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ABSTRACT 

Based on the gene-protein-reaction (GPR) 
model of S. cerevisiae_iND750 and the method 
of constraint-based analysis, we first calculated 
the metabolic flux distribution of S. cere-
visiae_iND750. Then we calculated the deletion 
impact of 438 calculable genes, one by one, on 
the metabolic flux redistribution of S. cere-
visiae_iND750. Next we analyzed the correlation 
between v (describing deletion impact of one 
gene) and d (connection degree of one gene) 
and the correlation between v and Vgene (flux sum 
controlled by one gene), and found that both of 
them were not of linear relation. Furthermore, 
we sought out 38 important genes that most 
greatly affected the metabolic flux distribution, 
and determined their functional subsystems. We 
also found that many of these key genes were 
related to many but not several subsystems. 
Because the in silico model of S. cere-
visiae_iND750 has been tested by many ex-
periments, thus is credible, we can conclude 
that the result we obtained has biological sig-
nificance. 
 
Keywords: Metabonomics, Metabolic engi-
neering, Metabolic networks, Gene deletion, 
Genome-scale simulation, Flux balance analysis, 
Gene-protein- reaction (GPR) model, Con-
straint-based analysis 
   
1. INTRODUCTION 
Since various ‘omics’ datasets are becoming available, 
biology has transited from a data-poor to a data-rich en-
vironment. This has underscored the need for systems 
analysis in biology and systems biology has become a 
rapidly growing field as well [1].     

A change in mathematical modeling philosophy, i.e., 
building and validating in silico models is also necessi-
tated. Modern biological models need to meet new sets 
of criteria: organism-specific, data-driven, easily scalable, 
and so on. Many modeling approaches, such as kinetic, 

stochastic and cybernetic approaches, are currently being 
used to model cellular processes. Owing to the computa-
tional complexity and the large number of parameters 
needed, it is currently difficult to use these methods to 
model genome-scale networks. To date, genome-scale 
models of metabolism have only been analyzed with the 
constraint-based modeling philosophy [2, 3]. Ge-
nome-scale network models of diverse cellular processes 
such as signal transduction, transcriptional regulation and 
metabolism have been generated. Gene-protein-reaction 
(GPR) associated models can keep track of associations 
between genes, proteins, and reactions [4], and there 
have been several genome-scale GPR models, such as E. 
col i [4,5] , S. aureus [6], H. pylori [7], M. barkeri[8], S. 
cerevisiae [9] and B. subtilis [10]. A reconstruction is 
herein defined as the list of biochemical reactions occur-
ring in a particular cellular system and the associations 
between these reactions and relevant proteins, transcripts 
and genes [2]. A reconstruction can include the assump-
tions necessary for computational simulation, such as 
maximum reaction rates and nutrient uptake rates.    

Computer simulations of complex biological systems 
began essentially as soon as the computational capability 
became available. As reconstructed networks have been 
made publicly available, researchers around the world 
have undertaken new computational studies using these 
networks. Many researches apply a core set of basic in 
silico methods and often also describe novel methods to 
investigate different models. An extensive set of methods 
for analyzing these genome-scale models have been de-
veloped and have been applied to study a growing num-
ber of biological problems. As we have mentioned above, 
genome-scale models of metabolism have only been 
analyzed with the constraint-based philosophy [2,3]. 

The in silico models can be applied to generate novel, 
testable and often quantitative predictions of cellular 
behavior. The impact of a gene deletion experiment on 
cellular behavior can be simulated in a manner similar to 
linear optimization of growth. The results can be used to 
guide the design of informative confirmation experi-
ments and will be helpful to metabolic engineering. 
Some gene deletion studies on genome-scale in silico 
organism models have been made [4-10], most of them 
are from the standpoints of distinguishing lethal and 
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non-lethal genes or growth rate [4-10, 15-19]. The im-
pact of gene deletion on flux redistribution, the charac-
ters and functions of key genes are still lacked research.      

