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Abstract

In this article, we will establish sufficient conditions for the interval oscillation of fractional partial
differential equations of the form

DZ, [ r (1) Df, (u(x.t))]+a(x,t) D u(x,t)+ p(x.t) f (_:[(t—s)_“ u(x,s)ds)g(Djtu(x,t))
=a(t)Au(x,t)+F(xt),(x,t)eG=QxR,.

It is based on the information only on a sequence of subintervals of the time space [to,oo) rather
than whole half line. We consider fto be monotonous and non monotonous. By using a generalized
Riccati technique, integral averaging method, Philos type kernals and new interval oscillation cri-
teria are established. We also present some examples to illustrate our main results.
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1. Introduction

Fractional differential equations are now recognized as an excellent source of knowledge in modelling dynami-
cal processes in self similar and porous structures, electrical networks, probability and statistics, visco elasticity,
electro chemistry of corrosion, electro dynamics of complex medium, polymer rheology, industrial robotics,
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economics, biotechnology, etc. For the theory and applications of fractional differential equations, we refer the
monographs and journals in the literature [1]-[10]. The study of oscillation and other asymptotic properties of
solutions of fractional order differential equations has attracted a good bit of attention in the past few years
[11]-[13]. In the last few years, the fundamental theory of fractional partial differential equations with deviating
arguments has undergone intensive development [14]-[22]. The qualitative theory of this class of equations is
still in an initial stage of development.

In 1965, Wong and Burton [23] studied the differential equations of the form

u"+a(t)f(u)g(u’)=0

In 1970, Burton and Grimer [24] has been investigated the qualitative properties of

(ru’)'+af (u)g(u)=0

In 2009, Nandakumaran and Panigrahi [25] derived the oscillatory behavior of nonlinear homogeneous diffe-
rential equations of the form

(r(®)y") +a()y'+p() f(y)g(y)=0

Formulation of the Problems

In this article, we wish to study the interval oscillatory behavior of non linear fractional partial differential equa-
tions with damping term of the form

t

(E) D7 [r(t)Dru(xt)]+a(xt)Dfu(xt)+ p(xt)f U(t—s)“ u(x,s)dsjg(Dﬁtu(x,t))

0
=a(t)Au(xt)+F(xt), (xt)eG=QxR,
where Q is a bounded domain in R™ with a piecewise smooth boundary oQ, & €(0,1) is a constant, D,
is the Riemann-Liouville fractional derivative of order o of u with respect to t and A is the Laplacian operator in
*u(x,t)
N ’

the Euclidean N-space R"“ (ie) Au(x,t)=>" " v
r=. Xr

. Equation (E) is supplemented with the Neumann

boundary condition

(B,) aua(:t)+,u(x,t)u(x,t)=0, (x.1) € QxR

where y denotes the unit exterior normal vector to 6Q and x(x,t) is a non negative continuous function on
0QxR, and

(B,) u(xt)=0, (xt)edQxR,.

In what follows, we always assume without mentioning that

(A) reC*(R.R.), acC(R.,R,)FeC(G.R);

(A) 9eC(G,R),q(t)=mina(xt); peC(GR,), Pt)=minp(xt) with p(t)=0 on any [T,)
for some T, >0 X X

(A)) feC(R,R) isconvexwith uf (u)>0 for u=0.

(A;) 9:R—[L,) iscontinuous where L>0. B

By asolutionof (E), (B,) and (B,) we mean anon trivial function u(x,t)eC* (G,R) with
.[;(t—s)’“u(x,s)dSeC’(G,R), r(t)Dyu(xt)eC” (G,R) and satisfies G and the boundary conditions
(B,) and (B,).Asolution u(x,t) of (E), (B,) or (E), (B,) issaid to be oscillatory in G if it has ar-
bitrary large zeros; otherwise, it is nonoscillatory. An Equation (E) is called oscillatory if all its solutions are

oscillatory. To the best of our knowledge, nothing is known regarding the interval oscillation criteria of (E), (B1)
and (E), (B,) upto now. Motivativated by [22]-[25], we will establish new interval oscillation criteria for (E), (By)

and (E), (B,). Our results are essentially new.
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Definition 1.1. A function H =H(t,s) belongs to a function class P denoted by H e P if HeC(D,R,)
where D = {(t §)i—0<s<t< oo} which satisfies H (t,t)=0, H(t,s)>0 fort>sand has partial derivatives
oH oH

—— and — on D such that
ot 05

b (1) R (ts) and =, (t.5){H (19)

where h,h, e i (D,R).

loc

2. Preliminaries

In this section, we will see the definitions of fractional derivatives and integrals. In this paper, we use the Rie-
mann-Liouville left sided definition on the half axis R, . The following notations will be used for the conveni-

ence.
U(t) =@L2u (x,t)dx, where |Qf = jgdx, 1)
t* ty ey _ a ¢ o dr
ST Tra) ® T Tra) 1) =90 PO =PO) & =T 5 S ST

For s,&e[&,,) denote

a(s)

3 = [} RN H ]

Q(5:6)=h(s:6) 4 VH(55)

Q,(&,5)=h (5,5)+@ H(&9).

