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Abstract 
We revisit one of the classical search problems in which a diffusing target encounters a stationary 
searcher. Under the condition that the searcher’s detection region is much smaller than the search 
region in which the target roams diffusively, we carry out an asymptotic analysis to derive the de-
cay rate of the non-detection probability. We consider two different geometries of the search re-
gion: a disk and a square, respectively. We construct a unified asymptotic expression valid for 
both of these two cases. The unified asymptotic expression shows that the decay rate of the non- 
detection probability, to the leading order, is proportional to the diffusion constant, is inversely 
proportional to the search region, and is inversely proportional to the logarithm of the ratio of the 
search region to the searcher’s detection region. Furthermore, the second term in the unified 
asymptotic expansion indicates that the decay rate of the non-detection probability for a square 
region is slightly smaller than that for a disk region of the same area. We also demonstrate that the 
asymptotic results are in good agreement with numerical solutions. 
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1. Introduction 
Searching is a common activity in our everyday life. For example, we look for lost car keys in a big parking lot, 
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search for hidden natural resources such as oil and metals in a vast field, and search for missing people in a 
national park; the U.S. Coast Guards conduct thousands of open ocean search and rescue missions every year; 
the police hunts for drug smugglers; the military searches for Improvised Explosive Devices (IEDs) and insur- 
gents in Iraq and Afghanistan. More examples can be found in Koopman’s classical book [1] and in a recent 
article by Beckhusen [2]. 

Historically, the search for enemy submarines during World War II stimulated intensive scientific studies, 
giving rise to a branch of operations research now known as search theory [3]-[9]. The continued importance of 
finding maritime targets as well as other hidden objects keeps providing new research challenges in the field. 

In search theory, we call the object being sought the target. The search region is the region that both the target 
and the searcher are confined to. Generally speaking, search problems can be loosely divided into two cate- 
gories: one-sided search and two-sided search. In one-sided search, the searcher tries to detect the target while 
the target does not know the presence of the searcher, i.e., the target does not try to avoid the searcher in any 
active way. In two-sided search, the target has some capability of sensing the presence or the approaching of the 
searcher and may design a way to avoid being detected by the searcher. In one-sided search, the main objective 
is to maximize the probability of detection in a given time period and/or to minimize the cost or time of the 
search for a given tolerance of the non-detection probability. One-sided search can be further characterized by 
the constraints placed on the searcher’s actions and the target motion. This includes stationary target problems 
and moving target problems. Different approaches have been taken to address these problems. For example, 
Stone [8] derived necessary and sufficient conditions for optimal detection problems. Mangel [10] calculated 
joint probability density for target location and unsuccessful search by the ray method. Mangel also formulated 
the search and mining problems as constrained optimization problems and then solved the problems by vari- 
ational techniques [11]. Washburn [12] found the searcher path that minimized the mean time to locate a random 
stationary target where the starting point could be chosen by the searcher. Eagle and his co-workers found a 
searcher path that maximized the probability of detecting a moving target in a fixed time duration [13]-[15]. 
Washburn [16] compared several branch-and-bound methods for solving a moving-target search problem. Dell 
and collaborators applied an optimal branch-and-bound procedure to find a feasible path that maximized the 
probability of detecting a moving target using multiple searchers with constrained path [17]. MacPhee and 
Jordan considered the optimal search problem for a leprechaun that moves randomly between two sites and the 
movement was modeled with a two-state Markov chain [18]. Majumdar and Bray calculated the survival pro- 
bability of a tracer particle moving along a deterministic trajectory in the presence of diffusing traps [19]. 
Fernando and Sritharan computed the non-detection probability of infinitely many diffusing Brownian targets by 
a moving searcher which traveled along a deterministic path with constant speed in the two-dimensional plane 
[20]. Wang and Zhou conducted numerical studies to calculate the non-detection probability of a randomly 
moving target by a stationary or moving searcher in a square search region [21]. They also considered the search 
problem where a target moves between a hiding area and an operating area via multiple pathways where the 
searchers are equipped with either cookie-cutter sensors [22] or stochastically intermittent sensors [23]. In con- 
trast, the two-sided search problem is traditionally addressed by formulating the problem as a game-theory 
problem [24] [25]. It involves a searcher and a target who knows that it is being chased and attempts to avoid 
detection or capture. Early work on search games was presented in the classic book of Shmuel Gal [26]. This 
monograph mainly addresses the problem of finding optimal search trajectories in order to locate a target. 
Recent developments on the theory of search games and rendezvous are discussed in the books [27] [28]. More 
references on the two-sided search problem can be found in the review paper by Chung, Hollinger and Isler [5]. 

One of the classical one-sided search problems involves a lone searcher looking for a single moving target. A 
classical mathematical problem is to examine the non-detection probability of a diffusing target by a stationary 
sensor such as fixed acoustic sensors, sonobuoys, or possibly mines. This problem has been investigated by 
Eagle [29]. A diffusion equation is used to describe the probability density of a diffusing target (modeled as a 
Brownian particle). When the search region is a disk and the cookie cutter detector (a detector whose detection 
region is a circle of a given radius) is fixed at the center of the search region, analytical solution to the boundary 
value problem can be formulated using separation of variables. The solution by separation of variables contains 
an infinite sum of Bessel functions. For large time, the solution is well approximated by the slowest decaying 
mode. For a rectangular search region, analytical solutions are still unknown. Instead Eagle carried out Monte 
Carlo simulations and numerically estimated the probability of non-detection. 