In this paper, there are four parts. In part two, as a base 
for later research, we firstly calculate flux distribution of 
S. cerevisiae_iND750. Then we will calculate the dele-
tion impact of 438 calculable genes, one by one, on 
themetabolic flux redistribution of S. cerevisiae_ iND750. 
Next we will analyze the correlation between v (describ-
ing deletion impact of one gene) and d (connection de-
gree of one gene) and the correlation between v and 

genev  (flux sum controlled by one gene). Furthermore, 
we will seek out those important genes that most greatly 
affected the metabolic flux distribution, determine their 
functional subsystems. Because the in silico model of S. 
cerevisiae_iND750 has been tested by many experiments 
[5] , we can conclude that the result we got has biological 
significances; In part three, we introduce the GPR model, 
some properties of the in silico model of S. cere-
visiae_iND750 (SBML format) and the method of con-
straint-based analysis; Part four is a simple discussion.  

 
2. RESULTS 
2.1. Metabolic flux distribution and of S. cere-
visiae_iND750  
As a base for the later compared research, we here cal-
culated the flux distribution of S. cerevisiae_iND750 [9]. 
What we use is Sc_iND750_GlcMM.xml, the SBML file 
that is presented with the reconstruction of S. cere-
visiae_iND750 [11]. The computational method we used 
is flux balance analysis (FBA) [11], one of the most fun-
damental genome-scale phenotypic calculations, which 
can simulate cellular growth. FBA is based on linear 
optimization of an objective function, which typically is 
bio-mass formation. Given an uptake rate for key nutri-
ents and the biomass composition of the cell (usually in 
mmol component gDW-1 and defined in the biomass ob-
jective function), the maximum possible growth rate of 
the cells can be predicted in silico. We use the COBRA 
toolbox [11] to carry out this computation of FBA. The 
flux distribution of S. cerevisiae_iND750 is illustrated in 
Figure 1. 
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Figure 1. Flux distribution of S. cerevisiae _iND750. X-axis indi-
cating every reaction in rxns (the order is as the same as in rxns, 
total 1266) and y-axis indicating the value of its corresponding 
flux (unit is mmol gDW-1h-1). Rxns is the reaction set in the model. 

2.2 Impact of gene deletion on the metabolic flux 
redistribution and key genes 
2.2.1 Impact of gene deletion on the metabolic flux re-
distribution  

There are 750 genes in the model of S. cere-
visiae_iND750, but we can not calculate the impact of 
every gene deletion. If a single gene is associated with 
multiple reactions, the deletion of that gene will result in 
the removal of all associated reactions. On the other hand, 
a reaction that can be catalyzed by multiple non-interact-
ing gene products will not be removed in a single gene 
deletion. Among 750 genes of S. cerevisiae_ iND750, 
there are 438 genes which have no “OR” relationship 
with other genes in every reaction of S. cere-
visiae_iND750, and by the aid of the COBRA toolbox 
[11], we can calculate the impact of their deletion. We 
define the impact of one gene deletion on the whole 
metabolic flux redistribution as v 

∑ −′=
R

i
ii vvv 2)(             (1) 

Where iv  and iv′  are respectively the flux value of 
i-th reaction of the model of S. cerevisiae_iND750 be-
fore and after a single gene deleting, and R is the whole 
reaction set. 

Figure 2 shows the deletion impact of these 438 genes. 
From the figure, we can’t see what are important genes 
which greatly affect, if deleted, the metabolic redistribu-
tion of S. cerevisiae_ iND750. This remains as a problem, 
and we will settle it in section 4). In the following, we 
will analyze the relationship between the impact of every 
gene deletion (v) and the connection degree of every 
gene (d) and the connection degree of every gene 
( genev ). 

2.2.2. Correlation between v and d (connection degree of 
every gene) 

We compute out the related reaction number d of every 
gene in those 438 genes of the S. cerevisiae_iND750 
model, as illustrated in Figure 3. From the figure, we can 
find that some but not many genes have high d value, but 
we don’t know whether they affect metabolic flux dis-
tribution greatly. 

