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Abstract 
The new generalized ( )′G G -expansion method is one of the powerful and competent methods 
that appear in recent time for establishing exact solutions to nonlinear evolution equations 
(NLEEs). We apply the new generalized ( )′G G -expansion method to solve exact solutions of the 
new coupled Konno-Oono equation and construct exact solutions expressed in terms of hyperbolic 
functions, trigonometric functions, and rational functions with arbitrary parameters. The signi-
ficance of obtained solutions gives credence to the explanation and understanding of related 
physical phenomena. As a newly developed mathematical tool, this method efficiency for finding 
exact solutions has been demonstrated through showing its straightforward nature and estab-
lishing its ability to handle nonlinearities prototyped by the NLEEs whether in applied mathemat-
ics, physics, or engineering contexts. 

 
Keywords 
New Generalized ( )′G G -Expansion Method, Coupled Konno-Oono Equations, Nonlinear Partial 
Differential Equation 

 
 

1. Introduction 
Various physical, mechanical, chemical, biological, engineering and some economic laws and relations appear 
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mathematically in the form of differential equations which are linear or nonlinear, homogeneous or inhomoge-
neous. Almost all differential equations relating physical phenomena are nonlinear. Methods of solutions of li-
near differential equations are reasonably easy and well avowed. In contrast, the techniques of solutions of non-
linear differential equations are less obtainable and in general, approximations are generally used. Nonlinearity 
is a fascinating element of nature, today; many scientists observe nonlinear science as the most important fron-
tier for the fundamental understanding of nature. The analytical solutions of such equations are of fundamental 
importance to reveal the inner structure of the phenomena. The world around us is inherently nonlinear. For in-
stance, nonlinear evolution equations (NEEs) are widely used as models to describe complex physical pheno-
mena in various fields of sciences, especially in fluid mechanics, solid-state physics, plasma physics, plasma 
waves and biology, etc. One of the basic physical problems for those models is to obtain their travelling wave 
solutions. In particular, various methods have been utilized to explore different kinds of solutions of physical 
models described by nonlinear partial differential equations (NPDEs). In the numerical methods, stability and 
convergence should be considered so as to avoid divergent or inappropriate results. However, in recent years, a 
variety of effective analytical and semi-analytical methods have been developed to be used for solving NLEEs, 
such as the inverse scattering transform method [1], the ( ),1G G G′ -expansion method [2] [3], the modified 
simple equation method [4] [5], the Sumudu transform method [6]-[8], the homogeneous balance method [9] 
[10], the Darboux transformation method [11], the Backlund transformation method [12], the complex hyper-
bolic function method [13] [14], the ( )G G′ -expansion method [15]-[25], the improved ( )G G′ -expansion 
method [26], the collocation method [27] [28], the similarity reductions method [29] [30], the homotopy analy-
sis method [31] [32], the spectral-homotopy analysis method [33]-[35], the Hermite-Pade approximation method 
[36] and so on. 

Naher and Abdullah [37] introduced a new approach of ( )G G′ -expansion method and a new approach of 
generalized ( )G G′ -expansion method for a reliable treatment of the nonlinear evolution equations. Afterwards, 
many researchers investigated many nonlinear PDEs to construct traveling wave solutions via this powerful 
( )G G′ -expansion method. For example, Alam and Akbar [38] [39] applied this method for finding traveling 
wave solutions of the KP-BBM equation, the (3 + 1)-dimensional potential-YTSF equation, the (2 + 1)-dimen- 
sional Zakharov-Kuznetsov equation. Alam et al. [40] [41] concerned about this method to construct traveling 
wave solutions of the strain wave equation in microstructured solids, the (3 + 1)-dimensional mKdV-ZK equa-
tion and the (1 + 1)-dimensional compound KdVB equations. The objective of this article is to look for new 
study relating to the new generalized ( )G G′  expansion method for solving the new coupled Konno-Oono eq-
uation to make the goodwill and helpfulness of the method obvious. 

