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Abstract 
The need to allocate the existing water in a sustainable manner, even with the projected popula-
tion growth, has made to assess the consumptive use or evapotranspiration (ET), which deter-
mines the irrigation demand. As underscored in the literature, Penman-Monteith method which is 
a combination of aerodynamic and energy balance method is widely used and accepted as the me-
thod of estimation of ET. However, the application of Penman-Monteith relies on many climate 
parameters such as relative humidity, solar radiation, temperature, and wind speed. Therefore, 
there exists a need to determine the parameters that are most sensitive and correlated with de-
pendent variable (i.e., ET), to strengthen the knowledge base. However, the sensitivity of ET using 
Penman-Monteith is oftentimes estimated using meteorological data from climate stations. Such 
estimation of sensitivity may vary spatially and thus there exists a need to estimate sensitivity of 
ET spatially. Thus, in this paper, based on One-AT-A-Time (OAT) method, a spatial sensitivity tool 
that can geographically encompass all the best available climate datasets to produce ET and its 
sensitivity at different spatial scales is developed. The spatial tool is developed as a Python tool-
box in ArcGIS using Python, an open source programming language, and the ArcPy site-package of 
ArcGIS. The developed spatial tool is demonstrated using the meteorological data from Automated 
Weather Data Network in Nebraska in 2010. To summarize the outcome of the sensitivity analysis 
using OAT method, sensitivity indices are developed for each raster cell. The demonstration of the 
tool shows that, among the considered parameters, the computed ET using Penman-Monteith is 
highly sensitive to solar radiation followed by temperature for the state of Nebraska, as depicted 
by the sensitivity index. The computed sensitivity index of wind speed and the relative humidity 
are not that significant compared to the sensitivity index of solar radiation and temperature. 
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1. Introduction 
Although over 70% of Earth’s surface is covered by water, the amount of freshwater available for appropriation 
is limited as 97.5% of all water on Earth is saline [1]. This limited freshwater is competed by many water users 
such as irrigation, household and municipal, and industrial. Among these water users, irrigation demand, which 
is a function of evapotranspiration (ET), the rate of liquid water transformation to vapor from open water, bare 
soil, and vegetation, accounts for 87% of the total use globally [2]. However, in the next few years with the pro-
jected population growth, even under the assumption that the consumption of water per capita remains constant, 
the water demands increase and thus multitude the water allocation problems many fold [2] [3]. Therefore, to 
allocate the existing water in a sustainable manner, there is a need to estimate ET. 

As underscored in the literature [4]-[13], to date, there are many methods available to estimate ET. These 
methods are either empirical or climate data driven. Under empirical based estimation of ET, Blaney-Criddle 
method or its modified version is widely used in the arid western regions of the United States [4] [5]. However, 
this method doesn’t account for humidity, wind speed, and other climate factors. On the other hand, using me-
teorological data from climate stations, the methods of estimation of ET include aerodynamic method, energy 
balance method, and combination methods such as Penman-Monteith method [4]-[6]. The aerodynamic method 
of determining evaporation considers the transport of water vapor by the turbulence of the wind blowing over a 
natural surface. The energy balance method considers all heat energy received and reflected/dissipated by a 
cropped area or a water body. Penman-Monteith method of evaporation is obtained by combining the evapora-
tion computed by aerodynamic and energy balance method [4]-[6]. As underscored in the literature [4]-[13], 
Penman-Monteith method is widely used and accepted as the method of estimation of ET. However, the applica-
tion of Penman-Monteith relies on many climate parameters such as relative humidity, solar radiation, tempera-
ture, and wind speed. Therefore, there exists a need to determine the parameters that are most influential and 
correlated with dependent variable (i.e., ET), to strengthen the knowledge base [14]. Oftentimes, sensitivity 
analysis is conducted to identify these parameter sets.  

Based on a 20-yr historical daily climate dataset, in computing ET using FAO56 Penman-Monteith method [6], 
[7] shows that short wave radiation was the most influential climate variable for Ejina Oasis (North West China), 
followed by air temperature, wind speed, and relative humidity. [8] found that the response of ET in Changjiang 
(Yangtze river basin, China) was precisely predicted under perturbation of relative humidity or short wave radi-
ation by their sensitivity coefficients. This study also concludes that wind speed had the least impact on ET. Us-
ing the data from the automatic meteorological station of Aminteo in the Prefecture of Florina, Western Mace-
donia, Greece, [9] shows that solar radiation and temperature are the main climate parameters that affect ET, 
while relative humidity and wind speed are not so important for the calculation of ET. With global multivariate 
technique over the whole Toce basin (Italian Alps), [10] concludes that aerodynamic parameters were less criti-
cal in predicting ET. A study with 22 years of meteorological data at station Fasa, Iran, shows that the estimated 
ET is sensitive to net radiation, maximum temperature, and wind speed [11]. The research conducted by [12] in 
an experimental farm of the Shahid Bahonar, University of Kerman, Iran, shows that ET is sensitive to vapor 
pressure deficit followed by wind speed, but during the summer ET is sensitive to short wave radiation. Zha et al. 
(2013) found that ET over a Scots pine forest in eastern Finland, is sensitive to radiation, vapor pressure deficit, 
and temperature. This study also concludes that though the radiation explained 42% of variation in ET, it cannot 
alone accurately predict the estimation of ET. 