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7
x 107

the ith gene in 438 genes

v 
va

lu
e

 
Figure 2. The deletion impact of calculable 438 genes of the S. 
cerevisiae_iND750 model. X-axis indicating every gene in 438 
genes (the order is as the same as in genes, total 438) and 
y-axis indicating its impact v. 
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Figure 3. The related reaction number of every gene in 438 
genes of the S. cerevisiae_iND750 model. X-axis indicating every 
gene in 438 genes (the order is as the same as in genes, total 
438) and y-axis indicating the number of its related reactions. 
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Figure 4.  The scatters diagram (d, v). X-axis indicating d (con-
nection degree of every gene) and y-axis indicating the corre-
sponding gene impact v. 

 
Figure 4 is the scatters diagram (d, v), total 438 data 

pairs. From the diagram, we can easily find that the rela-
tionship between d and v is not of linear relation. So 
high-d genes and low-d genes are equally important to 
the metabolism of S. cerevisiae_iND750. 

2.2.3. Correlation between v and genev  (flux sum con-
trolled by every gene) 

We define the flux sum controlled by every gene as 

         ∑=
geneR

j
jgene vv      (2) 

Where jv  is the flux value of j-th reaction of the model 
of S. cerevisiae_iND750 before a single gene deleting, 
and where Rgene is the reaction set controlled by the given 
gene. We can easily compute out the flux sum genev  of 
every gene in those 438 genes of the S. cere-
visiae_iND750 model, as illustrated in Figure 5. From 
the figure, we can find that some but not many genes 
have high genev , but will they affect metabolic flux dis-
tribution greatly. 

Figure 6 is the scatters diagram ( genev , v), total 438 
data pairs. From the diagram, we can easily find that the 
relationship between genev  and v is also not of linear 

relation. So high- genev  genes and low- genev  genes are 
equally important to the metabolism of S. cerevisiae_  
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Figure 5. The controlled reaction number of every gene in 438 
genes of the S. cerevisiae_iND750 model. X-axis indicating every 
gene in 438 genes (the order is as the same as in genes, total 
438) and y-axis indicating the number of its controlled reactions. 
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Figure 6.  The scatters diagram (vgene, v). X- axis indicating vgene 
(the flux sum controlled by every gene) and y-axis indicating the 
impact v. 

 
Table 1. Gene number (GN) and v scope 

v (×107) 0 0-0.1 0.1-1.5 1.0-1.5 1.5-1.8

GN 4 100 80 71 46 

v (×107) 1.8-2.0 2.0-2.5 2.5-3.0 >3.0  

GN 13 43 43 38  
 
iND750. 

2.2.4. Key genes that affect metabolism most greatly 

In this section, we seek out what are important or key 
genes which greatly affect the metabolic redistribution of 
S. cerevisiae_iND750, and furthermore in next section, 
we will give their belonged functional subsystems. Table 
1 provides the corresponding relationship between gene 
number (GN) and v scope, and as an example, GN=100 
& v= (0-0.1)×107 means that there are 100 genes while 
the v scope which these genes control is (0~0.1)×107. 
We define those genes with v>3.0×107as key genes, and 
there are 38 genes.  
 
2.2.5. Functional subsystems to which these key genes 
belong 

If a gene catalyze a reaction and while the reaction be-
long to a certain subsystem, we will say that the gene 
belong to the subsystem. Functional subsystems about 
important genes in the metabolic system of micro organ-
ism are seldom reported. We list the functional subsys-
tems to which every key gene belong, and several genes  
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Table 2. The functional subsystems and their related genes of S. cerevisiae_iND750 

Sub 
system 

Purine and 
Pyrimidine 

Biosynthesis 

Galactose 
metabolism 

Transport 
Extracellular 

Pyridoxine 
Metabolism 

Transport 
Peroxisomal 

Fatty Acid Bio-
synthesis 

Pentose Phosphate 
Pathway 

genes 
'YAR015W' 
'YLR209C' 
'YOR128C' 