ST

Definition 2.1 [2] The Riemann-Liouville fractional partial derivative of order 0 <« <1 with respect to t of
afunction u(x,t) isgiven by

(D7 u)(x.t) = %ﬁj‘;(t—v)“ u(xv)dv

provided the right hand side is pointwise defined on R, where I' isthe gamma function.

Definition 2.2 [2] The Riemann-Liouville fractional integral of order « >0 of a function y:R, > R on
the half-axis R, is given by

1 t a-1
17y )(t)=——| (t-v vijdv for t>0
(1)) =y b))

provided the right hand side is pointwise defined on R, .

Definition 2.3 [2] The Riemann-Liouville fractional derivative of order « >0 of a function y:R, > R on
the half-axis R, is given by
)ty 9
(D+ y)(t) = a1

provided the right hand side is pointwise defined on R, where [« | is the ceiling function of .
Lemma 2.1 Lety be solution of (E) and

(I[‘””’y)(t) for t>0

K(t):=j;(t—s)_a y(v)dv for «e(01) and t>0. )
Then
K'(t)=r(1-a)(Dfy)(t) for «e(01) and t>0. @3)
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3. Oscillation with Monotonicity of f(x) of (E) and (B1)

In this section, we assume that (A;) fis monotonous and satisfies the condition f'(u)>M >0 where Misa
constant.
Theorem 3.1 If the fractional differential inequality

D¢ [r(t)D7U (t) ]+ a(t) DeU (t)+ p(t) f (K (t))L-F(t)<0 @

has no eventually positive solution, then every solution of (E) and (B,) is oscillatory in G, =Qx|[t,, ),
where t >0.

Proof. Suppose to the contrary that there is a non oscillatory solution u(x,t) of the problem (E) and (B,)
which has no zero in Qx[to,oo) for some t, >0. Without loss of generality, we may assume that u(x,t) >0
in Qx[tl,oo), t, >t,. Integrating (E) with respect to x over Q., we have

J‘Djt [r(t) Djtu(x,t)de+.[Qq(x,t) Djtu(x,t)dx+J'Qp(x,t) f (J‘;(t—s)’“ (x, s)ds)g( u(xt))dx

®)
JAu xtdx+j F(xt)dx.
Using Green’s formula and boundary condition (Bl) , it follows that
ou(x,t
~[Au x,t)dx = j u(x )dS— LQ (xt)u(x,t)dS <0, t=>t. (6)

[La(x)pru(x = a()or, ([ u(xt)d)
2 ()| DL, [ﬁjﬂu(x,t)dx} %

>q(t)|QDfU(t), t>t,.

By Jensen’s inequality and (A,) we get
JoP () F([1(t=5)“ u(x5)ds | g (D2yu(x.1)) éx
> p(0)[, ([ (1) “ u(x9)ds g (D0 (x,1)) éx
- sojole{ - s oorax0)
= p(1)}0] ([, (t-5) " U (s)ds] (Dzu (1))

By using g(Djtu(x,t))z L >0 we have

JpOut) £{fot=9)" u(xs)ds)g(Dzu(x )k pO[Q F (KL, 1, ®)
In view of (1), (6)-(8), (5) yield
D7 [r(t)DIU (1) |+a(1)|QU (t)+Lp(1)|Q] F (K (t))< [ F(xt)dx.

Take F(t)= ﬁJ‘QF (x,t)dx, therefore

D¢ [r(t)DyU (t) [+ a(t) DeU (t)+ Lp(t) f (K (1)) -F () <0,t>t,

Therefore U (t) is eventually positive solution of (4). This contradicts the hypothesis and completes the

()
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proof.
Remark 3.1 Let

F(t)=F(¢). U(t)=U(s). p(t)=p(¢)
(K@) =f(R(). FO)=F(&)

Then DU (t)=U"(&) we use this transformation in (4). The inequality becomes

(F(£)U'(£)) +a(£)U'(£)+Lp(£) f (R(£))-F (£) <o0. ©)

Theorem (3.1) can be stated as, if the differential inequality

[F(6)0"(£)] +a(£)0"(£)+Lp(€) T (R (€))-F(£)=<0,

has no eventually positive solution then every solution of (E) and (B,) is oscillatory in Gfl = Qx[(fl,oo) where
£ 20.

Theorem 3.2 Suppose that the conditions (A;) - (As) hold. Assume that for any T, >t, there exist c,, J;,
d, for i=12 suchthat T,<c <¢ <d, <¢c, <6, <d,, te[c,,d,|U[c,,d,] satisfying

B <0, te[cl,dl]
F(t)_{zo, tefc, d,] (10

If there exist &; E(fclvfu,): HeP and peC”([t,),R,) such that

1 S (s 3(s s+; & $)é(s)ds
H(‘fa‘.’fcl)LqH( vﬁci)¢( )d H(fd,,e‘(;)j"t”‘iH(gd‘ )¢( )d
1 o
(g g YO ) an
1 Sdi - ) -
+4MF(1—a)H(gdl,gdl)-[:@r(s)v(s)Qz (&,.5)ds, fori=12,

where V and ¢ are defined as
. £
V(&) = exp(—ZM Lop(s)ds)

5(6)=1(|LP(£) () () + MT(L-a)F ()5 (4)-(F()p(4) |

Then every solution of (E), (B,) is oscillatory in G.
Proof. Suppose to the contrary that u(x,t) be a non oscillatory solution of the problem (E), (B,) say
u(x,t)#0 in Qx|[T,,) forsome T, >t,. Define the following Riccati transformation function

W(t)=v(t)r(t){ +p(t)}, t>T,.