In this paper we revisit this classical problem of detecting a moving target by a stationary sensor or searcher. 
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We first nondimensionalize the problem, then we derive asymptotic approximations to the decay rate of the 
non-detection probability of a diffusing target by a fixed searcher in a large detection region for two different 
geometries of the search region: a disk and a square, respectively. For the disk-shaped search region, we show 
that the asymptotic solution agrees very well with an accurate numerical solution obtained by solving an 
algebraic equation involving Bessel functions. For a square search region, asymptotic solutions show that the 
decay rate of the non-detection probability is slightly smaller than that for a disk search region of the same area. 
Finally, we combine the two cases into a unified form by expressing the decay rate of non-detection probability 
in terms of a large parameter: the ratio of the search region to the searcher’s detection region. The significance 
of our results lies in the simple and explicit asymptotic expressions of the decay rate of the non-detection pro- 
bability. It shows that the decay rate of the non-detection probability, to the leading order, is inversely propor- 
tional to the logarithm of the ratio of the search region to the searcher’s detection region. 

2. Mathematical Formulations 
Consider a search region A of “characteristic” radius AR . For a disk, the characteristic radius AR  is the true 
radius; for a square, the characteristic radius AR  could be half the width, for example. Suppose the searcher is 
capable of detecting target within distance R. That is, the searcher covers a disk of radius R centered at the 
location of the searcher, which is called the detection region of the searcher. Once the target gets inside the 
detection region, it is detected instantaneously. This is the so-called cookie-cutter sensor/searcher in search 
theory. In this paper we study two cases: a disk search region and a square search region. 

We consider the situation where the searcher is fixed at ( )0 0,x y  and the target moves randomly with a 
diffusion coefficient D, confined in region A (the search region). Let ( ), ,p x y t  be the probability of the target 
being at position ( ),x y  at time t. ( ), ,p x y t  is governed by the diffusion equation with boundary and initial 
conditions:  

2p D p
t

∂
= ∇

∂
                                     (1) 

( ) ( )2 2 2
0 0

0, 0x x y y R
A

p p
− + − =

∂

∂
= =

∂n
 

( ) ( )0, 0p x p x=  

where 
2 2

2
2 2x x

∂ ∂
∇ ≡ +

∂ ∂
 denotes the Laplace operator and p p

n
∂

≡ ⋅∇
∂

n


 represents the directional derivative of  

p along the normal vector n  of A∂  (the boundary of search region A). Of the two boundary conditions, the 
first one corresponds to the reflecting condition at the boundary of the search region A, and the second one refers 
to the absorbing condition at the boundary of the searcher’s detection region. 

The objective of this paper is to seek asymptotic solutions when the detection radius R of the searcher is much 
smaller than the characteristic radius AR  of the search region A. Mathematically, that is 1AR Rε ≡  . We 
first perform non-dimensionalization to make the problem dimensionless. Let  

2
1 1, ,new old new old new old

A A A

Dx x y y t t
R R R

= = =  

( ) ( )2, , , ,new new new new A old old old oldp x y t R p x y t=  

The function ( ), ,new new new newp x y t  has the meaning of probability density with respect to new variables. It 
satisfies the initial boundary value problem below (we drop the subscript “ new ” for simplicity):  

2p p
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∂
                                       (2) 

( ) ( )2 2 2
0 0

0 , 0x x y y
A

p p
ε− + − =

∂

∂
= =

∂n
 



H. Y. Wang, H. Zhou 
 

 
253 

( ) ( )0,0p x p x= . 

After non-dimensionalization, the characteristic radius of the search region is 1 and the detection radius of the 
searcher is ε . 

3. Asymptotic Solutions 
The initial boundary value problem (2), in principle, can be solved using the method of separation of variables. 
More specifically, the solution can be expressed as  

( ) ( ) ( )
1

, , exp ,j j j
j

p x y t t u x yλ α
∞

=

= −∑                              (3) 

where 1 20 jλ λ λ< < < < <   are the eigenvalues and ( ){ }, , 1, 2,ju x y j =   the associated eigenfunctions 
of the Sturm-Liouville problem described by  

2u uλ∇ = −                                        (4) 

( ) ( )2 2 2
0 0

0 , 0x x y y
A

u u
ε− + − =

∂

∂
= =

∂n
 

In the expression of ( ), ,p x y t  given in (3), ( )1exp tλ−  is the slowest decaying term. Over long time, the 
slowest decaying term dominates and consequently ( ), ,p x y t  has the approximate expression  

( ) ( ) ( )1 1 1, , exp ,p x y t t u x yλ α= − .                             (5) 

Let ( ) ( ), , d dS t p x y t x y≡ ∫ , which is the survival probability. Note that ( )S t  is also called the probability 
of non-detection by time t in search theory. Here we use these two terms interchangeably. Over long time, ( )S t  
has the approximate expression  

( ) ( )1 1expS t c tλ= −                                   (6) 

That is, over long time, the decay rate of the survival or non-detection probability is given by the smallest 
eigenvalue 1λ . The quantity 11 λ  corresponds to the time scale of being detected (absorbed) by the searcher. 
When AR Rε ≡  is small, time scale 11 λ  is large. In contrast, 21 λ  corresponds to the time scale of re- 
laxation of probability within the region and is not very much affected by small ε . As a result, ( )21 1Oλ = , 
independent of ε . This separation of time scales makes it possible to derive asymptotic expressions for the 
smallest eigenvalue 1λ . In the following we study two different geometries of the search region: a disk and a 
square, respectively, and we derive the corresponding asymptotic expressions. 

