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Abstract 
In this work, while applying a new and novel (G'/G)-expansion version technique, we identify four 
families of the traveling wave solutions to the (1 + 1)-dimensional compound KdVB equation. The 
exact solutions are derived, in terms of hyperbolic, trigonometric and rational functions, involving 
various parameters. When the parameters are tuned to special values, both solitary, and periodic 
wave models are distinguished. State of the art symbolic algebra graphical representations and 
dynamical interpretations of the obtained solutions physics are provided and discussed. This in 
turn ends up revealing salient solutions features and demonstrating the used method efficiency. 
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1. Introduction 
Nonlinear Evolution Equations (NLEEs) are encountered in various fields of engineering, and many theoretical 
and applied sciences physics, such as applied mathematics, chemistry, biology and many applications. Exact 
analytical solutions of NLEEs have come to play a significant role in understanding of qualitative nature of 
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many phenomena, and the suitable modeling of corresponding processes, in different areas of applied science. 
Graphical representations of solutions of the NLEEs equations permit the unscrambling of mechanisms pertain-
ing to compound nonlinear phenomena. This includes for instance spatial localization of transfer processes, mul-
tiplicity or non-appearance steady states under different conditions, and existence of peaking regimes. Even spe-
cial exact solutions data that may seem not to have a clear physical meaning, can often be used as test problems 
to verify processes reliability, and help estimate errors of various numerical, asymptotic, and approximate ana-
lytical methods. 

Exact solutions can also serve as a basis for perfecting and testing computer algebra software packages, de-
signed for solving NLEEs. Furthermore, exact solutions allow researchers to design and run experiments, by 
creating appropriate natural conditions, to determine these parameters or functions. Therefore, investigations of 
exact traveling wave solutions are becoming increasingly attractive in nonlinear phenomena investigations and 
analyses. On the other hand, not all equations posed by the advent of NLEEs models are readily solvable. As a 
result, many original techniques have been successfully urbanized by various groups of researchers, such as the 
Cole-Hopf transformation method [1], the Miura transformation method [2], the Hirota’s bilinear method [3], 
the ( )( )exp η−Φ -expansion method [4]-[6], the Sumudu transform method [7]-[14], the Fan sub-equation me-
thod [15] [16], the spectral-homotopy analysis method [17] [18], the least-squares finite element scheme [19], 
the (G′/G)-expansion method [20]-[23], the improved (G′/G)-expansion method [24], the trial function method 
[25], the nonlinear transform method [26], the extended Tanh-function method [27] [28], and the novel (G′/G)- 
expansion method [29]-[34], homotopy analysis method [35], to name a few. The latter sequence of papers real-
ly constituted a ladder honed in the current wealth of repeated experimental and theoretical successes that sprang 
us to the work at hand, that we hope will greatly benefit the readership, towards the further understanding of 
NLEEs dynamics and solutions, and mechanisms for recognizing and classifying them. 

The aim of this article is to demonstrate the efficiency of the novel (G′/G)-expansion method to exhibit exact 
solutions for NLEEs in mathematical physics via the (1 + 1)-dimensional compound KdVB equation [36]. This 
equation can be thought of as a generalization of KdV-mKdV and Burgers equations, involving nonlinear dis-
persion and dissipation effects (see for instance [37]). Below, twenty-five solutions, stratified into four separate 
families are stratified for the (1 + 1)-dimensional compound KdVB equation. 

The article is arranged as follows: the novel (G′/G)-expansion method is discussed in Section 2, and directly 
applied in Section 3 to nonlinear evolution equations elaborated upon previously. This is ensued by a discussion 
of obtained solutions and physical interpretations revealing the dynamics modeled into the equations and sam-
pled by graphical representations and comparisons with published literature results, [38], culminating into the 
final conclusions relegated to Section 4. A rich list of references is availed for the convenience of the paper flow 
and the benefit of the readers, and consequently any reflective feedback fostering further developments would 
be highly welcome. 

