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Abstract 
Soil moisture is an important parameter that drives agriculture, climate and hydrological systems. 
In addition, retrieval of soil moisture is important in the analysis as well as its influence on these 
systems. Radar imagery is best suited for this retrieval due to its all-weather capability and inde-
pendence from solar irradiation. Soil moisture retrieval was done for the Malinda Wetland, Tanza-
nia, during two time periods, March and September 2013. The aim of this paper was to analyze soil 
moisture retrieval performance when vegetation contribution is taken into account. Backscatter 
values were obtained from TerraSAR-X Spotlight mode imagery taken in March and September 
2013. The backscatter values recorded by SAR imagery are influenced by vegetation, soil roughness 
and soil moisture. Thus, in order to obtain the backscatter due to soil moisture, the roughness and 
vegetation contribution are determined and decoupled from total backscatter. The roughness pa-
rameters were obtained from a Digital Surface Model (DSM) from Unmanned Aerial Vehicle (UAV) 
photographs whereas the vegetation parameter was obtained by inverting the Water Cloud Model 
(WCM). Lastly, soil moisture was retrieved using the Oh Model. The coefficient of correlation be-
tween the observed and retrieved was 0.39 for the month of March and 0.65 in the month of August. 
When the vegetation contribution was considered, the r2 for March was 0.64 and that in August was 
0.74. The results revealed that accounting for vegetation improved soil moisture retrieval. 
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1. Introduction 
Wetlands perform various ecological, economic and cultural functions with provision of water for agricultural 
activities being fundamental. However, with the increase in global population, there is growing need for in-
creased food production. Consequently, this translates to habitation of the wetlands with increased influx occur-
ring in the dry season when there is low water availability [1]. Soil moisture content has been reported as being 
an important variable with respect to influencing climate change dynamics and other hydrological applications 
[2] [3]. While soil moisture can be observed at single point using gravimetric or Time Domain Reflectometry 
(TDR) probing, it is difficult to cover wide areas with this method. Thus, this necessitates the use of satellite 
remote sensing, particularly in the microwave region of the electromagnetic spectrum [4] [5]. Passive Micro-
wave remote sensing produces coarse spatial resolution imagery, whose soil moisture retrievals can further be 
improved by combining passive and active products [6] [7]. Active Microwave Remote Sensing (AMRS) utilize 
Synthetic Aperture Radar (SAR) which is capable to provide high spatial resolution and can be used to derive 
soil moisture under bare ground conditions as well as vegetated regions. In vegetated landscapes, the contribu-
tion of backscatter from vegetation has to be determined before the soil moisture is derived. The wave interac-
tion and response with targets differs depending on the portion of the electromagnetic spectrum utilized. The 
penetration depth of the wave mainly depends on the frequency of the radiation and the conditions of the target. 
The longer wavelength P-band (250 - 500 MHz) is able to penetrate further into soil as opposed to shorter L (0.5 
- 1.5 GHz) and X (8 - 12 GHz) bands. Depending on the density of vegetation cover and vertical structure, pe-
netration through the vegetation canopy also differs. In dense vegetation, longer wavelength P band can sense 
stem structure and soil surface, while L-Band waves penetrate to some depth in canopy and are capable of sens-
ing branches and part of the stem. The signals from soil surface are attenuated completely. In densely vegetated 
areas however, X-Band waves bounce off vegetation canopy and backscatter signals do not include contribution 
from soil surface. Figure 1 illustrates the concept of penetration of microwave radiation for a vegetated target. 

Total backscatter is measured in decibels (dB) and is a function of vegetation, soil roughness and soil mois-
ture [8]-[10] as shown in Equation (1)  

( ) ( )total
0 vegetation, soil_roughness, soil_mois uredB tfσ =                     (1) 

where 0
totalσ  is the calibrated total backscatter. 

Sensitivity of radar backscattering to soil moisture and roughness has been demonstrated in different papers 
[5] [11] [12] considering the variation in dielectric constant of wet (~80) and dry (~6) soils. Challenges in dis-
criminating the contribution from soil moisture and roughness [13] still remain. The presence of vegetation 
further complicates soil moisture retrieval [14]. Several approaches are in use for soil moisture retrieval in-
cluding use of models such as theoretical, semi empirical and empirical methods [15]-[19]. Theoretical models 
are based on theoretical interactions between backscatter, soil moisture and roughness. Empirical methods are  
 

 
Figure 1. Schematic illustration of interaction of different P, L, X radar 
electromagnetic waves with different types of vegetated targets.                
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based on experiments with large collections of datasets while semi empirical models are based on a combina-
tion of theory and experimental datasets. Semi empirical models include the Oh Model [20], Dubois [21] and 
Water Cloud Model (WCM) [22]. 