3.1. Search in a Disk Region 
We consider a disk-shaped search region as illustrated in Figure 1. After non-dimensionalization the search 
region A is a unit disk. The searcher is fixed at the center of the disk ( ) ( )0 0, 0,0x y = , and the detection radius 
of the searcher is ε . In this case it is more convenient to use polar coordinates ( ),r θ . Since the whole problem 
is axisymmetric, u is simplified to be a function of r only: ( ) ( ),u r u rθ = . Consequently, the Sturm-Liouville 
problem (4) becomes  

1 d d
d d

ur u
r r r

λ  = − 
 

                                   (7) 

( ) ( )1 0, 0u u ε′ = =  

In (Muskat, 1934), it is shown that nλ  is the nth positive root of the equation  

( ) ( )1 0 1 0 0x xY J x J Y x
ε ε

   − =   
   

                              (8) 
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Figure 1. A schematic illustration of a diffusing target in a disk search region of radius AR  in 
the presence of a stationary searcher at the center. The target is detected once it comes within 
distance R of the fixed searcher. After non-dimensionalization, 1AR =  and R ε= .                

 
where 0J  and 0Y  are the zero-th order Bessel functions of the first and the second kind, respectively; 1J  and 

1Y  are the first order Bessel functions of the first and the second kind, respectively. Thus, an accurate numerical 
solution for 1λ  can be obtained by solving algebraic Equation (8). We will use this accurate numerical solution 
to validate our asymptotic solutions. 

To derive an asymptotic solution, we view the right-hand side of (7) as a source term and recast the equation 
for { }1 1, uλ  in the form of conservation of probability.  

( )1
1

d1 d0
d d

ur w r
r r r

λ = + 
 

                                 (9) 

( ) ( )1 11 0, 0u u ε′ = =  

where ( ) ( )1w r u r= . 
When ε  is small, we can make a few comments about Equation (9):  

• probability flows out at the absorbing boundary and gets added back in as the source term ( )1w rλ ; the total 
probability is conserved and ( )1u r  does not change with time;  
• the source term ( )1w rλ  is small because 1λ  is small;  
• the probability outflow (detection by the searcher) is slow;  
• the relaxation within the region is relatively fast.  

From these observations, it follows that as long as the total amount of the source term ( )1 12π dru r rλ ∫  is 
correctly counted, the distribution of the source term should not significantly affect the solution. The relaxation 
within the region is relatively fast and is capable of spreading the source within the region in a time scale much 
shorter than the time scale of detection by the searcher (the separation of time scales discussed above). 

We use a delta function at 1r =  to replace ( )w r  in Equation (9), which means the probability flowing out 
at r ε=  is added back in at 1r = . The boundary condition ( )1 1 0u′ =  is no longer valid due to the delta 
function source term at 1r = . Since both 1λ  and ( )12π dru r r∫  are unknown, the boundary condition at 

1r =  becomes unknown after we approximate the source term as a delta function at 1r = . However, notice 
that eigenfunction ( )1u r  is determined only up to a constant multiple. We proceed by solving for ( )1u r  with 
only the absorbing condition at r ε= . Eigenfunction ( )1u r  satisfies approximately  

1d1 d 0,
d d

ur r
r r r

ε  = > 
 

                                (10) 

( )1 0u ε =  

A general solution of Equation (10) is ( ) ( )1 1 2 logu r c c r= + . Enforcing the absorbing condition ( )1 0u ε = , 
we get:  

( )1 2 log ru r c
ε

 =  
 

.                                  (11) 



H. Y. Wang, H. Zhou 
 

 
255 

The probability out-flow at the absorbing boundary is ( )12π uε ε′ . The total amount of the source term in 
Equation (9) is ( )1

1 12π dru r r
ε

λ ∫ . Equating these two quantities, we express 11 λ  in terms of ( )1u r  (it is more 
convenient to work with 11 λ  than working with 1λ ). We use this method to calculate 11 λ  based on the 
approximate ( )1u r  given in (11).  

( )
( )

1
11

1 1

2π d1 1 1 1 1 1 1log d log , log
2π 2 4 2 2

ru r r rr r
u

ε
ε

η η
λ ε ε ε ε ε

     = = = − = ≡ −     ′      
∫

∫             (12) 

In the calculations above, we have ignored terms smaller than ( )O ε . It is important to point out that the 
expression for 11 λ  given above is not accurate up to ( )O ε  or not even accurate up to ( )1O  because the 
error in ( )1u r  is not included in the calculation of (12). 

Note that ( )1u r  given in (11) is a first approximation of the true ( )1u r , obtained by setting ( )w r  to a 
delta function in Equation (9). We can improve the approximation iteratively. Once we have the approximate 
( )1u r  given in (11), we use it to replace ( )w r  in Equation (9) and derive a more accurate differential equation.  