2. The Novel (G′/G)-Expansion Method 
Suppose the nonlinear evolution equation, 

( ), , , , , , 0,t x tt tx xxP u u u u u u =                               (1) 

where, P , is a polynomial in the function, ( ),u x t , and its partial derivatives. The main steps of the novel 
(G′/G)-expansion method are: 

Step 1: Combining the real variables x  and t  by a complex variable ξ , we suppose that 

( ) ( ), , andu x t u x V tξ ξ= = ±                              (2) 

where V  is the speed of the traveling wave. Equation (2) is then used to transforms Equation (1) into an ODE 
for ( )u u ξ= : 

( ), , , , 0,Q u u u u′ ′′ ′′′ =                                  (3) 

where Q  is a function of ( )u ξ  and its derivatives wherein prime stands for derivative with respect to ξ . 
Step 2: Assuming that the solution of Equation (3) can be expressed in terms of powers in ( )ψ ξ , 
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( ) ( )( )
N j

j
j N

u ξ α ψ ξ
=−

= ∑                                  (4) 

where, 

( ) ( )( )dψ ξ ξ= +Φ                                   (5) 

with, ( ) ( )
( )

G
G

ξ
ξ

ξ
′

Φ = . 

Herein Nα−  or Nα  may be zero, but not simultaneously, the, jα  ( )0, 1, 2, ,j N= ± ± ±  and d  are 
constants to be determined later. The function, ( )G G ξ=  satisfies the second order nonlinear ODE: 

( )22 ,G G G G G Gλ µ ν′′ ′ ′= + +                             (6) 

where prime denotes differentiation with respect ξ . 

Using the Hopf-Cole transformation, ( ) ( )( ) ( )
( )

ln
G

G
Gξ

ξ
ξ ξ

ξ
′

Φ = = , reduces the Equation (6) into Riccati  

equation, 

( ) ( ) ( ) ( )21 .ξ µ λ ξ ν ξ′Φ = + Φ + − Φ                           (7) 

We like to recall that Equation (7) can exhibit a plethora of solutions in the number of twenty five as in (Zhu 
[39]). 

Step 3: The value of the positive integer N  can be determined by balancing the highest order linear terms 
with the nonlinear terms of the highest order come out in Equation (3). If the degree of ( )u ξ  is ( )D u nξ =   , 
then the degree of the other expressions will be as follows: 

( ) ( ) ( )
d d

, .
d d

sp q
p

p q

u u
D n p D u np s n q

ξ ξ
ξ ξ

    
 = + = + +          

 

Step 4: Substitute Equation (4) including Equations. (5) and (6) into Equation (3), we obtain polynomials in  

( )
( )

j
G

d
G

ξ
ξ

′ 
+  

 
 and ( )

( )

j
G

d
G

ξ
ξ

−
′ 

+  
 

, ( )0,1, 2, ,j N=  . Next we collect each coefficient of the resulted  

polynomials to zero, yields an over-determined set of algebraic equations for jα , d  and V . 
Step 5: Suppose that the value of the constants can be obtained by solving the algebraic equations obtained in 

Step 4, then substituting the values of the constants together with the solutions of Equation (6), will yield new 
and comprehensive exact traveling wave solutions of the nonlinear evolution equation (1). 

3. Application of the Novel (G′/G)-Expansion Method 
Let us consider the (1 + 1)-dimensional compound KdVB equation, 

2 0.t x x xx xxxu u u u u u uα β γ δ+ + + − =                            (8) 

Using the traveling wave transformation x Vtξ = − , Equation (8) is converted into the following ODE: 
2 0.Vu uu u u u uα β γ δ′ ′ ′ ′′ ′′′− + + + − =                             (9) 

Integrating Equation (9), we obtain 

2 31 1 0
2 3

C Vu u u u uα β γ δ′ ′′− + + + − =                           (10) 

where C  is a constant of integration. Inserting Equation (4) into Equation (10) and balancing the highest order 
derivative u′′  with the nonlinear term of the highest order 3u , we obtain 1M = . 
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Therefore, the solution of Equation (10) takes the form, 

( ) ( )( ) ( )( )1
1 0 1 .u ξ α ψ ξ α α ψ ξ

−

−= + +                            (11) 

Substituting Equation (11) into Equation (10), the left hand side is transformed into polynomials of  

( )
( )

j
G

d
G

ξ
ξ

′ 
+  

 
 and ( )

( )

j
G

d
G

ξ
ξ

−
′ 

+  
 

, ( )0, 1, 2, ,j M=  . Equating the coefficients of like power of these  

polynomials to zero, we obtain an over-determine set of algebraic equations (for simplicity we leave out to dis-
play the equations) for 0α , 1α , 1α− , d , C  and V . Solving the over-determined set of algebraic equations 
by using the symbolic computation software, such as Maple 13, we obtain 

