then T is nilpotent.
Proof. Assume that p(T) is w -hyponormal operator for some nonconstant polynomial p . Since
o(p(T))=p(c(T)) theoperator p(T)-p(0) is quasinilpotent. Thus Lemma 3.2 would implythat

cT™(T—=21)-(T-4,1)=p(T)-p(0)=0

where m>1.Since T-4;l isinvertible forevery 4, =0, we musthave T"=0.

An operator T eB(H) is called isoloid if every isolated point of o(T) is an eigenvalue of T. An
operator T e B(H) is called normaloid if r(T)=|T|, where r(T) is the spectral radius of T. X eB(H)
is called a quasiaffinity if it has trivial kernel and dense range. S e B(H) is said to be a quasiaffine transform
of TeB(H) (notation: S~<T) if there is a quasiaffinity X e B(H) such that XS=TX . If both S<T
and T<S thenwesaythat S and T are quasisimilar.

An operator T eB(H) is said to be polaroid if isoo(T)< z(T) where isoo(T) be the set of isolated
points of the spectrum o (T) of T and z(T) isthe setof all poles of T . Ingeneral, if T is polaroid then
it is isoloid. However, the converse is not true. Consider the following example. Let T e ¢? (N) be defined by

T(Xl,xz,-'-):(X_ZZ,X_;,...)

Then T is a compact quasinilpotent operator with dimker(T):l,and so T isisoloid. However, since T
does not have finite ascent, T is not polaroid.

In [3] they showed that every w -hyponormal operator is isoloid. We can prove more:

Theorem 3.4. Let T be an algebraically w -hyponormal operator. Then T is polaroid.

Proof. Suppose T is an algebraically w -hyponormal operator. Then p(T) is w -hyponormal for some

nonconstant polynomial p. Let Aeiso(o—(T)). Using the spectral projection P:=2_i 6D(y—T)’ld,u
i

where D is a closed disk of center A which contains no other points of a(T), we can represent T as the

OALibJ | DOI:10.4236/0alib.1100548 9 September 2014 | Volume 1 | e548


http://dx.doi.org/10.4236/oalib.1100548

M. H. M. Rashid

direct sum
Tz(Tol TOJ and o(T)={2} and o(T,)=o(T)\{2]}.

Since T, is algebraically w -hyponormal and o(T,)={4} . But o(T,—41)={0} it follows from
Proposition 3.3 that T, — Al is nilpotent. Therefore T, —A has finite ascent and descent. On the other hand,
since T,—Al is invertible, clearly it has finite ascent and descent. Therefore T —Al has finite ascent
anddescent. Therefore A is a pole of the resolvent of T . Thusif 1e iso(a(T)) implies 1e 7r(T), and so
iso(o(T))=x(T). Hence T is polaroid.

Corollary 3.5. Let T be an algebraically w -hyponormal operator. Then T is isoloid.

For TeB(H), Aeo(T) is said to be a regular point if there exists SeB(H) such that
T-21=(T—-A1)S(T—-Al). T isis called reguloid if every isolated point of o (T) is a regular point. It is
well known ([18], Theorems 4.6.4 and 8.4.4) that T —Al =(T —41)S(T —4l) for some SeB(H)<T-Al
has a closed range.

Theorem 3.6. Let T be an algebraically W -hyponormal operator. Then T is reguloid.

Proof. Suppose T is an algebraically w -hyponormal operator. Then p(T) is w -hyponormalfor some

nonconstant polynomial p. Let ieiso(a(T)). Using the spectral projection P::z_i.[ﬁD(y—T)’ldy
iz 70

where D is a closed disk of center A which contains no other points of o-(T), we can represent T as the
direct sum

T:[Tol TOJ and o(T)={2} and o(T,)=c(T)\{2]

Since T, is algebraically w-hyponormal and o(T,)={A}. it follows from Lemma 3.2 that T, =AI .
Therefore by ([17], Corollary 2.6),
H=E(H)®E(H) =ker(T-Al)®ker(T-Al)" (3.1)
Relative to decomposition 3.1, T = Al ®T,. Therefore T-A1 =0®T -1 and hence
ran (T = A1) = (T = 21)(H) = 0@ (T, - 1) ker (T - 21"

since T,—Al isinvertible, T—-Al has closed range.