Specifically, in Equation (9), we set ( ) 2 log rw r c
ε

 =  
 

. For convenience, we pick 2 12c λ=  since a non-zero  

multiple of an eigenfunction is still an eigenfunction. Equation (9) with boundary conditions becomes  

1d1 d 2 log
d d

u rr
r r r ε

   = −   
  

                               (13) 

( ) ( )1 11 0, 0u u ε′ = =  

A particular solution of Equation (13) is ( )
2 2

1 log
2 2
r r ru r

ε
 = − + 
 

. A general solution of the inhomogeneous 

Equation (13) without boundary condition is  

( )
2 2

1 3 4 log log
2 2

r r r ru r c c
ε ε

   = + − +   
   

 

Enforcing the boundary conditions ( )1 1 0u′ =  and ( )1 0u ε = , we get an improved approximation for ( )1u r :  

( )
2 2 2

1 log
2 2 2
r r ru r εη

ε
   = − + −   

  
                            (14) 

where η  is defined in (12). This is a more accurate approximation of ( )1u r  than the one given in (11). A new 
approximation for 11 λ  can be calculated by equating the probability out-flow at the absorbing boundary  

( )( )12π uε ε′  and the total amount of the source term ( )( )1
1 12π dru r r

ε
λ ∫ . Using the updated approximation of  

( )1u r  given in (14), we obtain  

( )
( )

2 2 21
1

1

1 1

2

log d
2π d 2 2 21
2π

1 1 1 5 1 1 1 ,
2 8 32 2 8

r r rr r
ru r r

u

O

ε
ε

εη
ε

λ ε ε η

η η η
η η

    − + −    
   = =

′

  = − + = − +      

∫∫
.                   (15) 

In the calculations above, we have neglected terms smaller than ( )O ε . Again, that does not imply that the 
expression for 11 λ  given above is accurate up to ( )O ε  because the error in the approximate ( )1u r  is not 
included in the calculation. We do, however, expect that in the iterative approach, each iteration yields one more 
term in the asymptotic expansion. Thus, the expansion in (15) is accurate up to ( )1O  term. That is, the first two 
coefficients in (15) are correct. 

With the new approximation of ( )1u r  given in (14), we can repeat the iterative improvement on ( )1u r  and 
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1λ . We go back to Equation (9) and replace ( )w r  by the most recent approximation of ( )1u r . Note that a  

constant multiple of an eigenfunction is still an eigenfunction. We set ( )
2 2 2

log
2 2 2
r r rw r c εη

ε
    = − + −    

   
  

and we pick 12/= λc . Now Equation (9) with boundary conditions takes the form  
2 2 2

1d1 d 2 log
d d 2 2 2

u r r rr
r r r

εη
ε

     = − − + −     
     

                       (16) 

( ) ( )1 11 0, 0u u ε′ = =  

For each term on the right-hand side of (16), we find a corresponding particular solution. A particular solution 

of 1d1 d
d d

ur r
r r r

α  = 
 

 is ( )
( )

2
1 2

1
2

u r rα
α

+=
+

; a particular solution of ( )1d1 d 2 log
d d

u rr r
r r r

αα
ε

   = − +   
  

 is 

( ) ( ) ( )

2
2

1 2
2log

2 2
r ru r r
α

α

α ε α

+
+ = − + +   +

. Using these results, we write out a general solution of (16) without 

boundary condition:  

( )
4 2

2 4 2
1 5 6

3log
2 16 32 2 4

r ru r c c r r rη η ε
ε

    = + − + − + +    
    

.                  (17) 

Determining coefficients 5c  and 6c  from the boundary conditions ( )1 1 0u′ =  and ( )1 0u ε = , we arrive at  

( )

( ) ( )

2
2 4

1

2
4 4 2 2

1 3 1 log
4 16 2 2 16

3
32 2 4

ru r r r

r r

ε ηη η
ε

η εε ε

    = − + − − +    
    

 
− − + + − 

 

.                     (18) 

We now have 3 approximations for eigenfunction ( )1u r  obtained in 3 iterations. The approximation given in 
(11) is the leading term approximation; the one in (14) is the 2-term expansion, and the one in (18) is accurate 
for the first 3 terms. Figure 2 shows these 3 asymptotic solutions for ( )1u r  along with the accurate numerical 
solution when 0.1AR Rε = = . Note that eigenfunction is only determined up to a constant multiple. To 
compare these approximations of eigenfunction, we normalized each function by its value at 1r = . So, after 
normalization, we have ( )1 1 1u =  for every function. In Figure 2, it is clear that even for this moderate 

0.1ε = , as we carry out the iterative improvements and include more terms in the asymptotic expansion, the 
approximation converges to the true solution. 

Based on the most recently updated ( )1u r , a more accurate expansion of 11 λ  is calculated by equating the  
 

 
Figure 2. Three asymptotic solutions and an accurate numerical solution for eigenfunction 
( )1u r  when 0.1AR Rε = = . Each function is normalized by the condition ( )1 1 1u = .                
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probability out-flow at the absorbing boundary and the total amount of the source term. In this new round of 
improvement iteration, we expect to get the coefficient of 1 η . So, in the calculation, we ignore terms smaller 
than ( )1O η .  