( )( )
2 2 3

2 3 2 2
2

1 36 1 9
12 4 24 9 6

C αγ αδλ αδµ α δµυ δ µγ υ γ δ λ γ
δβ β β ββ δ δβ

= − − − + + ± − − +         (12) 

( )( ) ( )

( )

2 2 2

0

1 1

1 12 1 6 2 , 2 1 ,
2 6 4 22 6

60, , 1 .

d V

d d

α γ α δλα δ υ δλ γ δµ υ
β δ ββδ

δα α υ
β−

= − ± − + − = − + − +

= = = ± −

 

Substituting Equation (12) into Equation (11), with x Vtξ = − , d , λ , µ , δ , γ  and υ , being arbitrary 
constants. We obtain 

( ) ( )( ) ( ) ( )( )1 612 1 6 2 1 .
2 2 6

u d d G Gα δξ δ υ δλ γ υ
β ββδ

   ′= − ± − + − + ± − × + 
  

         (13) 

Substituting the solutions ( )G ξ  of the Equation (6) into Equation (13) and simplifying, we obtain the fol-
lowing solutions: 

When 2 4 4 0λ µυ µΩ = − + >  and ( )1 0λ υ − ≠  (or ( )1 0µ υ − ≠ ), 

( ) ( ) ( )

( )( )

1
6 1 1, 1 tanh

2 1 2

1 12 1 6 2 .
2 2 6

u x t d

d

δ υ λ ξ
β υ

α δ υ δλ γ
β βδ

        = ± − × − + Ω Ω     −         

− ± − + −

             (14) 

where ( )
2 2 2

2 1
6 4 2

x tγ α δλξ δµ υ
δ β

 
= − − + − + 

 
, and d , λ , µ , δ , γ  and υ  are arbitrary constants. 

With A & B real constants, when occurring in expressions, the next solutions, are given by, 

( ) ( ) ( )

( )( )

2
6 1 1, 1 coth

2 1 2

1 12 1 6 2 .
2 2 6

u x t d

d

δ υ λ ξ
β υ

α δ υ δλ γ
β βδ

        = ± − × − + Ω Ω     −         

− ± − + −

              (15) 

( ) ( ) ( ) ( ) ( )( ){ }
( )( )

3
6 1, 1 tanh sec

2 1

1 12 1 6 2 .
2 2 6

u x t d i h

d

δ υ λ ξ ξ
β υ

α δ υ δλ γ
β βδ

   = ± − × − + Ω Ω ± Ω  
−     

− ± − + −

       (16)  
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( ) ( ) ( ) ( ) ( )( ){ }
( )( )

4
6 1, 1 coth csc

2 1

1 12 1 6 2 .
2 2 6

u x t d h

d

δ υ λ ξ ξ
β υ

α δ υ δλ γ
β βδ

   = ± − × − + Ω Ω ± Ω  
−     

− ± − + −

        (17) 

( ) ( ) ( )

( )( )

5
6 1 1 1, 1 2 tanh coth

4 1 4 4

1 12 1 6 2 .
2 2 6

u x t d

d

δ υ λ ξ ξ
β ν

α δ υ δλ γ
β βδ

          = ± − × − + Ω Ω + Ω        −            

− ± − + −

      (18) 

( ) ( ) ( )
( ) ( )

( )
( )( )

2 2

6

cosh6 1, 1
2 1 sinh

1 12 1 6 2 .
2 2 6

A B A
u x t d

A B

d

ξδ υ λ
β ν ξ

α δ υ δλ γ
β βδ

  ± Ω + − Ω Ω     = ± − × + − +    −  Ω +      

− ± − + −

       (19) 

( ) ( ) ( )
( ) ( )

( )
( )( )

2 2

7

cosh6 1, 1
2 1 sinh

1 12 1 6 2 .
2 2 6

A B A
u x t d

A B

d

ξδ υ λ
β ν ξ

α δ υ δλ γ
β βδ

  ± Ω + + Ω Ω     = ± − × + − +    −  Ω +      

− ± − + −

       (20) 

( ) ( )

( )( )