For a bounded operator T and nonnegative integer n, define T[n] to be the restriction of T to R(T”)
viewed as a map from R(T") into R%Tn (in particular Ty =T ). If for some n the range R(T") is
closed and Tn] is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower)
semi- B —FredIhoIm operator. In this case the index of T is defined as the index of the semi-Fredholm operator
T[n], see [19]. Moreover, if T[n] is a Fredholm operator, then T is called a B -Fredholm operator. A semi-B-
Fredholm operator is an upper or a lower semi-Fredholm operator. An operator T € B(X) issaidtobea B -
Weyl operator if itisa B -Fredholm operator of index zero. the semi- B -Fredholm spectrum o, (T) and the
B -Weyl spectrum oy, of T are defined by

Ogee (T):={AC:T -2l is not a semi-B-Fredholm operator},
Ogy ={4€C:T -1l is not a B-Weyl operator}.
Recall that an operator T e B(X) is a Drazin invertible if and only if it has a finite ascent and descent,

which is alsoequivalent to the fact that T =T, ®T,, where T, is nilpotent operator and T, is invertible
operator, see ([20], Proposition A). The Drazin spectrum is given by

o, (T):={2eC:T -2l is not Drazin invertible}

We observe that o, (T)=o(T)\z(T),where z(T) is the set of allpoles.
Define

E(T)={Aeisoo(T):0<a(T-1)}

we also say that the generalized Weyl’s theorem holds for T (in symbol, T € gW) if
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o(T)\ogy (T)=E(T)
and that the generalized Browder’s theorem holds for T (in symbol, T € gB) if
o(T)\ogy (T)=7(T).
It is Known [21] [22] that
gW c gBuW andthat gBUWCB.

Moreover, given T € gB, thenitisclear T e gW ifandonlyif E(T)=x(T), see[21] [22].
Let SF,(X) be the class of all upper semi-Fredholm operators, SF,(X) be the class of all T e SF, (X)
withind(T)<0,and forany T eB(X) let

o, (T)={aeC:T -2l & SF (X)}.

Let E; be the set of all eigenvalues of T of finite multiplicity which are isolated in o, (T) . According to
[23], we say that T satisfies a-Weyl’s theorem (and we write T e aW ) if

O (T)=0,(T)\E(T)
and that a-Browder’s theorem holds for T (in symbol, T €aB) if
o, (o (T)=73(T)

where 7 (T) is the set of all left poles of finite rank.
Let SBF,(X) be the class of all upper semi-B-Fredholm operators, and SBF(X) the class of all
T e SBF, (X) suchthat ind(T)<0, and

o (T)={2eC:T-2eSBF (X)}.
Recall that an operator T e B(T) satisfies the generalized a-Weyl’s theorem (in symbol, T € gaW) if
O - (T)=0,(T)\E*(T)

where E*(T) is the set of all eigenvalues of T which are isolated in o, (T).
Defineaset LD(X) by

LD(X):={T € B(X):a(T) < and R(T*"") is closed .
An operator T e B(H) iscalled left Drazin invertible if a(T)<o and R(Ta(T)”) is closed (see [22],
Definition 2.4). The left Drazin spectrum is given by
0.5 (T):={4eC:T -2l is not left Drazin invertible} .
Recall ([22], Definition 2.5) that A€o, (T) isaleftpoleof T if T—Al is left Drazin invertible operator
and Aeo,(T) is a left pole of finite rank if A is a left pole of T and «(T—4)<o. We will denote
7% (T) the set of all left pole of T.We have o, (T)=0,(T)\z*(T). Note that if 1ez*(T), then it is

easily seen that T — 4 is an operator of topological uniform descent. Therefore, it follows from ([21], Theorem
2.5) that A is isolated in o, (T). Following [22] if TeB(H) and AeC is anisolated in o,(T), then

Aex®(T) if and only if A¢o _ (T) and Aexy(T) if and only if 2eo_ (T). We will say that

SBF;

generalized a-Browder’s theorem holds for T (in symbol T € gaB) if

O - (T)=0,(T)\z*(T).
It is known [21]-[23] that
gw u gBuaW u gaB ¢ gaW and that aBBuU W < aW and that B c aB.