DU (1)

F(K()

Then for t>T,

Dyw(t) = va(t)%
+v(t){Df (:((tl):zt)t; ®) ff(igg) £/(K (1)D° (K (1)) + Df(p(t)r(t))}

By using f'(K(t))>M >0 and inequality (4) we get



V. Sadhasivam, ]. Kavitha

ew(t) < pev () V)
O] (12)

By assumption, if u(x,t)>0 then we can choose c,,d, >T, with ¢, <d, suchthat F(t)<0 on the in-
terval [c,,d,]. If u(xt)<0 then we can choose c,,d,>T, with c, <d, suchthat F(t)>0 on the inter-
val [c,,d,] So

F(t)v(t) _ .
F(KQ) <0, tefc,d], =12,

therefore inequality (12) becomes
D{w(t)

te[ci,di], i=12.
Let w(t)=w(¢), v(t)=7(¢), a(t)-
Then Dw(t)=w' (&), DU (t):U (f :

)
W’(é)SV'(é)MW(f)ﬁLU'(?—Lﬁ(cs)—Mf(é) f o) K’(éﬁ(f(é)ﬁ(é))']

v(¢) (K(¢)
< 2i(6) ()5

”“){‘q(é)(wg(i@)
e

a(5), U(1)=U(¢). p()=p(¢). K(t)=K(&). p(t)=5($).

DK (t) =K'(£), so (13) is transformed into

—[?(f)J—Lﬁ(f)—Mr(cf) A r(l_a)u'(5)+(r(5)ﬁ(é))’]

r
<—amw(e) p(e)- WEWE)

F(¢)
+\7(§)ld(§)ﬁ(§)—Lp(§) MF(g)T (1—a)(~w(?) —ﬁ(é)} +(f(§)ﬁ(§))']

7(£)F(S)
q(&)w(s)
F($)

~9(£)]-8(8)5(£)+ LD(£) +MT(1-a) 7 (D) ~(F(£) 5(2)) |-Mr(1-a)

IA

—2Mp()W(&)[1-MT (1-a)]-

#(6)2-0(e) 1 -41e)-Mr(-a) o

That is

) ) T
T M ey

Let &, be anarbitrary point in (§Ci /S, ) substituting & with s multiplying both sides of (14) by H (&,s)

()

§(&)<-w(£)-a(¢ cele.é ] i=12 (14)
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and integrating it over [égl,é) for é:e[‘fd,’é:d,) i=1,2 we obtain

EH (£,5)4(s)ds
g—f;H(g,s)W(s)ds—J';H(é,s)q(s)%ds I M(Fg (S)) 2(s)H (&,5)ds
= w(e )~ [ s S)W(s)+ sq() (1_“)w2s s) |ds
=H (&8 )w(s, ) L&[hz(é) H(&,5)W(s)+H (¢, 1165 " ) ¢ EHE )}d
B alz\_fF| ML@-a)H(&s) 1 [F(s)i(s) o), A0) s i
=H(84)%4) f@,[\/ IO, Mr(l_a)(hz(f’) oA )”
1 ¢ a(s) 2~ -
+m~[~fa.[h2(§'s)+f_s,) H(§,S)j F(s)V(s)ds
M (£ (e, )- j;{\/w(fl(‘s‘;v?g)@’s)w(s)% h;(rs()f_(i)qz(f,s)] ds

+4Ml"?1— )I;sz("g’s)f( J7(s)ds <H (£.&; JW(&; )+ 4 (i=a) I Q(£:5)F(s)7(s)ds

Letting & — &, — and dividing both sides by H (§d Ss )

i)

On the other hand, substituting & by s multiply both sides of (14) by H(s,&) and integrating it over
(5,5{,}) for §€[§q,§(,~i) we obtain

[[H(s.€)d(s)ds <= ["H (s,£)W (s)ds— [ H (s,£)(s)
=—H(§5,§)v~v(<§5)
N R - M e

[ (s.8)7(s)u(s)ds

4MF(1a I )J 2(&,.5)T(s)9(s)ds (15)

| =

(8) 4o (& MIUW=2) 22y 1 (s
0% T O

<—H (& 8)w(g, )+ W

Letting & — & + and dividing both sides by H (5,5' /S, )
1

Al gl (=il

Now we claim that every non trivial solution of differential inequality (9) has atleast one zero in (f /S, )
Suppose the contrary. By remark, without loss of generality, we may assume that there is a solution of €)]
such that U (5) >0 for &€ (5 /S5 ) Adding (15) and (16) we get the inequality

S = 1 & -
[[H(s4 L Tr JoH(85)d(5)es

< 1
AMT (1-a)H (&,

1
AMT(1-a)H (&;,

)f”Ql( £ )F(s)i(s)ds  (16)

H(&.4,)

1 &, _
IO A CR LCOL

which contradicts the assumption (11). Thus the claim holds.
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We consider a sequence {T }c [t oo) such that T; - as j—>oo. By the assumptions of the theorem
for each jeN there exist ¢;,d;,d; €R such that T <¢; <d; <d; and (11) holds with & & ,&,, re-
placed by 5” ;,ij zfdij respectively for i=1,2 jeN. From that every non trivial solution U(§) of (9) has

at least one zero in ¢, e(écij ,§dij ) Noting that &, > gc” > fT, jeN we see that every solution U (af) has ar-

bitrary large zero. This contradicts the fact that U (5) is non oscillatory by (9) and the assumption u(x,t) #0
in Qx|[t,,0) forsome t; >0. Hence every solution of the problem (E), (B,) is oscillatory in G.