The Water Cloud Model [22] considers the vegetation canopy as a cloud of water droplets that have randomly 
been distributed in the canopy. The Water Cloud Model has been proven highly useful in the determination of 
vegetation parameters. It has been utilized to determine the vegetation contribution by using Leaf Area Index 
(LAI), vegetation water content and biomass as the canopy descriptors [9] [23]-[25]. 

When exploiting TerraSAR-X imagery for soil moisture retrieval, studies have shown the contribution of ve-
getation backscatter to overall backscatter. [26] showed that X band is sensitive to density and size of canopy 
elements while [27] opted to derive soil moisture in areas with the Normalized Difference Vegetation Index 
(NDVI) less than 0.25, indicative of bare soils. In another study by [28], X-band was found to better discrimi-
nate bare and vegetated fields. This emphasizes the importance of incorporating vegetation contribution when 
determining the soil moisture from X-band imagery. Vegetation vigor can also be extracted from Unmanned 
Aerial Vehicle (UAV) photography. [29] extracted NDVI, Green Normalized Difference Vegetation Index and 
Soil Adjusted Vegetation Index showing application of UAV derived vegetation indices for agriculture. In addi-
tion to the indices used by [29] [30] derived the Green Ratio Vegetation Index and Green Soil Adjusted Vegeta-
tion Index from UAV to monitor crops.  

In this paper, dual season TerraSAR-X images were utilized in the retrieval of information about seasonality 
of soil moisture. The objectives of the study were to assess the impact of vegetation as an additional parameter 
in soil moisture retrieval. Utilization of the Red Green Vegetation Index (RGVI) is evaluated as a canopy de-
scriptor in soil moisture retrieval more so when the NIR band is not available. UAV photographs taken in the 
visual spectrum of the electromagnetic spectrum are used. Additionally, the use of a combination of soil mois-
ture retrieval models was assessed. In Section 2, the study area, methodology and data processing are described. 
In Section 3 results are presented and in Section 4, the summary and conclusions are presented.  

2. Study Area and Data  
2.1. Study Area 
Malinda wetland is within the Pangani flood plain in the Korogwe District of Tanga, Tanzania. It lies between 
latitudes 5˚04'22.8''S - 5˚05'52.8''S and longitudes 38˚19'04.8''E - 38˚20'38.4''E and has a size of 354.6 hectares 
(Figure 2). River Mkomazi, a tributary of Pangani (Ruvuma) River forms the lower boundary of the wetland. 
To the north of the wetland lie the Usambara Mountains. The region experiences bimodal rainfall with long 
rains experienced in March-May and short rains from September-November. During the image acquisition pe-
riod in March it was dry, just before the rainy season started, and in September the area was still moist with the 
crops reaching maturity. The main economic activity of the surrounding area is rain-fed agriculture with so far 
little irrigated agriculture on the wetland’s periphery. The dominant crop is maize. 

2.2. Data 
The data used included ground measurements, satellite imagery and UAV photos (Table 1). Two TerraSAR-X 
images were acquired on 28th March 2013 and 9th September 2013 from DLR (German Aerospace Centre). The 
field data consisted of soil moisture measurements at a depth of 5 cm using TDR probes. Data was collected 
from 5th to 8th March 2013 just before the rainy season and 19th to 23rd August 2013 during which time the fields 
had mature maize approaching harvesting. A Digital Surface Model (DSM) was generated from UAV photos, 
which was later used to generate the roughness parameters required as inputs in the retrieval algorithm. 

The precipitation data corresponding to the satellite imagery collection dates are as shown in Figure 3. 