Definition 3.2. ([23]) An operator T e B(H) is said to satisfy property (w) if
A, (T)= Ga(T)\GSF; (T)=Ey(T).

In [24], it is shown that the property (w) implies Weyls theorem. For T e B(H), let
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A% (T)=0(T)\ogy (T) and AL(T)=0c(T)\ wr (T).1f T* has the SVEP, then it is known from [15] that

O
o(T)=0,(T) and from [25] we have oy, (T)=0 O (T).Thus E(T)=E*(T) and A%(T)=A3(T).

(T
Definition 3.3. ([26]) An operator T e B(X) is said to satisfy property (gw) if
AJ(T)=E(T).

Theorem 3.7. Let T e B(H). If T isa w-hyponormal. Then the following assertions are equivalent:

1) generalized Wey!’s theorem holds for T ;

2) generalized Browder’s theorem holds for T ;

3) Weyl’s theorem holds for T ;

4) Browder’s theorem holds for T .

Proof. Since w -hyponormal operators are polaroid. Hence the result follows now from ([27], Corollary 2.1).

Theorem 3.8.Let T e B(H). If T" isa w-hyponormal. Then the following assertions are equivalent:

1) generalized a-Weyl’s theorem holds for T ;

2) generalized a-Browder’s theorem holds for T ;

3) a-Weyl’s theorem holds for T ;

4) a-Browder’s theorem holds for T .

Proof. If T" is a w-hyponormal, then T is a-polaroid and so E*(T)=z"(T). Hence the result
followsnow from ([27], Corollary 2.3).

Theorem 3.9. Let T e B(H). If T" isa w-hyponormal. Then the following assertions are equivalent:

1) generalized a-Weyl’s theorem holds for T ;

2) generalized Weyl’s theorem holds for T ;

3) T satisfies property (gw);

4) generalized a-Browder’s theorem holds for T ;

5) a-Weyl’s theorem holds for T ;

6) a-Browder’s theorem holds for T ;

7) T satisfies property (w).

Proof. (i) < (ii) <> (iii). This equivalence follows from ([26], Theorem 2.7), since T" has SVEP. (i)
&< (iv) < (v) < (vi). This equivalence follows from Theorem 3.8. (iii) <> (vii). Since T" has SVEP
and T is polaroid, then E(T)=z"(T). Therefore, the equivalence follows now from Theorem 2.5 of [26].

Recall that a bounded operator T is said to be algebraic if there exists a non-trivial polynomial h such that
h(T) =0. From the spectral mapping theorem it easily follows that the spectrum of analgebraic operator is a
finite set. A nilpotent operator is a trivial example of an algebraic operator. Also finite rank operators K are
algebraic; more generally, if K" is a finite rank operator for some ne N then K isalgebraic. Clearly, if T
is algebraic then its dual T" is algebraic.

Theorem 3.10. Suppose that T e B(H),and K eB(X) is an algebraic operator commutingwith T .

1) If T isalgebraically w-hyponormal then property (gw) holds for T"+ K",

2)If T" isalgebraically w -hyponormal then property (gw) holds for T +K..

Proof. (i) If T is an algebraically w-hyponormal then T has SVEP and hence T+ K has SVEP by
Theorem 2.14 of [28]. Moreover, T is polaroid so also T +K is polaroid by Theorem 2.14 of [28]. By
Theorem 2.10 of [26], then property (gw) holds for T"+K".