Theorem 3.3 Assume that the conditions (A,) - (As) hold. Assume that there exist H e P p e C'([go,oo),(o,oo))
suchthatforany & >¢& i=12,

I'Tffpj. { s, fi)q?(s)—mf(s)v(s)qz(s,fi):lds>O (17)
and
|II’;’\_§£DI |: )é(s)—mF(S)V(S)Qf(§,s):|ds>O, (18)

where V(&) and ¢3(§) are defined as in Theorem 3.2. Then every solution of (E),(B,) is oscillatory in G.
Proof. For any & >¢&,, i=12 thatis, & >& >¢&, let & =&, i=12.1In (17) take & =& . Then
there exists &, >¢& =12 such that

E[H (s.g, )&(s)—mf(s)v(s)q(s,gq ) ds>0 (19)
In (18) take & =& . Thenthereexist & >¢&; =12 suchthat
& 1 N 2 ]
I |: (fd ) )¢( ) mr(S)V(S)QZ (édl,S)—dS>0 (20)
Dividing Equations (19) and (20) by H (&;.&,) and H (&, &, ) respectively and adding we get
1 [ 1 It
"H a d 'H " d
TEﬂj(wM“HF@Eﬂ H (&, .5)@(s)ds

1
oy F(l-a)H (¢, &

i s)V(s)ds+ L
I )T

Then it follows by theorem 3.2 that every solution of (E), (B,) is oscillatory in G.
Consider the special case H (&,s)=H (£-s) then
6H

TEnEHES), T=n(e-s)yHE)

Thus for H=H(£—-s)eP we have h(&-s)=h,(£—s) and we note them by h(&—s). The subclass
containing such H (£ —s) isdenoted by P,.Applying Theorem3.2to P, we obtain the following result.
Theorem 3.4 Suppose that conditions (A;) - (As) hold. If foreach T >t, there exists H P,
peC"([ ©),(0,)) and & ,& eR with & <& <& such that

jH( & )[9e)+d(25, - )]ds>mf”[“ )9(s)+F(2¢, —s)v(2¢, —s) |n?(s-¢, )ds

F"'Qz (&,.5)F(s)¥(s)ds

S5

+2|\/|r%1_a)5.[[\7(2§6i —S)q(2§5i —S)—V(s)q(s)Jh(s—fci) H (s-gci )ds 1)
! (96O, 72 -3)T (25 -9) [
4MT (1 )L [ F(s) F(2&, -s) H(s-¢. )d
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where V(&) and 5(5) are defined as in Theorem 3.2. Then, every solution of (E) and (B,) is oscillatory
in G.

Proof. Let & =

, for i=12, thatis & =25, —¢& , then

H(fdi—fél):H(fgi—fci):H£§d';fc'].
Forany wel'(£,.&,) we have
Lo w(s)ds = j w(2¢, —s)ds
J (e% —s) s)ds=["H (s-£, )3 (25, -s)as
(<) (& o~ (25, -<Ja(zz, - sh(s- ) (s
J <) o= (2, sz, (s ) s 2 s

From (21) we have

EH (s-¢, )[(/3(5)4r¢7(2§5i —s)}ds >

§c| + éd,
2

J'Q[f(s) ()+r(2§5 —s) (255 —S)J (s §ci)d3

1
MT (1-a)’%
1

+2Mr(1_a)I§ |9(2¢, —s)a(2¢, =s)-v(s)a(s) |n(s- & ) H (s =&, )ds

1 ca| 0(s)@2(s) (28, —5)6* (25, —s)
+4MF(1—6¥)L { 7(s) + 26, -9 H(s—¢&, )ds
j ( £ )(s) dS+f H (&, —s)4(s)ds
4MF I )h? (s gcl)ds+mj§:f(s)\7(s)hz(§dl ~s)ds

+2|v|r21—a)[sai s)d(s)h g‘dl—s)JH(édl—s)ds—jiiv(s)q(s)h(s—gcl) H(s—gcl)ds}

s—¢&, )ds+j2‘ %H (fdi —S)ds:l

Ty rzl_a)j.:i {F(s)v(s)hz(gdi —S)+2\7(S)q(s)h(<§di —s) IH (gdi _5) +\7(s)(12((:)) H (Q, —S)}ds
:4MF21—0¢)-[§iF(S)\7(S){h(S &)= 8\/"‘( % )}

+4MF:(Ll—a)J?Ir( )9(s ){ (& —s)+ (:(_3 H (S _S)}

since H(&—-s)=H(¢&,s) we have
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JoH (5.8 )d(s)ds+ [H (& 5)d(s) s
> (e - TR .;)ds+mﬂ~< 9(5)Q2 (&,.5) s
Hence every solution of (E),(B,) is oscillatory in G by Theorem 3.2.

