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Abstract 
 
Applications of differential equations with retarded argument can be encountered in the theory of automatic 
control, in the theory of self-oscillatory systems, in the study of problems connected with combustion in 
rocket engines, in a number of problems in economics, biophysics. The problems in this areas can be solved 
reducing differential equations with retarded argument. In this work an important inequality for second order 
differential equation with retarded argument is obtained. 
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1. Introduction 
 
In this study we consider the equation  
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on an interval I . Where   is a real parameter;  M t
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2. An Inequality for Second Order  

Differential Equation with Retarded  
Argument  

 
Theorem. Let us denote by every point with 0 j

which is 
satisfying the mean-value theorem for a continuous solu- 
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and , where j J J  is an index set. Also let us as- 
sume that   0sup M t M  where 0M  is a real number.  

Then for all jt  in the equation 
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Proof. From the mean-value theorem we can write the 
followings: 
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From the definition of a derivative it follows that 
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Using (5) in (4) we obtain 
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Now applying the fact  
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And these inequalities lead directly to (2). Indeed con-

sider the right inequality which can be written as 
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If we integrate from  to obtaining 
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The left inequality in (6) similarly implies  
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jj . The case which is just (2) for t t 0 jjt t may be 
considered analogically. 
 
3. References 
 
[1] E. A. Coddington and N. Levinson, “Theory of Ordinary 

Differential Equations,” McGraw-Hill, New York, 1955. 

[2] S. B. Norkin, “Differential Equations of the Second Order 
with Retarded Argument,” AMS, Providence, 1972. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2011 SciRes.                                                                                 APM 