8

12 cosh
6 2, 1

1 1sinh cosh
2 2

1 12 1 6 2 .
2 2 6

u x t d

d

µ ξ
δ υ
β ξ λ ξ

α δ υ δλ γ
β βδ

  Ω       = ± − × +   
       Ω Ω − Ω        

− ± − + −

                  (21) 

( ) ( )

( )( )

9

12 sinh
6 2, 1

1 1cosh sinh
2 2

1 12 1 6 2 .
2 2 6

u x t d

d

µ ξ
δ υ
β ξ λ ξ

α δ υ δλ γ
β βδ

  Ω       = ± − × +   
       Ω Ω − Ω        

− ± − + −

                  (22) 

( ) ( )
( )

( ) ( )
( )( )

10

2 cosh6, 1
sinh cosh

1 12 1 6 2 .
2 2 6

u x t d
i

d

µ ξδ υ
β ξ λ ξ

α δ υ δλ γ
β βδ

 Ω    = ± − × +   
  Ω Ω − Ω ± Ω    

− ± − + −

               (23) 

( ) ( )
( )

( ) ( )
( )( )

11

2 sinh6, 1
cosh sinh

1 12 1 6 2 .
2 2 6

u x t d

d

µ ξδ υ
β ξ λ ξ

α δ υ δλ γ
β βδ

 Ω    = ± − × +   
  Ω Ω − Ω ± Ω    

− ± − + −

                (24) 
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When 2 4 4 0λ µυ µΩ = − + <  and ( )1 0λ υ − ≠  (or ( )1 0µ υ − ≠ ), 

( ) ( ) ( )

( )( )

12
6 1 1, 1 tan

2 1 2

1 12 1 6 2 .
2 2 6

u x t d

d

δ υ λ ξ
β υ

α δ υ δλ γ
β βδ

        = ± − × + − + −Ω −Ω     −         

− ± − + −

                 (25) 

( ) ( ) ( )

( )( )

13
6 1 1, 1 cot

2 1 2

1 12 1 6 2 .
2 2 6

u x t d

d

δ υ λ ξ
β υ

α δ υ δλ γ
β βδ

        = ± − × − + −Ω −Ω     −         

− ± − + −

                  (26) 

( ) ( ) ( ) ( ) ( )( ){ }
( )( )

14
6 1, 1 tan sec

2 1

1 12 1 6 2 .
2 2 6

u x t d

d

δ υ λ ξ ξ
β υ

α δ υ δλ γ
β βδ

   = ± − × + − + −Ω −Ω ± −Ω  
−     

− ± − + −

          (27) 

( ) ( ) ( ) ( ) ( )( ){ }
( )( )

15
6 1, 1 cot csc

2 1

1 12 1 6 2 .
2 2 6

u x t d

d

δ υ λ ξ ξ
β υ

α δ υ δλ γ
β βδ

   = ± − × − + −Ω −Ω ± −Ω  
−     

− ± − + −

          (28) 

( ) ( ) ( )

( )( )

16
6 1 1 1, 1 2 tan cot

4 1 4 4

1 12 1 6 2 .
2 2 6

u x t d

d

δ υ λ ξ ξ
β υ

α δ υ δλ γ
β βδ

          = ± − × + − + −Ω −Ω − −Ω        −            

− ± − + −

       (29) 

( ) ( ) ( )
( ) ( )

( )
( )( )

2 2

17

cos6 1, 1
2 1 sin

1 12 1 6 2 .
2 2 6

A B A
u x t d

A B

d

ξδ υ λ
β υ ξ

α δ υ δλ γ
β βδ

  ± −Ω − − −Ω −Ω     = ± − × + − +    −  −Ω +      

− ± − + −

        (30) 

( ) ( ) ( )
( ) ( )

( )
( )( )

2 2

18

cos6 1, 1
2 1 sin

1 12 1 6 2 .
2 2 6

A B A
u x t d

A B

d

ξδ υ λ
β υ ξ

α δ υ δλ γ
β βδ

  ± −Ω − + −Ω −Ω     = ± − × + − +    −  −Ω +      

− ± − + −

        (31) 

where A  and B  are arbitrary constants such that 2 2 0A B− > . 