'YBR018C' 
'YBR019C' 
'YBR020W' 

'YBR021W' 
'YHL016C' 'YBR035C' 'YBR041W' 'YBR041W' 'YCR036W' 

Sub 
system 

Citric Acid 
Cycle 

Glycolysis-
Gluconeogene-

sis 

Tyrosine 
Tryptophan 

and Phenyla-
lanine Me-
tabolism 

Pantothenate 
and CoA Bio-

synthesis 

Quinone Bio-
synthesis 

Oxidative Phos-
phory- 
Lation 

Nucleotide Salvage 
Pathway 

genes 
'YDR148C' 
'YLR174W' 
'YOR136W' 

'YDR148C' 

'YDR256C' 
'YGR088W' 
'YKL106W' 
'YPR060C' 

'YDR531W' 
'YIL145C' 'YDR538W' 

'YEL027W' 
'YEL051W' 
'YKL080W' 
'YOR270C' 

'YEL042W' 
'YKL067W' 
'YLR209C' 

Sub 
system 

Glutamate 
metabolism 

Porphyrin and 
Chlorophyll 
Metabolism 

Folate Me-
tabolism 

Glycerolipid 
Metabolism 

Alanine and 
Aspartate 

Metabolism 

Arginine and 
Proline Metabo-

lism 

Pyruvate Metabo-
lism 

genes 'YEL058W' 'YER014W' 
'YOR278W' 'YGR267C' 'YIL155C' 'YKL106W' 'YKL106W' 

'YOR303W' 'YLR153C' 

Sub 
system 

NAD Biosyn-
thesis 

Alternate 
Carbon Me-

tabolism 

Transport 
Mitochondrial

Thiamine 
Metabolism 

Cysteine Me-
tabolism   

genes 'YLR209C' 'YOR040W' 'YOR100C' 'YPL214C' 'YPR167C'   

 
appear in more than one subsystem, shown in Table 2. 
We will find that many of 38 key genes are related to 26 
but not several subsystems. 
3. MATERIALS AND METHODS 
3.1. Gene-protein-reaction (GPR) associated 
model 
The association between genes and reactions is not a 
one-to-one relationship. Many genes may encode suunits 
genes that encode so-called promiscuous enzymes that 
can catalyze several different reactions. So it is necessary 
to keep track of associations between genes, proteins, 
and reactions and to distinguish “&” and “OR” associa-
tions in GPR models. Examples of different types of 
GPR associations are illustrated in the figures of Ref. [4, 
14].  
 
3.2. GPR model structure of S. cerevisiae_ 
iND750  
The in silico model that we used is S. cerevisiae_iND750 
[9], a metabolic reconstruction consisting of the chemical 
reactions that transport and interconvert metabolites 
within yeast. This network reconstruction was based on a 
previous reconstruction, termed S. cerevisiae_iFF708 
[15]. The general features of S. cerevisiae_iND750 are 
shown in the Table 1 of Ref. [9]. 

A SBML format file to the model S. cere-
visiae_iND750 can be downloaded from the supplemen-
tary information of Ref. [11]. SBML file properties are 
given in the supplementary of Ref. [9]. The dimensions 
of rxns, mets, and genes are respectively 1266, 1061, 
750. We can use Cytoscape [12] to draw the 
GPR-network (Figure 7) of S. cerevisiae_ iND750, 
which contains 3077 nodes and 6666 edges. 

The minimal media of in silico model is an important 
aspect. The computational minimal media of S. cere-
visiae_iND750 is also included in Ref. [9]. In the method 
of constraint-based analysis, the biomass objective func-
tion (BOF) should be defined. The BOF was generated 
by defining all of the major and essential constituents 
that make up the cellular biomass content of S. cerevisiae 
[9]. Gene-protein-reaction associations embodied in 
rxnGeneMat matrix, which is a matrix with as many 
rows as there are reactions in the model and as many 
columns as there are genes in the model. The i-th row 
and the j-th column contains a one if the j-th gene in 
genes is associated with the i-th reaction in rxns and 
zero otherwise. 
 