Let H(¢,s)= (é—s)ﬁ E>s>¢& where A>1 isa constant. Then, the sufficient conditions (17) and (18)
can be modified in the form

|Ir;1j:]pj ‘[@(5)_mf(s)\7(s)(£—é—ggzn ]ds>0 (22)
imsupf; (¢ -s) [ﬁ(s)—mf(s)v(s)(ﬁ+%j ]ds>0 (23)

Corollary 3.1 Assume that the conditions (Ay) - (As) hold. Assume foreach & >&; i=1,2thatis &, >& >¢;
and forsome A>1 pe C’([go,oo),(o,oo)) we have

i 153— F(s)-—— r(s)i(s L—q—s‘)zs>
imsup 2= (5-4) [¢< T EUGAG P 8 }d :

£ g
and

1

i L " N A d(s)
Il?j:jpﬁj(f—s) [¢(S)—Wl_w)r(s)v(s)(éE S+F(S)J }ds>0,

Si

Then every solution of (E) and (B,) isoscillatory in G.
Theorem 3.5 Suppose that the conditions (A;) - (As) hold. If for each & > &, i=1, 2 and for some A >1
satisfies the following conditions

T 2 (s)_ 22(s) Z
w1680 | 960 gty | -5 o

and

limsup }ljé(é—s)l &(s)—;[qz(sﬁuq(sq ds > A

too & I AMT (1-a) AMT (1-a)(2-1)

Then every solution of (E) and (B,) isoscillatory in G.

Proof. Clearly hl(s,éi):/l(s—.;)m'l, h2(§,s):/1(§—s)’”2'1.

Note that

1 S o _ T 1 [P _ 1-2

"?imiﬁﬁff_gﬁ?_km(s éﬁh_“@§m4MI(Lwﬁ§*lLﬁ(s &) ds
/12
TAMT (1-a)(2-1)
and

2 T $,2 -2

D Ty 7o (6 =) mlimeup oo [27 (=) s

— 12
C4AMT(1-a)(A-1)




V. Sadhasivam, ]. Kavitha

Consider

I|msup§l 1L{H(s—§i)¢3(s)_

Eow

£oe H(s-¢&
4 2l 7 1 ~2 ﬂq(s)
“r;‘jgpg“j (s-5) P(S)—m(q (S)_Z(S—é)ﬂds
> Ilmsup;j;hl2 (s—¢&)ds> Z

e AMT (1-a)&”

1 ¢ Al 7 1 ~2 lq(s) A
In;rLs;Jp = L(S—ﬁa) P(S)—m(q (S)_Zmﬂds g 4MT (1-a)(A-1)

Similarly we can prove other inequality

AMT(1-a)(A-1)

Next we consider H (&, s) [R ] where A is a constantand R(¢&) = L%ds and limR(&)=oo.
ir(s e
Theorem 3.6 Assume that the conditions (A;) - (As) hold. If for each & >¢&, i =1, 2 and for some 4 >1
peC'([&,),(0,)) such that

A

L (r(s)_ 5o (s) 4 _~525>
I|msupR“(§)I (R( ) R(é:i)) _¢( ) 4MF(1—a)I’(S)(R(S)_R(§i) q( )J ]d 0

and

imsu L r -R(s l_NS - 7(s) +a(s | 5>
li pRl 1(5).'. (R(é:) R( )) _¢() 4MF(1—0{)|7(S)[R(§)_R(S) q( )j ]d ’

Then every solution of (E) and (B,) isoscillatory in G.
Proof. From (17)

S —

£

ims [ P(S) ) 'r“(f)V(s)[h(s,é)f(s)_q( )HdM

T (1-a) NG

£ S

“r?ffpj R(‘fi))l Camr(1 E[A[R 52} 72 —q(S)J ]d3>0
“?ffpj R(é‘))l Tamr(t z [R J }dbo

1 & il o~ :
st s gy e (R(9)-R(E) [‘”S) o) <s>(R<s>—R<¢:>“’( ) ]M
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Similarly we can prove that

)

A

Iimsupﬁﬁ(R(ﬁ)— R(s)) [4’;(5)_ aM le—a) \;Ez

oo

S

If we choose H(g,s)=(|og(§Dn,§>s>§o and H(g,s)=[j

ries.

¢ du

* 0(u)

)[R(i)

-R(s)

+q(s)ﬂds>o

n
J we have the following corolla-

Corollary 3.2 Suppose that the conditions (A;) - (As) hold. Assume for each & >¢& i =1, 2 that is

£ =& >& andforsome n>1 peC'([fO,oo),(O,oo)) we have

”Tjgpjj[,og[éiﬂ 5(3)_4Mrz1—a) S,Ognm

and

n

Iir;LS:JPE(log @D #(s)- 4M le—a) : |0g(§) +

Then every solution of (E) and (B,) isoscillatory in G.