( )
( )

( )

( )

1
1

1 1

1 3 5 3

2

2π d1
2π

1 3 1 log d 1
4 16 2 16 2

1 3 1
4 16

1 1 7 1 1 ,
2 8 96

ru r r

u

rr r r r r r O

o

O

ε

ε

λ ε ε

η ηη η
ε

η η

η
η η

=
′

     − + − + + +          =
 − + + 
 

 
= − + ⋅ +  

 

∫

∫
              (19) 

where 1log
2

AR
R

η  ≡ − 
 

 as defined in in (12). In Figure 3 we compare our one-term, two-term and three-term  

asymptotic results for the normalized decay rate of non-detection probability, 1λ , given in (12), (15), and (19). 
For comparison, an accurate numerical solution from (8) is also plotted in Figure 3. When AR R  is small, all 
of the three asymptotic results match the accurate numerical solution quite well. As AR R  increases, one-term 
and two-term asymptotic results start to deviate from the accurate numerical solution whereas the three-term 
asymptotic expression remains very accurate even for 0.2AR Rε = = . 

Going back to the physical quantities before non-dimensionalization, we conclude that, over long time, the 
decay rate of non-detection probability for a disk search region has the asymptotic expression:  

( )

2

2

Decay rate of non-detection probability disk region
1

1 1 7 1 1
2 8 96

A

D
R Oη

η η

= ⋅
 

− + ⋅ +  
 

                   (20) 

where 1log
2

AR
R

η  ≡ − 
 

. 

3.2. Search in a Square Region 
Next we study the case of a square search region as shown in Figure 4. The search region A after non-dimen- 
sionalization is a square of width 2. The searcher is at the center of the square, ( ) ( )0 0, 0,0x y = , and the 
detection radius of the searcher is ε . 

Even though the search region is not axisymmetric, we will not completely abandon the polar coordinates 
( ),r θ . The motivation for using the polar coordinates is follows. When ε  is small, the local effect of the 
absorbing boundary is becoming singular. Fortunately, this singular local effect is nearly axisymmetric, and is 
best captured using the polar coordinates. The non-axisymmetry of the region does affect the solution of the 
eigenvalue problem. The effect of the square boundary is not axisymmetric. Fortunately, this non-axisymmetric 
effect is not singular and it can be conveniently described in Cartesian coordinates, independent of the small 
parameter ε . So, in the case of a square search region, we use both the polar coordinates and the Cartesian co- 
ordinates. Some coefficients in the asymptotic expansion have to be calculated using accurate numerical 
solutions. 

For a square of size 2 centered at ( )0,0 , the Sturm-Liouville problem (4) becomes  
2u uλ∇ = −                                     (21) 

( ) 2 2
1 1

0, 0, , 0
x y

x y

u u u x y
x y ε+ =

= =

∂ ∂
= = =

∂ ∂
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Figure 3. Comparison of 3 asymptotic expansions and the accurate numerical solution 
for the normalized decay rate of non-detection probability as a function of AR Rε ≡ .     

 

 
Figure 4. Detecting a diffusing target in a square region by a stationary searcher.         

 
We use a similar approach as we did in the case of a disk region. We treat the right-hand side as a source term 

and view ( )1 ,u x y , the eigenfunction corresponding to the smallest eigenvalue ( 1λ ), as the steady state solution 
of the diffusion equation with a source term. In other words, we rewrite the differential equation above as  

( )2
1 10 , Boundary conditionsu w x yλ= ∇ + +                         (22) 

where ( ) ( )1, ,w x y u x y= . Similar to the case of a disk region, when ε  is small, system (22) has several 
properties:  
• probability flows out at the absorbing boundary and gets added back in as the source term ( )1 ,w x yλ ; at the 
steady state, the out-flow is balanced by the source term, and ( )1 ,u x y  does not vary with time;  
• the input of probability from the source term ( )1 ,w x yλ  is relatively slow (slow time scale);  
• in contrast, the relaxation of probability distribution within the region is relatively fast (fast time scale).  

Due to the separation of slow and fast time scales, the exact distribution of the source term, to the leading 
order, will not affect solution 1u . The relaxation of probability distribution within the region driven by diffusion 
is relatively fast and is capable of spreading out the distribution of the source term. In the leading order 
expansion, we put the source term along the boundary of the square. For simplicity, we distribute the source 
term along the boundary of the square in a way such that the solution 1u  is axisymmetric. It follows that the 
approximate ( )1u r  satisfies  

1d1 d 0 ,
d d

ur r
r r r

ε  = > 
 

                                (23) 

( )1 0u ε = . 

The exact solution of (23) is given by  

( )1 2 log ru r c
ε

 =  
 

.                                  (24) 



H. Y. Wang, H. Zhou 
 

 
259 

The probability out-flow at the absorbing boundary is ( )1 22π 2πu cε ε′ = . The total amount of the source term 
in Equation (22) is  

( ) ( ) ( ) ( )2
1 1 1 1\ 0,

, d d 2π d
A B

u x y x y h r ru r r
ε ε

λ λ=∫ ∫  

where function ( )h r  is defined as  

( )
1, 1

4 11 arccos , 1 2
π

r
h r

r
r

≤
≡   − < ≤   

.                          (25) 

Geometrically, when we look at the intersection of the circle of radius r and the square, ( )h r  is the fraction 
of the circle inside the square. For 1r ≤ , ( ) 1h r = ; for 2r > , ( ) 0h r = . This geometric meaning of 
function ( )h r  is illustrated in Figure 5. 