2.3. Methods 
Figure 4 illustrates the soil moisture retrieval work flow. Field work was organized in two parts which were ex-
ecuted in similar fashion. The first part was carried out from 5th to 8th March 2013 while the second part was 
carried out from 19th to 23rd August 2013. The field work planning involved liaison with support colleagues in 
Korogwe on the best periods to have observations and pursuing permissions to visit and undertake the data col-
lection. 
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Figure 2. The Malinda Wetland study area within the Pangani flood plain in Northern Tanzania.           
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Figure 3. Malinda Rainfall in March and August 2013.                                            
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Figure 4. Soil moisture retrieval workflow (for the explanation of abbreviations see text).       

 
Table 1. Datasets used in this study.                                                  

Dataset Source Period 

Soil moisture (169 points) Field Survey 5th - 8th March 2013 

Soil moisture (158 points) Field Survey 19th - 23rd August 2013 

TerraSAR-X DLR 28th March 2013 

TerraSAR-X DLR 9th September 2013 

Aerial Ortho Photos UAV May and August 2012 

DSM UAV photos post processing May and August 2012 

 
The field work step involved actual site visits during which TDR probes were used to pick soil moisture data. 

The points at which the moisture was picked were also located using DGPS. This was necessary for locating 
these points and correlating them precisely with the corresponding satellite data.  

The interpolation step involved analysis of the soil moisture data collected and its interpolation to a distri-
buted format. Various interpolation schemes exist but for this work we have used Kriging approaches since they 
are reported as providing spatially consistent estimations [31]. 

The soil moisture retrieval step comprised of the Oh model using the backscatter values as input and site spe-
cific soil parameters i.e. root mean square height (rmsh) and correlation length (ℓ). The DSM from UAVs was 
used to generate surface roughness parameters, namely the rmsh and correlation length (ℓ). Soil moisture is first 
retrieved using the Oh model which does not take into account vegetation effect. The vegetation aspect is de-
fined using the semi empirical WCM using indices from the red and green bands from UAV flight photographs. 
The Oh model was then used to retrieve soil moisture with resulting vegetation effect free backscatter. The 
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effect of incorporating the vegetation contribution in soil moisture retrieval is analyzed in such a case when the 
NIR band is not available. Using the WCM, vegetation indices were used to derive the vegetation water content. 
This aided in decoupling the backscatter contribution from vegetation and that from soil. A vegetation water 
content map and a soil moisture map were then derived.  

2.4. Terra SAR X processing 
TerraSAR-X data is presented as 16-bit Digital Numbers (DNs) in two polarizations (HH and VV) at spatial 
resolution of 1 m (spotlight mode). For the retrieval of soil moisture, DNs were converted to Sigma Nought (σ0). 
The formulation for this conversion is provided in the technical documentation of DLR [32]. The equations for 
deriving backscatter from TerraSar X are indicated in Equation (2).  
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The NEBN coefficients are obtained from the XML configuration file that is delivered with the datasets. The 
local incidence angle determines the backscatter received by the sensor. This is computed by considering look 
angles at every pixel and corresponding slope. The decision on whether incidence angle of radar increase or de-
crease depends on the aspect at each pixel. The equation for computing the Radar Incidence Angle is shown in 
Equation (3). 

( )0 aspect sloperadar βθ = − ×                                  (3) 

2.5. Surface Roughness Data 
To support the retrieval of soil moisture, a number of preparatory steps were undertaken. The first addresses the 
surface roughness parameterization. The roughness parameters were computed from the DSM using a moving 
window of 16 pixels. The rmsh describes the vertical component and the correlation length describes the hori-
zontal component of roughness.  

( )2

1

1

n
ii

Z
rms

n
Z

h =
−

=
−

∑                                   (4) 

( )
( )

( )

( )

( )

1

1
1

2

1

N j

i j i
i

N

i
i

Z Z
p x

Z

+ −

+ −
=

=

′ =
∑

∑
                                  (5) 

Zi is the vertical height at location i, Z  is the mean vertical height of the soil surface for n samples. The Au-
to Correlation Function (ACF) describes the degree of correlation between the height Zi at location i and the 
height Zi+j at a horizontal distance x from i [33]-[36]. 

The correlation length is the horizontal distance at which the p(l) drops below (1/e) where e is the Euler’s 
number. 
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2.6. Soil Moisture Ground Truth Data 
Soil moisture observations were carried out at 5cm depths using calibrated TDR probes between 5th and 8th 
March 2013 while during the second field campaign observations were done between 19th and 23rd August 2013. 
During the March campaign, a total number of 169 sampling points were distributed throughout the Malinda 
wetland. In the August campaign 158 sampling points were collected.  