Our aim in this paper is to present an application of the new generalized ( )G G′ -expansion method to the 
new coupled Konno-Oono equation to be solved by this method for the first time. 

The rest of the paper is organized as follows: In Section 2, we give the description of the new generalized 
( )G G′ -expansion method. In Section 3, we apply this method to the new coupled Konno-Oono equation with 
discussion and Graphical representations of the solutions. Conclusions are given at last. 

2. Description of the Method 
Let us consider a general nonlinear PDE in the form 

( ), , , , , , 0t x tt tx xxP u u u u u u =
,                              (1) 

where ( ),u u x t=  is an unknown function, P is a polynomial in ( ),u x t  and its derivatives in which highest 
order derivatives and nonlinear terms are involved and the subscripts stand for the partial derivatives. 

Step 1: We combine the real variables x and t by a complex variable η  

( ) ( ),u x t u η= , x Vtη = ± ,                               (2) 

where V is the speed of the traveling wave. The traveling wave transformation (2) converts Equation (1) into an 
ordinary differential equation (ODE) for ( )u u η= : 

( ), , , , 0Q u u u u′ ′′ ′′′ =
,                                 (3) 

where Q is a polynomial of u and its derivatives and the superscripts indicate the ordinary derivatives with re-
spect to η . 
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Step 2: According to possibility Equation (3) can be integrated term by term one or more times, yields con-
stant(s) of integration. The integral constant may be zero, for simplicity. 

Step 3: Suppose the traveling wave solution of Equation (3) can be expressed as follows: 

( ) ( ) ( )
0 1

N Ni i
i i

i i
u d H d Hη α β −

= =

= + + +∑ ∑ ,                             (4) 

where either Nα  or Nβ  may be zero, but both Nα  or Nβ  could be zero at a time, iα  ( )0,1, 2, ,i N= 
 

and iβ  ( )1, 2, ,i N= 
 and d are arbitrary constants to be determined later and ( )H η  is 

( ) ( )H G Gη ′=                                        (5) 

where ( )G G η=  satisfies the following auxiliary ordinary differential equation: 

( )22 0AGG BGG EG C G′′ ′ ′− − − =                                (6) 

where the prime stands for derivative with respect to η ; A, B, C and E are real parameters. 
Step 4: To determine the positive integer N, taking the homogeneous balance between the highest order non-

linear terms and the derivatives of the highest order appearing in Equation (3). 
Step 5: Substitute Equation (4) and Equation (6) including Equation (5) into Equation (3) with the value of N 

obtained in Step 4, we obtain polynomials in ( )Nd H+  ( )0,1, 2,N = 
 and ( ) Nd H −+  ( )0,1, 2,N = 

. 
Then, we collect each coefficient of the resulted polynomials to zero, yields a set of algebraic equations for iα  
( )0,1, 2, ,i N= 

 and iβ  ( )1, 2, ,i N= 
, d and V. 

Step 6: Suppose that the value of the constants iα  ( )0,1, 2, ,i N= 
, iβ  ( )1, 2, ,i N= 

, d and V can be 
found by solving the algebraic equations obtained in Step 5. Since the general solution of Equation (6) is well 
known to us, inserting the values of iα  ( )0,1, 2, ,i N= 

, iβ  ( )1, 2, ,i N= 
, d and V into Equation (4), we 

obtain more general type and new exact traveling wave solutions of the nonlinear partial differential Equation 
(1). 