Equating the out-flow and the source term, we have an expression of 11 λ  in terms of ( )1u r . Using the 
approximate ( )1u r  given in (24), we obtain  

( )
( ) ( )21

1 20
1 1

, d d1 1log d log
2π

u x y x y rh r r r
u

β β
λ ε ε ε ε

   = = = +   ′    
∫ ∫                  (26) 

where  

( )2
1 0

area of the square 2d
2π π

h r r rβ = = =∫                        (27) 

( ) ( ) ( ) ( ) ( )2 2 2
2 0 0 1

log 2 34 1 1log d log d arccos log d
π π 2

h r r r r r r r r r r
r

β
− = = − = + 

 ∫ ∫ ∫ .     (28) 

Note that ( )1u r  given in (24) is a first approximation of the true ( )1u r . We improve the approximation 
iteratively. We use the approximate ( )1u r  given in (24) to replace ( ),w x y  in Equation (22) and derive a new  

approximate differential equation for ( )1u r . Specifically, in Equation (22), we set ( ) 2, log rw x y c
ε

 =  
 

 and  

we choose 2 12c λ= . After this updating, Equation (22) along with the absorbing boundary condition has the 
form  

2
1 2 log ru

ε
 ∇ = −  
 

                                (29) 

1 0ru
ε=
=  

 

 
Figure 5. Geometric meaning of function ( )h r . Part of the circle of 
radius r is inside the square. The fraction of the part inside the square, 
relative to the circumference of the whole circle, is ( )h r .             
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Both the differential equation and the absorbing boundary are still axisymmetric. When the reflecting 
condition at the square boundary is put away, the system allows axisymmetric solutions. We first solve for an 
axisymmetric solution of this system and then we use superposition to take care of the reflecting condition at the  

boundary of the square. A particular axisymmetric solution of (29) is ( )
2 2 2

1 log
2 2 2
r r ru r ε

ε
 = − + − 
 

. The  

general axisymmetric solution of (29) with the absorbing boundary condition can be written as  

( ) ( ) ( ) ( ) ( )
2

1 2
1

1= log
2

u r u r u r ε
ε

  + − 
 

                        (30) 

where  

( ) ( ) ( )
2

1 1
4 log

2
r ru r c
ε

 = − 
 

                            (31) 

( ) ( ) ( ) ( )
2 2

2 2
4 log log

2 2
r r ru r c r
ε

 = − + 
 

.                        (32) 

Note that in the general solution, both coefficients ( )1
4c  and ( )2

4c  are associated with log r
ε

 
 
 

, a solution of 

the homogeneous equation. But in the asymptotic analysis, ( )1
4c  is the coefficient of log r

ε
 
 
 

 term while ( )2
4c   

is the coefficient of ( )1O  term. So, in the asymptotic analysis, we treat ( )1
4c  and ( )2

4c  separately by enforcing 
the reflecting boundary condition separately for ( ) ( )1u r  and for ( ) ( )2u r . 

For each of ( ) ( )1u r  and ( ) ( )2u r , the reflecting boundary condition is taken care of in two steps. In step 1, 
we adjust coefficient ( )

4
nc  in solution ( ) ( )nu r  such that the probability out-flow integrated over the boundary 

of the square is zero. In step 2, we solve numerically a non-singular Neumann boundary value problem in the 
Cartesian coordinates, and then we add the solution to ( ) ( )nu r  to make the probability out-flow zero 
everywhere on the boundary of the square. We notice that the problem is still invariant with respect to a rotation  

of an integer multiple of π
2

. As a result, the integral of probability out-flow over the entire square boundary  

is zero if and only if the integral over one side of the square is zero. Specifically, in step 1 for ( ) ( )1u r , we 
require that  

( )1
1

1
=1

Condition of zero sum flow : d 0
y

u x
y−

∂
=

∂∫ .                     (33) 

Substituting (31) into (33), we obtain  

( )
1

1 1
4 1

21

1d 4
1 πd

1

x
c

x
x

−

−

= =

+

∫
∫

                                 (34) 

In step 2 for ( ) ( )1u r , to make the probability out-flow zero everywhere on the square boundary, we add 
( ) ( )1 ,v x y  to counter the probability out-flow of ( ) ( )1u r . Function ( ) ( )1 ,v x y  satisfies  

( )12 0v∇ =                    (35) 

( ) ( ) ( ) ( )1 11 1
4 4

2 2
1 1

1 , 1 ,
1 1

y x

c cv v
y xx y

=± =±

   − −∂ ∂
= ± + = ± +      ∂ ∂+ +   

 

( ) ( )1 0,0 0v = . 
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The last condition ( ) ( )1 0,0 0v =  is an approximation of the absorbing boundary condition. This appro- 
ximation is valid since ( ) ( )1 ,v x y  has no singularity. Without the condition ( ) ( )1 0,0 0v = , solution ( ) ( )1 ,v x y  
exists and is determined up to an additive constant. Solution ( ) ( )1 ,v x y  is then uniquely determined by the 
condition ( ) ( )1 0,0 0v = . This well-posedness of the Neumann boundary value problem for ( ) ( )1 ,v x y  follows 
directly from the fact that the integral of the prescribed probability out-flow over the outer boundary is zero. The 
zero total probability out-flow at the outer boundary also implies that the total probability out-flow at the 
absorbing boundary for ( ) ( )1 ,v x y  is zero. That is,  

( )

( )1

0,
d 0

B

v S
ε∂

∂
=

∂∫ n
.                                  (36) 