3.3. Methodology of constraint-based analysis  
3.3.1. Constraint-based analysis 

In silico modeling and simulation of genome-scale bio-
logical systems are different from that practiced in the 
physicochemical sciences. A network can fundamentally 
have many different states or many different solutions. 
Which states (or solutions) are picked is up to the cell 
and based on the selection pressure experienced, and 
such choices can change over time. Therefore, con-
straint-based approaches [2, 3]  to the analysis of com-
plex biological systems have proven to be very useful. 
This difference between the physicochemical sciences 
and the physical sciences or engineering is illustrated in 
Ref. [14]. All theory-based considerations (i.e., engi-
neering and physics) lead one to attempt to seek an “ex-
act” solution, and typically computed based on the laws 
of physics and chemistry. However, constraint- based 
considerations (as in biology) are useful. Not only can a 
network have many different behaviors that are picked 
based on the evolutionary history of the organism, but  



                  Z.X.Xu et al. / J. Biomedical Science and Engineering 1 (2008) 121-126  125 

SciRes Copyright © 2008                                                                   JBiSE 

 
Figure 7. GPR-Network of S. cerevisiae_ iND750, 3077 
nodes and 6666 edges, Created by Cytoscape with Layout 
(yFiles-Organic) 
 

also these networks can carry out the same function in 
many different and equivalent ways.  

3.3.2. Representation of reconstructed metabolic network 

Before calculation and simulation, the reconstructed 
metabolic network must be represented mathemati-
cally.The stoichiometric matrix, S, is the centerpiece of a 
mathematical representation of genome-scale metabolic 
networks. It represents each reaction as a column and 
each metabolite as a row, where each numerical element 
is the corresponding stoichiometric coefficient. A 
graphical form of the first few reactions of glycolysis and 
the corresponding stoichiometric matrix are shown in the 
Figure 2 of Ref. [11].  

An upper and lower bound for the allowable flux 
through each reaction also requires defining. This repre-
sents the lowest and highest reaction rate possible for 
each reaction. The set of upper and lower bounds is rep-
resented as two separate vectors, each containing as 
many components as there are columns in S, and in the 
same order. An example is shown in Figure 2 of Ref. 
[11]. In many cases, reversible reactions are defined to 
have an arbitrary large upper bound and an arbitrarily 
large negative lower bound. Irreversible reactions have a 
lower bound that is nonnegative, usually zero.  

In order to predict meaningful fluxes, setting upper 
and lower bounds is especially important for exchange 
reactions which serve to uptake compounds to the cell or 
secrete compounds from the cell. The lower bound of the 
exchange reaction column must be a finite negative 
number using this orientation (e.g., glucose). The upper 
bound of the exchange reaction column must be greater 
than zero. At least one of the reactions in the model must 
have a constrained lower/upper bound, and typically, the 
substrate (e.g., glucose or oxygen) uptake rates are set to 
experimentally measured values. The upper and lower 
bounds for exchange reactions are quantitative in silico 
representations of the growth media environment. 

    
3.3.3. Biomass objective function (BOF) and minimal 

media 

The constraint-based approach is based on the assump-
tion that cells strive to maximize their growth rate. This 
assumption which provides an acceptable starting point 
for many types of computations is satisfied by simulating 
maximal production of the molecules required to make 
new cells (biomass precursor molecules). In spite of their 
limitations, the predictive power of genome-scale models 
of metabolic networks has been demonstrated in diverse 
situations through careful experimentation [11].   

The biomass objective function (the function vgrowth , 
see below) is a special reaction taking as substrates of all 
biomass metabolites, ATP and water, and producing 
ADP, protons, and phosphate (as a result of the 
non-growth associated ATP maintenance require-
ment)[6]. 