Using the general solution of Equation (6), we have the following solutions of Equation (5): 
Family 1: When 0,B ≠  A Cψ = −  and ( )2 4 0,B E A CΩ = + − >  

( )
1 2

1 2

sinh cosh
2 2

2 2
cosh sinh

2 2

C C
A AG BH

G
C C

A A

η η
η

ψ ψ
η η

   Ω Ω
+      ′ Ω     = = +       Ω Ω
+      

   

                   (7) 

Family 2: When 0,B ≠  A Cψ = −  and ( )2 4 0,B E A CΩ = + − <  

( )
1 2

1 2

sin cos
2 2

2 2
cos sin

2 2

C C
A AG BH

G
C C

A A

η η
η

ψ ψ
η η

   −Ω −Ω
− +      ′ −Ω     = = +       −Ω −Ω

+      
   

                  (8) 

Family 3: When 0,B ≠  A Cψ = −  and ( )2 4 0,B E A CΩ = + − =  

( ) 2

1 22
CG BH

G C C
η

ψ η
′ = = +  + 

                               (9) 

Family 4: When 0,B =  A Cψ = −  and 0,Eψ∆ = >  

( )
1 2

1 2

sinh cosh

cosh sinh

C C
A AGH

G
C C

A A

η η
η

ψ
η η

   ∆ ∆
+      ′ ∆     = =       ∆ ∆
+      

   

                     (10) 

Family 5: When 0,B =  A Cψ = −  and 0,Eψ∆ = <  
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( )
1 2

1 2

sin cos

cos sin

C C
A AGH

G
C C

A A

η η
η

ψ
η η

   −∆ −∆
− +      ′ −∆     = =       −∆ −∆

+      
   

                    (11) 

3. The New Coupled Konno-Oono Equation 
The new coupled Konno-Oono equation: In this section, we will put forth the new generalized ( )G G′  expan-
sion method to construct many new and more general traveling wave solutions of the new coupled Konno-Oono 
equation. Let us consider the new coupled Konno-Oono equation [42] [43], 

2 0, 2 0.xt t xu uv v uu− = + =                                (12) 

Now let us suppose that the traveling wave transformation equation be 

( ) ( ) ( ) ( ), , , , .u u x t v v x t x Vtη η η= = = −                          (13) 

The Equation (13) reduces Equation (12) into the following ODEs 

2 0.Vu uv′′− − =                                     (14) 

2 0.Vv uu′ ′− + =                                     (15) 

By integrating (15) with respect to η , we obtain 

( )21 ,v u P
V

= +                                     (16) 

where P is a constant of integration. 
Substituting Equation (16) into Equation (14), we get 

2 32 2 0.V u uP u′′ + + =                                  (17) 

Taking the homogeneous balance between highest order nonlinear term 3u  and linear term of the highest or-
der u′′  in Equation (17), we obtain 1N = . Therefore, the solution of Equation (17) is of the form: 

( ) ( ) ( ) 1
0 1 1 ,v d M d Mη α α β −= + + + +                           (18) 

where 0 1 1, ,α α β  and d are constants to be determined. 
Substituting Equation (18) together with Equations (5) and (6) into Equation (17), the left-hand side is con-

verted into polynomials in ( )Nd H+  ( )0,1, 2,N = 
 and ( ) Nd H −+  ( )1, 2,N = 

. We collect each coeffi-
cient of these resulted polynomials to zero yields a set of simultaneous algebraic equations (for simplicity, the 
equations are not presented) for 0α , 1α , 1β , d, P and V. Solving these algebraic equations with the help of 
computer algebra, we obtain following: 

( )
2

21
2 4

4
P E Bα ψ

ψ
= − + , 1 ,AiV α

ψ
= −  ,d d=  ( )1

0 2
2

B dαα ψ
ψ

= − + , 1 1,α α=  1 0.β =        (19) 

where ,A Cψ = −  d, A, B, C, E are free parameters. 
Substituting Equation (19) into Equation (18), along with Equation (7) and simplifying, our traveling wave so-

lutions become, if 1 0C =  but 2 0;C ≠  2 0C =  but 1 0C ≠  respectively: 

( )
1

1
1 coth ,

2 2
u

A
αη η
ψ

 Ω
= Ω   

 
 

and 

( ) ( )1

2 21
1 coth 4 ,

4 2
v E B

iA A
αη η ψ
ψ

  Ω
= − Ω − +      
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( )
2

1
1 tanh ,

2 2
u

A
αη η
ψ

 Ω
= Ω   

 
 

and 

( ) ( )2

2 21
1 tanh 4 ,

4 2
v E B

iA A
αη η ψ
ψ

  Ω
= − Ω − +      

 