The voltage sensed, location coordinates and land use/cover at the time of observation was recorded. The vol-
tage collected was converted to equivalent moisture using Equation (6) provided in the TDR probe user manual.  
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Corresponding TerraSAR-X data were ordered for 28th March 2013 and 9th September 2013. In both instances 
there were challenges in having the concurrent field measurement and satellite over-passes. To obtain the spa-
tially distributed soil moisture, interpolation techniques were employed.  

2.7. Vegetation Moisture Data 
Wetlands typically have vegetation cover most of the times; there is therefore need to model the vegetation con-
tribution to the sensed backscatter. There are several approaches which can be used (Figure 5). These include 
the semi-empirical Water Cloud Model (WCM) [22], Radiative Transfer Model (RTM) [37] and 3D paramete-
rizations [38]. In this work the (WCM) was used. In WCM, the vegetation contribution is incorporated into the 
soil moisture retrieval algorithm. 

The WCM is setup as follows: 
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Equation (7) shows the Water Cloud Model. A and B are determined from field experiments for generalized 
land uses [39]. Auxiliary information such as NDVI, LAI and fraction cover would suffice in defining the vege-
tation contribution of backscatter. None of the above parameters were available for this study, thus the RGVI 
was used in this research to decouple the contribution from vegetation and soil. UAV photos were used to obtain 
this surrogate vegetation index [1]. Equation 8 shows the  

( ) ( ) ( )Red Green Vegetation Index rgvi red green red green= − +  
Substituting the parameters leads to the modified WCM equation:  
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2.8. Soil Moisture Retrieval 
There are various models used in soil moisture retrieval which have been postulated in literature. The Oh Model  



F. Kirimi et al. 
 

 
35 

 
Figure 5. Vegetation models showing vegetation cover, Water Cloud Model (WCM), 
Radiative Transfer Model (RTM) and 3D parameterization.                                 

 
was used in this research and was tested using a diverse array of soil types and hydrological conditions. The 
model uses co- and cross-polarization ratios of backscatter coefficients to estimate the soil moisture (Equation 9). 
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The soil moisture was retrieved from the above equations in two cases. Case I did not consider the vegetation 
contribution in the retrieval. Case II eliminated the effect of vegetation using the 0

vegσ  computed from WCM. 
Hence, the backscatter used as input in the Oh model was a function of roughness and soil moisture as shown in 
Equation (10).  

( )
( )

( )
0

roughness,moisture

vegetation, soil_roughnesss, soil_moisture
vegetation

f
f

σ =               (10) 

3. Results and Discussion  
3.1. Ground Truth TDR Soil Moisture Distribution  
Figure 6 shows the soil moisture distribution for March and September 2013. The soil moisture range was be-
tween 2.5% - 30% volume in March 2013. In September 2013, it ranged from 16% - 60% volume. The Septem-
ber image is wetter due to the rains experienced prior to the soil moisture data collection. 

3.2. Oh Soil Moisture Retrieval 
The rmsh for surface roughness obtained from the DSM is shown in Figure 7. The rmsh from the UAV photos 
ranged from 0.024 to 0.381 cm. This falls in the random roughness class [36] indicative of soil aggregates and 
clods. Except for very few areas, the roughness was consistent in most of the study area. 

Figure 8 shows case I retrievals of soil moisture taking no account of vegetation cover. The dots represent 
observed soil moisture and the sizes of the dots are indicative of the magnitude of soil moisture in the different 
locations within the study area. From these retrievals there are some correspondences with the observed distri-
bution, though regions with low vegetation cover exhibit better correspondence. 

The wetland has substantial vegetation at any given time and this coupled with the short wave sensor used ex-
plains in part the reason for the retrievals. The assumption was that there was no presence of vegetation, but the 
actual situation is compounded by the presence of medium-to-low vegetation cover, mainly rice and maize. 

The retrievals for March are generally overestimating the soil moisture conditions, while those of September 
are underestimating. In March, the region is dry and thus backscatter contribution is increased by attenuation of 
low vegetation cover as this is the period just before the onset of the April rains. During the wetter season in 
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(a) 

 
(b) 

Figure 6. TDR soil moisture point data distributions.                                 
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Figure 7. RMSH for the surface roughness parameter (z) as derived from the DSM.                