The minimal media is determined computationally 
with the systematic testing of distinct inputs. Different 
combinations of molecules were allowed to enter the 
reaction network until the minimal group that allowed 
biomass production, or non-zero Z (see below), was 
found [6]. It is only concerned that some amount of 
biomass production is calculated but do not discriminate 
between extremely slow, inefficient growth and rapid 
growth. 

 
3.3.4. Computation of phenotypic states  

In genome-scale metabolic networks, the fluxes within a 
cell usually cannot be uniquely calculated because a 
range of feasible values exist when fluxes are subjected 
to known constraints. Flux-balance analysis (FBA) was 
used to find optimal growth phenotypes. Briefly, a 
large-scale linear programming was used to find a com-
plete set of metabolic fluxes (v) that are consistent with 
steady-state condition (eq. 3) and reaction rate bounds 
(eq. 4), and at the same time maximize the biomass 
objective function in the defined ratio. This corresponds 
to the following linear programming problem [6]:  

Max Z = vgrowth 
Subject to 

S • v = 0                     (3) 
                 αi < vi < βi                        (4) 
where S is the stoichiometric matrix, and where αi and βi 
define the bounds through each reaction vi. The flux 
range was set arbitrarily high for all internal reactions so 
that no internal reaction restricted the network, with the 
exception of irreversible reactions, which have a mini-
mum flux of zero. The inputs to the system were re-
stricted to a minimal media.  

The value of Z computed with the above procedure 
can either be zero (predicting no growth) or greater than 
zero (corresponding to cellular growth) depending on the 
inputs and outputs that are allowed, according to the nu-
trients provided in the media.    

 
3.3.5. Gene deletion study 

The effect of a gene deletion experiment on cellular 
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growth can be simulated in a manner similar to linear 
optimization of growth [5, 11]. Gene–reaction associa-
tions model the logical relationship between genes and 
their corresponding reactions. If a single gene is associ-
ated with multiple reactions, the deletion of that gene 
will result in the removal of all associated reactions, i.e. 
to simultaneously restrict the fluxes (upper and lower 
flux bounds) of these reactions to zero prior to comput-
ing maximal biomass objective function. On the other 
hand, a reaction that can be catalyzed by multiple 
non-interacting gene products will not be removed in a 
single gene deletion. The possible results from a simula-
tion of a single gene deletion are unchanged maximal 
growth (non-lethal), reduced maximal growth or no 
growth (lethal). Those genes were considered essential if 
no biomass could be produced without their usage.   

 
4. DISCUSSION 
Based on the gene-protein-reaction model of S. cere-
visiae_iND750 and the methodology of constraint- based 
analysis and by the aid of the COBRA toolbox and 
MATLAB software, we have calculated the deletion im-
pact of 438 calculable genes, one by one, on the meta-
bolic flux redistribution of S. cerevisiae_iND750. 

We found that both of the v-d correlation and the 
v- genev correlation were not of linear relation. Although 
some properties about the metabolic network of micro- 
organisms have been reported in literatures [15-19], our 
research will provide further evidences to the properties 
about the metabolic network, because the measure we 
defined is different. 

Furthermore, we sought out 38 important genes that 
most greatly affected the metabolic flux distribution, 
determined their functional subsystems and found that 
many of 38 key genes were related to many but not sev-
eral subsystems. From these results, we speculate that 
many but not several subsystems are important subsys-
tems in the metabolism of S. cerevisiae and that this may 
increase the robustness of the metabolic network.  

As a next step, we will do similar research on other 
organisms and compare them with the case of E. coli. 
Although it is theoretically possible to attempt double 
deletion of every possible gene pair experimentally, the 
sheer number of possible two-gene deletions makes this 
virtually impossible. However, computational predict- 
tions of double gene deletion phenotypes can be made in 
a matter of hours [11]. This will also become our work in 
the future. 
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