This property plays an important role in the calculation of 11 λ  below. ( ) ( )1 ,v x y  can be calculated 
accurately using a numerical discretization in Cartesian coordinates. The accurate numerical solution of 
( ) ( )1 ,v x y  is made possible by the fact that ( ) ( )1 ,v x y  is independent of ε  and has no singularity. Based on 

the numerical solution, the integral of ( ) ( )1 ,v x y  over the square region A has the value  

( ) ( )1
3 , d d 0.0633660192

A
v x y x yβ ≡ =∫ .                            (37) 

This quantity is also important in the calculation of 11 λ  below. 
Next, we enforce the reflecting boundary condition for solution ( ) ( )2u r . In step 1 for ( ) ( )2u r , we require 

that  

( )2
1

1
1

Condition of zero sum flow : d 0
y

u x
y−

=

∂
=

∂∫ .                       (38) 

Using Equation (38) to determine coefficient ( )2
4c  in (32) leads to  

( )
( ) ( )

1 2
12

4 1

21

1log 1 d 2 log 2 π 62
1 πd

1

x x
c

x
x

−

−

 + −  + − = =

+

∫

∫
.                      (39) 

In step 2 for ( ) ( )2u r , to make the probability out-flow zero everywhere on the square boundary, we add 
( ) ( )2 ,v x y  to counter the probability out-flow of ( ) ( )2u r . Function ( ) ( )2 ,v x y  satisfies  

( )22 0v∇ =                                      (40) 

( ) ( ) ( )222
4

2

log 1 1
,

21
y

xcv
y x

=±

 + −−∂  = ± +
 ∂ + 

 

( ) ( ) ( )222
4

2
1

log 1 1

21
x

ycv
x y

=±

 + −−∂  = ± +
 ∂ + 

 

( ) ( )2 0,0 0v = . 

Similar to the situation for ( ) ( )1 ,v x y , the zero total probability out-flow for ( ) ( )2 ,v x y  at the outer square 
boundary implies that the total out-flow at the inner absorbing boundary for ( ) ( )2 ,v x y  is zero:  

( )

( )2

0,
d 0

B

v S
ε∂

∂
=

∂∫ n
.                                   (41) 

The exact expression of ( ) ( )2 ,v x y  is not needed in the 2-term expansion below. 
Putting all components together, the solution of (29) with both the absorbing boundary condition and the 
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reflecting boundary condition is approximately  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 2 2
1

1, log , ,u x y u r v x y u r v x y
ε

 = + + + 
 

                   (42) 

where functions ( ) ( )1u r  and ( ) ( )2u r  are given in (31) and (32) with coefficients ( )1
4c  and ( )1

4c  given in (34) 
and (39). Using the improved approximation of ( )1 ,u x y  given in (42), we derive a 2-term expansion of 11 λ . 
In the calculation, we will use properties (36) and (41). In addition, we will use the short notation χ  and the 
constant 4β  defined as  

1logχ
ε

 ≡  
 

                                    (43) 

( )2 3
4 0

4d
3π

h r r rβ ≡ =∫ .                               (44) 

As before, 11 λ  is calculated by matching the out-flow at the absorbing boundary 
( )

1
0,

d
B

u S
ε∂

∂
∂∫ n

 and the  

source term ( )1 1 , d du x y x yλ ∫ . Thus, we find that  

( ) ( )

( )

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )

( ) ( )

1\ 0,

11
0,

2 1 2
30

1 2

1 12 (2) 34
4 1 4 1 4 2

1 2
4 4

34
1 2 1 1

4 4

, d d1

d

2π d 1

2π

1
2 2π

1
2 2π

A B

B

u x y x y

u S

h r r u r u r r O

u u

c c c O

c c

O
c c

ε

ε

λ

χ χβ

ε χ ε ε

ββχ β χ β β

χ

βββ χ β
χ

∂

=
∂
∂

+ + +
=

′ ′+

 + + − + + 
 =

+

   
= + − + +       

∫

∫

∫
n

                   (45) 

where the coefficients 1β , 2β , ( )1
4c , 3β  and 4β  are given in (27), (28), (34), (37) and (44), respectively. For 

reader’s convenience, these coefficients are summarized below:  
( )

1 2
log 2 32 1,

π π 2
β β

−
= = +  

( )1
3 4 4

4 40.0633660192, ,
3π π

cβ β= = =  

The 2-term asymptotic expansion of 11 λ  (for a square region) has the expression  

1

1 2 10.3930399727
π

Oχ
λ χ

 
= − +  

 
                            (46) 

where 1log log AR
R

χ
ε

  ≡ =   
   

. 

We like to find the accuracy of the asymptotic solutions we derived above for a square search region. 
Unfortunately, for a square search region, no analytical or semi-analytical solution is known yet. A very accurate 
numerical solution is also difficult to compute. The circular cookie-cutter detector is incompatible with the 
square search region in a numerical discretization. It is difficult to design a numerical grid to accommodate both 
the square outer boundary and the circular inner boundary. Instead, we use Monte Carlo simulations to compute 
the decay rate of non-detection probability density. 