 

 
Figure 8. Soil moisture retrieval using Oh model assuming bare ground condition.                

 
September, soil moisture is underestimated due to influence of maturing vegetation [1]. In the presence of vege-
tation, the soil is sheltered and thus moisture retrieved was less than the actual soil moisture.  

In case II, vegetation contribution was considered. While vegetation moisture measurements were not collected, 
the WCM was used to determine the vegetation contribution by utilizing the RGVI from UAV photographs as 
a canopy descriptor. The Oh model was then used to retrieve soil moisture from vegetation free backscatter. 
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Figure 9 shows the vegetation moisture content and Figure 10 shows soil moisture retrievals where vegetation 
contribution has been considered. This vegetation moisture content can be related to biomass although not in a 
linear trend [40]. 

By considering the presence of vegetation, there is marked improvement in the soil moisture retrievals in both 
observation periods as shown in Figure 10. While vegetation moisture content was not validated, considering 
the effects of vegetation improved the estimated soil moisture across the wetland. This is consistent with the ob-
served state since March was much drier compared to September. 

There is a correlation between the vegetation moisture and soil moisture to some extent, as vegetated soil is 
able to retain moisture more than bare ground. Figure 10 shows the comparison of soil moisture between re-
trieved and observed conditions. As alluded to earlier, there is good correspondence between the retrievals and 
the observations providing some level of validation of our retrieval approaches. Figure 11 shows the results of 
running the algorithm on the radar data for the period under study. 
 

 
Figure 9. Vegetation moisture retrieval for the period under study.                             

 

 
Figure 10. Improved soil moisture retrieval using the Oh model by considering the presence of 
vegetation cover.                                                                      



F. Kirimi et al. 
 

 
39 

R² = 0.391

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

Re
tr

ie
ve

d 
so

il 
m

oi
st

ur
e 

(%
 v

ol
)

Observed soil moisture (% vol)

March 2013 assuming bare soil 

 

R² = 0.640

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Re
tr

ie
ve

d 
so

il 
m

oi
st

ur
e 

(%
vo

l)

Observed soil moisture (%vol)

March 2013 with vegetation considered 

  
(a)                                                     (b) 

R² = 0.659

0

10

20

30

40

50

60

70

10 15 20 25 30 35 40 45 50 55 60 65 70

Re
tr

ie
ve

d 
so

il 
m

oi
st

ur
e 

(%
 v

ol
)

Observed soil moisture (% vol)

August 2013 assuming bare soil 

 

R² = 0.747

0

10

20

30

40

50

60

70

10 15 20 25 30 35 40 45 50 55 60 65 70

Re
tr

ie
ve

d 
so

il 
m

oi
st

ur
e 

(%
vo

l)

Observed soil moisture (%vol)

August 2013 with vegetation considered

  
Figure 11. Soil moisture comparison between observed and retrieved for March and August 2013.                        

4. Conclusions and Summary 
Field soil moisture measurements were made in March and August 2013. TerraSAR-X data were obtained for 
March and September 2013. Soil moisture distribution was interpolated from TDR point measurements using 
kriging functions. Surface roughness conditions were computed using DSM. These conditions were applied in 
an attempt to retrieve soil moisture conditions from the radar datasets. The soil moisture retrieval algorithm used 
the Oh’s Model.  

This study has presented the probability of utilizing a vegetation index calculated from UAV photos taken 
within the visible part of the spectrum to improve soil moisture retrieval. This is crucial especially in cases 
where the NIR cameras are not readily available.  

A first guess of soil moisture was obtained by considering the retrieval case for bare ground conditions. These 
retrievals while largely consistent in distribution, overestimated retrievals for dry conditions while underesti-
mating retrievals for wetter conditions. To mitigate this, retrievals considering vegetation cover were done by 
using the water cloud approximation to model vegetation moisture. The vegetation moisture was determined by 
utilizing the RGVI obtained from UAV photographs of the area. Negating the effects of vegetation showed 
marked improvement in the retrieved soil moisture for both dry and wet conditions.  

Further research should be carried out to assess other vegetation indices that can be utilized to represent ve-
getation and vegetation water content in the absence of the NIR band from remotely sensed products.  
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