( ) ( )

( )( )

19

12 cos
6 2, 1

1 1sin cos
2 2

1 12 1 6 2 .
2 2 6

u x t d

d

µ ξ
δ υ
β ξ λ ξ

α δ υ δλ γ
β βδ

  −Ω       = ± − × −   
       −Ω −Ω + −Ω        

− ± − + −

            (32) 
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( ) ( )

( )( )

20

12 sin
6 2, 1

1 1cos sin
2 2

1 12 1 6 2 .
2 2 6

u x t d

d

µ ξ
δ υ
β ξ λ ξ

α δ υ δλ γ
β βδ

  −Ω       = ± − × +   
       −Ω −Ω − −Ω        

− ± − + −

           (33) 

( ) ( )
( )

( ) ( )
( )( )

21

2 cos6, 1
sin cos

1 12 1 6 2 .
2 2 6

u x t d

d

µ ξδ υ
β ξ λ ξ

α δ υ δλ γ
β βδ

 −Ω    = ± − × −   
  −Ω −Ω + −Ω ± −Ω    

− ± − + −

          (34) 

( ) ( )

( )( )

22

12 sin
6 2, 1

1 1cos sin
2 2

1 12 1 6 2 .
2 2 6

u x t d

d

µ ξ
δ υ
β ξ λ ξ

α δ υ δλ γ
β βδ

  −Ω       = ± − × +   
       −Ω −Ω − −Ω ± −Ω        

− ± − + −

        (35) 

When 0µ =  and ( )1 0λ υ − ≠ , where k is an arbitrary constant. 

( ) ( )
( ) ( ) ( ){ }

( )( )

23
6, 1

1 cosh sinh

1 12 1 6 2 .
2 2 6

ku x t d
k

d

δ λυ
β υ λξ λξ

α δ υ δλ γ
β βδ

     = ± − × −   
− + −      

− ± − + −

             (36) 

( ) ( )
( ) ( ){ }

( ) ( ) ( ){ }

( )( )

24

cosh sinh6, 1
1 cosh sinh

1 12 1 6 2
2 2 6

u x t d
k

d

λ λξ λξδ υ
β υ λξ λξ

α δ υ δλ γ
β βδ

 +    = ± − × −   
− + +      

− ± − + −

             (37) 

where k  is an arbitrary constant. 
When ( )1 0υ − ≠  and 0λ µ= = , the solution of Equation (8) is, 

( ) ( ) ( )

( )( )

25
1

6 1, 1
1

1 12 1 6 2
2 2 6

u x t d
c

d

δ υ
β υ ξ

α δ υ δλ γ
β βδ

     = ± − × −   
− +      

− ± − + −

                   (38) 

where 1c  is an arbitrary constant. 

4. Discussions and Conclusions 
Here, we first discuss physical interpretation, and graphical representation of four families of solutions deter-
mined above. The introduction of dispersion without introducing nonlinearity destroys the solitary wave as dif-
ferent Fourier harmonics start propagating at different group velocities. On the other hand, introducing nonli-
nearity without dispersion also prevents the formation of solitary waves, because the pulse energy is frequently 
pumped into higher frequency modes. However, if both dispersion and nonlinearity are present, solitary waves 
can be sustained. Similarly to dispersion, dissipation can also give rise to solitary waves when combined with 



Md. N. Alam, F. B. M. Belgacem 
 

 
35 

nonlinearity. Hence, it is interesting to point out the delicate balance between the nonlinearity effect of xuu  and 
2

xu u , and the dissipative effect of xxu . The xxxu  gives rise to solitons that after a fully interaction with others 
the solitons come back retaining their identities with the same speed and shape. 

The (1 + 1)-dimensional compound KdVB equation has solitary wave solutions that have exponentially de-
caying wings. If two solitons of the (1 + 1)-dimensional compound KdVB equation collide, the solitons just pass 
through each other and emerge unchanged. For special values of the parameters solitary wave solutions are ori-
ginated from the obtained exact solutions. 

Figure 1: Kink solution, shape of Equation (14) when 2,δ =  1,γ =  1,α =  1,β =  1,λ =  1,µ = −  
2,ν =  1d =  and 10 , 10.x t− ≤ ≤  Solution of Equations (14), (16), (19), (22), (23), (36) and (37) represents 

kink. Kink waves are traveling waves which arise from one asymptotic state to another. The kink solutions are 
approach to a constant at infinity. Other figures are omitted for convenience. 