Substituting Equation (19) into Equation (18), along with Equation (8) and simplifying yields exact solutions, if 
1 0C =  but 2 0;C ≠  2 0C =  but 1 0C ≠  respectively: 

( )
3

1
1 cot ,

2 2
iu

A
αη η
ψ

 −Ω
= Ω   

 
 

and 

( ) ( )3

2 21
1 cot 4 ,

4 2
v E B

iA A
αη η ψ
ψ

  −Ω
= Ω + +      

 

( )
4

1
1 tan ,

2 2
iu

A
αη η
ψ

 −Ω
= − Ω   

 
 

and 

( ) ( )4

2 21
1 tan 4 ,

4 2
v E B

iA A
αη η ψ
ψ

  −Ω
= Ω + +      

 

Substituting Equation (19) into Equation (18), along with Equation (9) and simplifying, our obtained solution 
becomes: 

( )
5

2
1 1

1 2

,Cu
C C

η α
η

 
=  + 

 

and 

( ) ( )5

2
21 2

1
1 2

2 4 ,
4

Cv E B
iA C C
α ψη ψ
ψ η

  
 = − − + +   

 

Substituting Equation (19) into Equation (18), together with Equation (10) and simplifying, yields following 
traveling wave solutions, if 1 0C =  but 2 0;C ≠  2 0C =  but 1 0C ≠  respectively: 

( )
6

1
1 2 coth

2
u B

A
αη η
ψ

  ∆
= − − ∆      

. 

and 

( ) ( )6

2

21
1 2 coth 4

4
v B E B

iA A
αη η ψ
ψ

   ∆ = − − ∆ − +        
 

( )
7

1
1 2 tanh

2
u B

A
αη η
ψ

  ∆
= − − ∆      

. 

and 

( ) ( )7

2

21
1 2 tanh 4

4
v B E B

iA A
αη η ψ
ψ

   ∆ = − − ∆ − +        
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Substituting Equation (19) into Equation (18), along with Equation (11) and simplifying, our exact solutions 
become, if 1 0C =  but 2 0;C ≠  2 0C =  but 1 0C ≠  respectively: 

( )
8

1
1 2 cot

2
u B i

A
αη η
ψ

  −∆
= − − ∆      

 

and 

( ) ( )8

2

21
1 2 cot 4

4
v B i E B

iA A
αη η ψ
ψ

   −∆ = − − ∆ − +        
 

( )
9

1
1 2 tan

2
u B i

A
αη η
ψ

  −∆
= − + ∆      

, 

and 

( ) ( )9

2

21
1 2 tan 4

4
v B i E B

iA A
αη η ψ
ψ

   −∆ = − + ∆ − +        
. 

where 1 .Aiax tη
ψ

 
= −  

 
 

Khan and Akbar [43] investigated solutions of the the new coupled Konno-Oono equation by the modified 
simple equation method and obtained only eight solutions (A1)-(A8) (see appendix). Moreover, in this article 
eighteen solutions of the new coupled Konno-Oono equation are constructed by applying the new approach of 
generalized ( )G G′ -expansion method. But by means of the new approach of generalized ( )G G′ -expansion 
method we obtained solutions are different to Khan and Akbar [43] solutions. Furthermore, we obtain solutions 

( ) ( )
1 91 1u uη η− , ( ) ( )

1 91 1v vη η− . These solutions are new and were not obtained by Khan and Akbar [43]. On 
the other hand, the auxiliary equation used in this paper is different, so obtained solutions is also different. 

4. Graphical Representations of the Solutions 
The graphical illustrations of the solutions are depicted in the Figures 1-6 with the aid of commercial software 
Maple. 
 