(i) If T* is an algebraically w -hyponormal then T* has SVEP and hence T*+K" has SVEP by
Theorem 2.14 of [28]. Moreover, T" is polaroid so also T*+K" is polaroid by Theorem 2.14 of [28]. By
Theorem 2.10 of [26], then property (gw) holds for T +K.

4. Riesz Idempotent of W -Hyponormalc

Let TeB(H) and A€o (T) be an isolated of o(T). then there exists a closed disc D, centered A which
satisfies D, mo(T)={A4}. The operator
P=_l [ (T-al)‘d
271 %P1
is called the Riesz idempotent with respectto A which has properties that
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P?=P, PT=TP, ker(T-A1)cPH and o(T|,,)={4}.

In [29], Stampfli proved that if T is hyponormal and A e a(T) is isolated, then the Riesz idempotent P
with respectto A is self-adjoint and satisfies

PH=ker(T - Al)=ker(T-41)".

In this paper we extend these result to the case of w -hyponormal operator.

Theorem4.1. Let T eB(H) bea w -hyponormal operator and 1 be a non-zero isolated point of o (T).

Let D, denote the closed disc which centered A suchthat D, no(T)={A}. Then the Riesz idempotent
A satisfies that

PH =ker(T - A1) =ker(T —Al)".
In particular P is self-adjoint.

Proof. Since w -hyponormal operators are isoloid by Corollary 3.5.
Then A isanisolated point of a(T) . Then the range of Riesz idempotent
P=l [ (T-al)'dz
271 7P

is aninvariant closed subspace of T and a(T|PH)={/1}. Here D, isa closed disc with its center A such
that D, no(T)={4}.

If =0, then a(T|PH)={O} Since T|PH is w -hyponormal by Theorem 2.2, T|PH =0 by Lemma 3.2.
Therefore, 0 is an eigenvalue of T .

If A+#0, then T|F,H is an invertible w -hyponormal operator and hence (T|PH )71 is also w -hyponormal.

We see that [T, | =|4| and H(T|F>H )7l = ﬁ Let xe PH be arbitrary vector. Then
-1 1 1
=T ) Tess = 2 ol < 21 = ]
4] 4l

This implies that %T|PH is unitary with its spectrum o—(%ﬂwj:{l}. Hence T, =4l and A4 is an

eigenvalue of T. Therefore, PH =ker(T —A1) Since ker(T —Al)cker(T-A41)" by Proposition 2.16, it suf-
fices to show that ker(T —A1)" cker(T —A1). Since ker(T —Al) is a reducing subspace of T by Proposition
2.16 and the restriction of a w-hyponormal to its reducing subspace is also w-hyponormal operator, we see that
T is of the form T=T'®Al on H=ker(T-Al)®ker(T - Al )L, where T' is a w -hyponormal operator
with ker(T'—21)={0}.Since 1eo(T)=0c(T')U{A} isisolated, the only two cases occur. Oneis Ao (T’)
and the other is that A is an isolated point of o-(T’). The latter case, however, does not occur otherwise we
have Aeo,(T') and this contradicts the fact that ker(T'—A1)={0}. ker(T —Al)=ker(T-4l)" is imme-
diate from the injectivity of T'—AI asan operator on ker (T — Al )l .
Next, we show that P is self-adjoint. Since PH =ker(T —Al)=ker(T - A1) we have

((T =) )71 P=(z-2)"P.

Hence

pp___L ((T—z|)")71Pd7:—i (z—/z)lpdfz(if Ldij:PP*.

2i7 “%Pa 2iz %Pz 2ir"®Prz-1

Therefore, the proof is achieved.

5. Conclusion

In the study of w-hyponormal operator, the Aluthge transform is a very useful tool. It is an operator transform
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from the class of w-hyponormal operator to the class of semi-hyponormal operator. By using Aluthge transform,
we treat spectrum properties of w-hyponormal operator like some of hyponormal operator.
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