S

Corollary 3.3 Suppose that the conditions (A;) - (As) hold. Assume for each & >&, i=12 that &, >& >¢;

and forsome n>1 pe C’([go,oo),(o,oo)) we have

imsup(° sd—un p(s)- L n _46)

im0 Ol "
and

. &l ps du . 1 n q(s)

sl ({155 |70)-avria PETRE

Then every solution of (E) and (B,) isoscillatory in G.

4. Oscillation without Monotonicity of f(x) of (E) and (B1)

We now consider non monotonous situation

(n) W

£0(u)

——=>M, >0 where M, is a constant.
u

ds>0

ds>0

Theorem 4.1 Suppose that the conditions (A;) - (As) and (Ag) hold. Assume that for any T, >t, there exist
G, 6, d; for i=12 suchthat Ty<c <6 <d, <c, <6, <d,, te[c,d|u[c, d,] satisfying

F(t)- {S 0, tefc.d]

>0, te[cz,dz].

(24)
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If there exist &, €(&,.&,) HeP and peC”([t,,),R,) such that

1 “ z 1 & -
& Lc.H(S’fq)‘é(s)d“mkﬂH(fdi’5)¢(3)d5

>r_1 ,_IQ()()Ql(s;f) (25)

T
—_
A
EAN
S—

' 4F(1—a) H (édi l‘fﬂ‘- )L:F(S)V(S)QZZ (ggdi ,S)dS, fori=12,

where ¥ and ¢ are defined as

V(&):exp(—zjzﬁ(s)ds)

() =9(6){LMP(6) () 5(6) T (=) () 7 (£)~(r()p(4)) |

Then every solution of (E), (B,) isoscillatory in G.
Proof. Suppose to the contrary that u(x,t) be a non oscillatory solution of the problem (E), (B,) say
u(x,t)=0 in Qx[T;,) forsome T, >t,. Define the Riccati transformation function

w(t):v(t)r(t){[’i”—(t()t)w(t)] (2T,

Then for t>T,

Drw(t) - D2 )%w(t){[’f ) 2o 01 ot <t>)}
By using f E(K(t(;)) > M, and inequality (4) we get
Dfw(t)< va(t)%
’ . , (26)
) - SO - r0 S ot (<) 0t (o) - F

)<0 on the in-

By assumption, if u(x,t)>0 then we can choose c,,d, >T, with ¢, <d, such that F(t
t)>0 On the in-

terval [c,,d,]. If u(xt)<0 then we can choose c,,d, >T, with c, <d, such that F(
terval [c,,d,] So

Ftv(t) c -
0 <0 tefe,d], i=12

Therefore inequality (26) becomes

Drw(t) < va(t)%+v(t) —%—Mlm(t)-r(t) DSE(S) DI (02 ((0r ()|

te[ci,di], i=12.

Let w(t)=w(¢), v(t)=V(¢). a(t)=a(¢), U(t
Then dE?ft()= '(£), DIU(t)=U"(¢), DIK(t)=

) 0-R(e). r(0)=r(5).
K'(£), DI (r(t)p(t))=(F(&)A(£)) . so (27) is trans-
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(@) <v(e)g ) o016 U maae)-r g D k@ r(erpte)
3—2/3(§)V(e‘)\\l,:v((§))

916 a0 5 pte) | wsate) - 18 ae i g e |
<—2/3(§)W(§)—@((2f((§))

+V(§)[q(§)p(§)—Mle(é)—f(i) o -5 ((W(@))}
<-25(&)W(¢)[1-T(1-a)] q(i)(?)(g)

~0(6)[4(E) AL+ LMD (&) 1T ()~ ()N [-ra-a)m s
w(©)<-a(e e -3(e)-ria-a) L
where

B16)=(6) L,p(E)-0(6) L)+ (T (1= (6)-(r(p(6)] |

that is

¢3(§)s-vv'(g)—q(g)%—r(l—a)%, cele g ] i=12

The remaining part of the proof is the same as that of theorem 3.2 in section 3, and hence omitted.
Corollary 4.1 Suppose that the conditions (A;) - (A4) and (Ag) hold. Assume for each & >¢&, i=12 thatis
E>E>& andforsome A>1 pe C'([fo,oo),(O,oo)) we have

. 1 ¢ A - 1 (2 as)Y
imsup - [*(5-4) [¢<s)—mr<s)v<s>[q—@J }dsw
and
1

. 1 ¢ 2|~ N A 4(s) ’
Ilrgjfp?j&(f—s) [¢(s)—mr(s)v(s)(a+m] ]ds>0.

Then every solution of (E) and (B,) isoscillatory in G.

5. Oscillation with and without Monotonicity of f(x) of (E) and (B2)

In this section, we establish sufficient conditions for the oscillation of all solutions of (E), (B,). For this, we
need the following:
The smallest eigen value £, of the Dirichlet problem

Aw(x)+Bw(x)=0inQ
w(x)=00noQ,
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is positive and the corresponding eigen function ¢(x) is positive in Q..

Theorem 5.1 Let all the conditions of Theorem 3.2 be hold. Then every solution of (E) and (B,) is oscillatory
in G.