To gauge the accuracy of Monte Carlo simulations, we first carry out Monte Carlo simulations in the case of a 
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disk search region for which a very accurate numerical solution is known. Figure 6 compares the Monte Carlo 
solution for a disk search region and the very accurate numerical solution obtained by solving an algebraic 
equation involving Bessel functions. In Figure 6, each point is based on a Monte Carlo simulation of 100,000 
particles integrated over more than 40 million time steps. Each time step ( 85 10t −∆ = × ) typically moves a 
particle less than 45 10−×  (as a scale reference, the search region has radius 1 after non-dimensionalization). 
The large number of particles and the tiny numerical time step work together to keep the errors low in Monte 
Carlo simulations. As shown in Figure 6, the Monte Carlo solution agrees very well with the accurate numerical 
solution in the case of a disk search region. The goal of this comparison in the case of a disk search region is to 
identify the number of particles, the time step size, and the number of time steps needed for a reasonably high 
accuracy in Monte Carlo simulations. In Monte Carlo simulations of a square search region, we use the same 
numerical parameters (100,000 particles integrated over more than 40 million time steps with 85 10t −∆ = × ). 

In the case of a square search region, we use the Monte Carlo solution as the accurate solution and we 
compare it with the two asymptotic expansions. Figure 7 shows that the asymptotic solutions have good 
agreement with the accurate Monte Carlo solution when AR Rε ≡  is small. 

In terms of the physical quantities before non-dimensionalization, we conclude that over long time, the decay 
rate of non-detection probability for a square search region has the asymptotic expression:  

( )

2

Decay rate of non-detection probability square region)
1

2 10.3930399727
π

A

D
R Oχ

χ

= ⋅
 

− +  
 

                    (47) 

 

 
Figure 6. Comparison of Monte Carlo solution and the very accurate numerical solution in the case of 
a disk search region. Each point in Monte Carlo solution is based on a simulation of 100,000 particles 
integrated over more than 40 million time steps. The error shown is the difference between the Monte 
Carlo solution and the very accurate numerical solution. The results demonstrate that the Monte Carlo 
solution has adequate accuracy. In the case of a square search region, we will use the Monte Carlo 
solution to validate the asymptotic expansion.                                                    

 

 
Figure 7. Comparison of two asymptotic expansions and the accurate Monte Carlo solution in the 
case of a square search region.                                                                  
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where log AR
R

χ  ≡  
 

, R is the the detection radius of the searcher and AR  is the half width of the square 

search region. 

3.3. A unified Form 
Finally, we compare the results of the two cases that we have analyzed so far. We define the large parameter as 
the ratio of the area of search region A (disk or square) to the searcher’s detection area:  

( )
2

Area
large parameter

π
A

R
≡ .  

( )
2

Area1For a disk : log log
2 π

A AR
R R

   =   
   

 

( )
2

Area1 1 4For a square : log log log
2 2 ππ

A AR
R R

    = −    
    

.                    (48) 

Since we only have a two-term expansion for a square search region, in the comparison we will use only two 
terms from the asymptotic expansion for a disk search region. We write the results of these two cases in a 
unified form:  

Decay rate of non-detection probability  

( ) ( ) ( )2

4π 1
Area Area

log shape
π

D
A A

Q
R

= ⋅
 

− + 
 



                        (49) 

( ) ( )4π Normalized decay rate
Area

D
A

≡ ⋅                            (50) 

where the shape factor ( )shapeQ  contains the effect of the search region shape while the area of the search 
region is fixed. The values of ( )shapeQ  for a disk and a square are respectively  

( )disk 1.5Q =  

( )square 1.476335966Q =  

Note that in the unified form (50), the normalized decay rate is defined slightly differently from the one used 
in the discussion of a disk or a square search region. In the discussion of case 1 and case 2, we used AR , a 
“characteristic” radius of the search region, to define the normalized decay rate. To avoid the ambiguity 
associated with a “characteristic” radius, we use the area of the search region to define the normalized decay rate 
in the unified form. 

In summary, for both a disk search region and a square search region, the decay rate of the survival 
probability, to the leading order, is proportional to the diffusion constant, is inversely proportional to the search 
area, and is inversely proportional to the logarithm of the ratio of the search area to the searcher’s detection area. 
Furthermore, the second term in the asymptotic expansion implies that the decay rate of the non-detection 
probability for a square region is slightly smaller than that for a disk region of the same area. 

4. Concluding Remarks 
We have derived asymptotic expressions for the decay rate of non-detection probability of a diffusing target in 
the presence of a stationary searcher in a large disk or square search region. The asymptotic expansions agree 
well with a very accurate numerical result obtained by solving an algebraic equation involving Bessel functions 
in the case of a disk search region. In the case of a square search region, the asymptotic expansions are validated 
by comparing them with an accurate result computed in large scale Monte Carlo simulations. Based on the 
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asymptotic expansions obtained, respectively, for a disk and for a square, we write out a unified asymptotic 
expression valid for both of these two cases, in which the effect of the area of the search region is separated 
from the effect of the shape of the search region. The unified asymptotic expression shows that the decay rate of 
non-detection probability, to the leading order, is proportional to the diffusion constant, is inversely proportional 
to the search area, and is inversely proportional to the logarithm of the ratio of the search area to the searcher’s 
detection area. The leading term is not affected by the shape of the search region provided that the area of the 
search region is kept unchanged. The second term in the unified asymptotic expansion is affected by the shape 
of the search region. It indicates that the decay rate of non-detection probability for a square region is slightly 
smaller than that for a disk region of the same area. 
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