Figure 2: Single soliton, shape of Equation (15) when 2,δ =  1,γ =  1,α =  1,β =  1,λ =  1,µ = −  
2,ν =  1d =  and 10 , 10.x t− ≤ ≤  Solution of Equations (15), (17), (18), (26), (28) and (29) represents single 

soliton. Solitons are special kinds of solitary waves. The soliton solution is a specially localized solution, hence 
( ) ( ) ( ), , 0u u uξ ξ ξ′ ′′ ′′′ →  as ξ → ±∞ , x ctξ = − . Solitons have a remarkable property that it keeps its iden-

tity upon interacting with other solitons. Other figures are omitted for convenience. 
Figure 3: Modulus plot of periodic wave solutions, shape of Equation (25) when 2,δ =  1,γ =  1,α =  

2,β =  1,λ =  1µ = , 2,ν =  1d =  and 1 , 1.x t− ≤ ≤  Solution of Equations (25), (27), (30)-(35) represents 
periodic wave solutions. Periodic solutions are traveling wave solutions that are periodic such as ( )cos x t− . 
Other figures are omitted for convenience. 

Figure 4: Singular kink solution, shape of Equation (38) when 2,δ =  1,γ =  1,α =  2,β =  1,λ =  1µ = , 
2,ν =  1d =  and 10 , 10.x t− ≤ ≤  Solution of Equations (20), (21), (24) and (38) represents singular kink so-

lutions. Other figures are omitted for convenience. 
The graphical illustrations of the solutions are depicted in the Figures 1-4 with the aid of commercial soft-

ware Maple. 
Comparison between Zayed [38] solutions and our solutions: Zayed [38] considered solutions of the (1 + 1)- 

dimensional compound KdVB equation using the basic ( )G G′ -expansion method combined with the Riccati 
equation. The solutions of the (1 + 1)-dimensional compound KdVB equation obtained by the novel ( )G G′ - 
expansion method are different from those of the basic ( )G G′ -expansion method combined with the Riccati 
equation. Moreover, Zayed [38] investigated the well-established (1 + 1)-dimensional compound KdVB equa-
tion to obtain exact solutions via the basic ( )G G′ -expansion method and achieved only five solutions (see Ap-
pendix). Furthermore, twenty-five solutions of the well-known (1 + 1)-dimensional compound KdVB equation 
are constructed by applying the novel ( )G G′ -expansion method. On the other hand, the auxiliary equation used 
in this paper is different, so obtained solutions are also different. Similarly for any nonlinear evolution equation 
it can be shown that the novel ( )G G′ -expansion method is much easier than other methods. 
 

 
Figure 1. Kink solution, shape of Equation (14) when 2,δ =  1,γ =  1,α =  

1,β =  1,λ =  1µ = − , 2,ν =  1d =  and 10 , 10.x t− ≤ ≤  
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In this paper, the novel ( )G G′ -expansion method has been successfully applied to find the traveling wave 
solutions for the (1 + 1)-dimensional compound KdVB equation. The method has been used to find new exact 
solutions. As a result, hyperbolic function solutions, rational function solutions and trigonometric function solu-
tions with several free parameters have been obtained. The solutions gotten with tuned parameters may be used 
to detect and explain complex physical phenomena. Results in this paper show that the devised algorithm is 
highly effective, and can be used for many other NLEEs in mathematical physics. Thus, we can say that the 
novel (G/G)-expansion method can be extended to solve the problems of nonlinear evolution equations arising 
in the theory of solitons, and other nonlinear sciences. Consequently, thus far not only were we successful at 
solving the KdVB equation, but also, we contributed to establishing the novel ( )G G′ -expansion method as a 
versatile and efficient tool that can be applied to NLEEs. 
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Appendix. Zayed Solutions [38] 
Zayed [38] examined the exact solutions of the nonlinear (1 + 1)-dimensional compound KdVB equation by using the 
( )G G′ -expansion method. They found the following five solutions of the form, 

( ) 6 sec .
2

u i hα δξ ξ
β β

= − −                                   (A.1) 

( ) 6 sec .
2

u α δξ ξ
β β

= − +                                    (A.2) 

( ) ( )6 coth tanh .
2

u α δξ ξ ξ
β β

= − ± −                             (A.3) 

( ) ( )6 cot tan .
2

u α δξ ξ ξ
β β

= − ± +                              (A.4) 

( )
1

6 .
2

Bu
B c

α δξ
β β ξ

 
= − ±  

+ 
                               (A.5) 
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