 
Figure 1. Single soliton of ( )

11
u η  when A = 4, B = 1, C = 1, E = 1, d = 1, 

1 1α =  and 10 , 10x t− ≤ ≤ . 
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Figure 2. Multiple soliton of ( )

71u η  when 2,A =  0,B =  1,C =  1E = , 1d = , 1 1α =  

and 10 , 10x t− ≤ ≤ . 
 

 
Figure 3. Compacton of ( )

41u η  when 2,A =  1,B =  4,C =  1E = , 1d = , 1 1α =  and 

1 , 1x t− ≤ ≤ . 
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Figure 4. Singular soliton of ( )

51u η  when 1 1,C =  2 2,C =  1,A =  2,B =  2,C =  

1E = , 1d = , 1 1α =  and 10 , 10x t− ≤ ≤ . 
 

 
Figure 5. Singular periodic solution of ( )

41v η  when 1 1,α =  1,d =  2,A =  1,B =  

4,C =  1E =  and 1 , 1x t− ≤ ≤ . 
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Figure 6. Periodic solutions of ( )

91v η  when 1 1,α =  1,d =  1,A =  0,B =  

2,C =  2E =  and 1 , 1x t− ≤ ≤ . 

5. Conclusion 
The new generalized ( )G G′ -expansion method presented in this paper has been successfully implemented to 
construct many new and more general exact solutions of the new coupled Konno-Oono equation. The method 
offers solutions with free parameters that might be important to explain some complex physical phenomena. 
Comparing the currently proposed method with other methods, such as ( )G G′ -expansion method, the Exp- 
function method and the modified simple equation method, we might conclude that the exact solutions to Equa-
tion (12) can be investigated using these methods with the help of the symbolic computation software such as 
Matlab, Mathematica and Maple to facilitate the complicated algebraic computations. This study shows that the 
new generalized ( )G G′ -expansion method is quite efficient and practically well suited to be used in finding 
exact solutions of NLEEs. Also, we observe that the new generalized ( )G G′ -expansion method is straightfor-
ward and can be applied to many other nonlinear evolution equations. 
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Appendix: Khan and Akbar’s Solutions [43] 
We bring to the reader’s attention that Equation (16) regarding v(x,t) above is the same as Equation (10) in Khan 
and Akbar [43], where the authors manged established exact solutions of the new coupled Konno-Oono equation 
by using the modified simple equation method which are as follows (see Equation (23) for u(x,t), in [43]): 

( ) ( ) ( )

( ) ( )
1

1 2 cosh sinh

( )cosh ( )sinh

d du I d A x t x t

d dLB A x t LB A x t

ξ ω ω
ω ω

ω ω
ω ω

−

    
= ± × + − − −            

    
× − − + + −            

                (A.0) 

We can freely choose the constants A and B. Therefore, setting A LB= , Equation (A.0) reduces to 

( ) ( )1,2 , coth , for 0.du x t I d x t dω
ω

 
= ± − >  

 
                     (A.1) 

( ) ( )2
1 , cosech , for 0.d dv x t x t dω

ω ω
 

= − − >  
 

                     (A.2) 

Again, Setting LBA −= , Equation (A.0) reduces to 

( ) ( )3,4 , tanh , for 0.du x t I d x t dω
ω

 
= ± − >  

 
                    (A.3) 

( ) ( )2
2 , sech , for 0.d dv x t x t dω

ω ω
 

= − >  
 

                        (A.4) 

If 0d < , using hyperbolic function identities, from (A.0), we get the following periodic traveling wave solu-
tions: 

( ) ( )5,6 , cot ,du x t d x tω
ω

 −
= ± −  

 
                             (A.5) 

( ) ( )2
3 , cosec ,d dv x t x tω

ω ω
 −

= −  
 

                              (A.6) 

( ) ( )7,8 , tan ,du x t d x tω
ω

 −
= ± −  

 
                             (A.7) 

( ) ( )2
4 , sec ,d dv x t x tω

ω ω
 −

= −  
 

                               (A.8) 
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