Proof. Suppose to the contrary that there is a non oscillatory solution u(x,t) of the problem (E) and (B,)
which has no zero in Qx[to,oo) for some t, > 0. Without loss of generality, we may assume that u(x,t)>0
in Qx[tl,oo), t, >t,. Multiplying both sides of the Equation (E) by ¢(x)>0 and then integrating with re-
spect to x over Q., we obtain for t>t,

IQth [r(t)Djtu(x,t)]¢(x)dx+Jﬂq(x,t) DY, u(x,t)@(x)dx
+IQp(x,t) f (j;(t—s)'“ u(x,s)ds)g(Dﬁ[u(x,t))¢(x)dx (28)
= a(t)IQAu(x,t)¢(x)dx+IQF(x,t)¢(x)dx.

Using Green’s formula and boundary condition (B, ), it follows that

JQAu(xt x)dx = J (x,t)Ap(x dx:—ﬂo'[mu(x,t)qﬁ(x)dxso, t>t, (29)
Ja(xt)Diu(x)g(x)dx2q(t) D! ([u(xt)g(x)dx), t=t, (30)

By using Jensen’s inequality and (A,) we get
JoPOxt) £([1 (=) “ u(xs)ds) g (D2 (x)#(x)ox
me ([t “ u(x.5)#(x)ds) g (Dru (x))ax
p(0)] ) [1-9)" (J,99)0 090 [ o)) “as oD 0),

Set
U(t)=[u(xt)p(x)ax([ p(x)ax) (31)

Therefore,
[p(xt)f (j;(t_s)*“u(x,s)ds)g( u(xt))g p(t) [, ¢ (x)dxt (j (s)ds)g(Djlu(x,t)).
By using g(D;u(x,t))>L>0 wehave

Iﬂp(x,t) f (I;(t—s)_“ u(x,s)ds)g(Dﬁtu(x,t))dxz p(t)f (K(t))LIQqﬁ(x)dx, t>t,. (32)
In view of (31), (29)-(30), (32), (28) yield

D [r(t)DU (1) |+ q(t) DU (1) + Lp(t) f (K (1)) < M(lx)dx [ F(xt)8(x)dx

Take F(t)=

! J' F(x,t)¢(x)dx therefore

J'Qqﬁ(x)dx e
D¢ [r(t)DeU (1) |+a(t)DeU (t)+Lp(t) f (K(t))-F(t)<0, tx>t,.

Rest of the proof is similar to that of Theorem 3.2 and hence the details are omitted.
Remark 5.1 If the differential inequality

(F(£)U'(£))+a(£)U"(&)+B(&) F(R(E)L-F(&)=0

has no eventually positive solution then every solution of (E) and (B,) is oscillatory in G, =Qx[&,)
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where £ >0.
Theorem 5.2 Let the conditions of Theorem 3.3 hold. Then every solution of (E) and (B,) is oscillatory in G.
Theorem 5.3 Let the conditions of Theorem 3.4 hold. Then every solution of (E) and (B,) is oscillatory in G.
Corollary 5.1 Let the conditions of Corollary 3.1 hold. Then every solution of (E) and (B,) is oscillatory in G.
Theorem 5.4 Let the conditions of Theorem 3.5 hold. Then every solution of (E) and (B,) is oscillatory in G.
Theorem 5.5 Let the conditions of Theorem 3.6 hold. Then every solution of (E) and (B,) is oscillatory in G.
Corollary 5.2 Let the conditions of Corollary 3.2 hold. Then every solution of (E) and (B,) is oscillatory in G.
Corollary 5.3 Let the conditions of Corollary 3.3 hold. Then every solution of (E) and (B,) is oscillatory in G.
Theorem 5.6 Let all the conditions of Theorem 4.1 be hold. Then every solution of (E), (B,) is oscillatory in
G.
Corollary 5.4 Let the conditions of Corollary 4.1 hold. Then every solution of (E) and (B,) is oscillatory in G.

6. Examples

In this section, we give some examples to illustrate our results established in Sections 3 and 4.
Example 6.1 Consider the fractional partial differential equation

1 1 1
D?, [tsz,tu (x,t)] —?tsz,tu (x,t)

-1 1 2
+ 1 5 — Jot(t—s)su(x,s)ds{l{Dﬁtu(x,t)}J (Ev)
x/g(costc(x)mints(x))[1+sin2 X(S’coszt—smtJ J
2 5 5
:t—Au(x,t)+£F(£jt3sin XCoSt — ﬂl‘(ljt3+£t2 sinxsint+1
4 20m \3 20r \ 3 4
for (x,t)e(0,m)x[0,00), with the boundary condition
u(0,t)=u(zt)=0, t=0. (33)
Here
1 V3 1

a=z N =1r(t)=t q(x,t):—7t2, p(x,t)=

2

2m (costC (x)+sintS (x))[lJrsin2 X(MJZJ

where C(x) and S(x) are the Fresnel integrals namely
C(x):IOxcos(%ntzjdt, S(x):joxsin[%ntzjdt

f(K(t))=K(t), K(t):jg(t—s)%lu(x,s)ds, g(Détu(x,t)J=1+{D§tu(x,t)} , a(t):tz

and

5 5
F(xt) :ﬂr(ljﬁ sin xcost — %FGJﬁ +£t2 sinxsint +1.
20 \ 3 20 \ 3 4

V3.

It is easy to see that q(t)=mi,nq(x,t):—7t. But [C(x)|<= and |S(x)|< . Therefore
xeQ

1
t)=mi X,t)=
P() rlllfgp( ) n\/ﬂ(cosHsint)
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wetake 1=2 and V(&) =§i so that 5(&) =%. It is clear that the conditions (A;) - (As) hold. We may ob-

2

serve that

f(K(t))=K'(t)= F(l—%) D%tu(x,t) -— T sin x(\/§cost—sint)

Using the property, [a—b| > ||a|—|b]| we get

1

t(K (1) > ——(V3-1)>1=M, g{D}tu(x,t)J =1+{D§Ytu(x,t)}2 >1=L,

1 NE) 2n 1

=y .
£ (n 2n)(cos§+sin &) 2% @F(lj 4
3

[y

Consider
. 1 ¢ 2| 1 (2 ae)Y
|If;1f£p?.[;.(5—§i) [¢(5)—mr(s)v(s)[s_—i—r—s)j }'5
:Iimsuplj"f(s—cfi)2 ! +£+ 2t ___y iz_ ! [LJFEJ ds
foe £ sz(n 2n)(coss+sins) 2s @F(lj S 4r(1_1j s-& 2
3 3
>IirgrLsmprﬁj‘j(s<§.)2[81§I +$] ds
3
1\/§r(g) ¢ 2
>Iir?j£pg o J;i(4+\@s—x/§§i) ds
1
3| =
>Iimsup£[ (ijszds:oo
Eoe 32 é
and
U B e NS SRRPORN O B (O
imsup2L [/ (¢-5) {«s(s) a0 ) ]ds
timsup [ (6 -5 1 B = %_;[L_ﬁ] ds =
fon &7 sz(n 2n)(coss+sins) 2s \/gr(lj s 41(1_1) -s 2
3 3

Thus all conditions of Corollary 3.1 are satisfied. Hence every solution of (E;), (33) oscillates in (0,7)x[0,).

288
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Infact u(x,t)=sinxcost issuch asolution of the problem (E;) and (33).
Example 6.2 Consider the fractional partial differential equation

Dét[tDét (xt)j—ﬁﬂy (1)
3(1+coszxsin2t) j(t s)élu(x,s)ds

+
V2m (costC (x) +sintS (x))(4 +cos” xsin® t)| 1+ cos® X(W]
? (E2)

2
1 1 :
Sy—— 14| D3u(xt
(3 1+coszxsinzt][ ( " )]}

lAu(x,t)+ S (1)t3cosxsmt+ il‘( jt3 \Et cosxcost+1
4 3 8 3 4

T
for (x,t)e(0,m)x[0,0), with the boundary condition
u (0t)=u,(mt)=0, t=0 (34)

Here

NG

a==,N=1, r(t):t,q(x,t):—Tt,

3(1+cos2 xsinzt)

Plxt)= \/§sint+cost]2]

V2 (costC (x)+sintS (x))(4+cos® xsin’ t){1+ cos? x( 5
where C(x) and S(x) areasin Example 1.

f(K(t))zK(t)(%+mj,

K (1)= [ (t=s)° u(x.s)ds

g [Détu (x,t)j = 1+(D§,tu (x,t)]z :

and

2
F(xt) =83F(;jt3 cos xsmtn{ir(sjﬁ +§t}cosxcost+1
T

ﬁt, p(t)= - 3 we take A=2 and \7(§)=i2 so that
(2m)2[cost +sint] 4

It is easy to see that q(t)=-

[)(5) = L . It is clear that the conditions (A;) - (A4) and (A¢) hold. We may observe that

f(K(t))=(1+—l j>1:|\/|1

K(t) 3 1+cos®xsin’t) 3
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g (Détu (x,t)) = 1+[D§tu (x,t)]z >1=L.

ASS
—_
iy
SN
I
<@
—~
SN
SN—"
—_——
—
<
ot
—_
SN
N—
|
O

(£)A()+T(-a)f(6) 7 () () (<)) |
1 V3 2n

Consider
. N R o SN O I (O
llr?jgp?j;(s &) P(S) 41“(1—oz)r(s)v(s)[s—§i r s)] ]ds
:Iimsupi.[j(s—fi)2 - ! +2—\/§2+ 27; 1 1 l( 2 +§] ds
e £ 52£2n2J(coss+sins) S x/§l"(3jss 41“(1—3]5 =4
. £ 21( 1 B
iy 4
B3
>"215pr o ng(4+x/§s—«/§§i) ds
1
. 1\/51"(3} ¢l ,
>I|msup——f —s‘ds=o
il & m s
and
S SRSt SN RPN O S (O
imsup22 [/(6-5) P(S) sy 1) ]ds
:Iimsuplr(g‘—s)2 . L +£?;+ CLI 1( 2 —EJ ds = oo,
fon £ s*(2n)2 (coss+sins) 2s ﬁr(;JSS 41"(1—3S c-s 2

Thus, all the conditions of Corollary 4.1 are satisfied. Therefore, every solution of (E,), (34) oscillates in
(0,m)x[0,%). Infact, u(x,t)=cosxsint issuch asolution of the problem (E,) and (34).
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