As presented in the previous paragraph, the sensitivity of ET using Penman-Monteith is oftentimes estimated 
using meteorological data from climate stations. However, such estimation of sensitivity may vary spatially and 
thus there exists a need to estimate sensitivity of ET spatially. Thus, the objectives of this paper are to a) develop 
a spatial sensitivity tool that can geographically encompass all the best available climate datasets using Python, 
an open source programming language supported by a growing user community for its extensive collection of 
standard and third-party libraries, and the ArcPy site-package of ArcGIS, b) evaluate the spatial sensitivity of 
ET using Penman-Monteith c) evaluate the spatial sensitivity of ET using aerodynamic method and energy bal-
ance method. 
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2. Estimation of Evapotranspiration 
The need to manage the available freshwater wisely with ever increasing population and the demand from irri-
gation has brought ET as one of the critical subject areas to research in the field of hydrology. Over the years, 
with many research works, numerous methods have been developed to estimate ET. These methods mainly fall 
under these categories: a) aerodynamic method, b) energy balance method, and c) combination of aerodynamic 
and energy balance methods [4]-[13]. 

2.1. Aerodynamic Method 
This method of determining evaporation considers the transport of water vapor by the turbulence of the wind 
blowing over a natural surface. According to this method, the evaporation ( aE ), generally from lakes and re-
servoirs, is proportional to ( )s ze e− . The mathematical expression of this method is given by Equation (1). 

( )a s z zE M e e u= ∗ − ∗                                  (1) 

where M, ,s ze e  and zu  are mass transfer coefficient, saturated vapor pressure at water temperature, vapor 
pressure at height z, and wind velocity at height z, respectively. The mass transfer coefficient is given by Equa-
tion (2). 
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where , ,w aP ρ ρ  and EC  are atmospheric pressure at height z, density of water, density of air, and evaporation 
coefficient, respectively. 

By substituting Equation (2) in Equation (1), 
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where T is the air temperature in degree Celsius. With further simplification,  
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2.2. Energy Balance Method 
As shown in Figure 1, this method considers all heat energy received and reflected/dissipated by a cropped area 
or a water body. The portion of energy that is used to warm the air in contact with the ground or water surface is 
known as sensible heat flux (H). The term G is the heat conduction from the water surface or soil to the layer of 
soil or water below. Since the energy required to evaporate a unit mass of water is called latent heat of vaporiza-
tion (λ), the total energy absorbed per unit area to evaporate rE  is w rEρ λ . Therefore, neglecting the other 
small energy terms that are dissipated/stored, the energy balance for the control volume shown in Figure 1 is 
given by Equation (6). 

0n w rR H G Eρ λ− − − =                                   (6) 
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Figure 1. The energy flow diagram for a cropped area. 

 
where nR  is the net radiation. The latent heat of vaporization is 2.45 MJ/kg at about 20 degree Celsius [6]. 
However, to account for temperature variation, the latent heat of vaporization is given by  

2.501 0.002362Tλ = −                                  (6’) 
The sensible heat flux defined by Equation (7) is related to Bowen ratio, β  

w rH Eβ ρ λ= ∗                                         (7) 

Bowen ratio, 2 1
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 is derived from temperatures and vapor pressures at two heights above the water  

surface. By substituting Equation (7) in Equation (6),  
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As shown in Equation (10), the net radiation ( nR ) is the sum of net long-wave radiation ( nL ) and net 
short-wave radiation ( nS ). 

n n nR L S= +                                          (10) 

The net short-wave radiation that is defined by Equation (11) is a function of total extraterrestrial radiation  

( 0S ) and cloudiness fraction n
N

 
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                              (11) 

The net long-wave radiation which is in accord with Stefan-Boltzmann’s law of black body radiation is given 
by Equation (12). 

( ) 40.1 0.9 0.34 0.14n d
nL e T
N

σ = − + − 
 

                        (12) 

where ,de σ  and T are vapor pressure at air temperature, Stefan-Boltzmann constant, and mean air temperature, 
respectively. 

2.3. Combination Method of Penman 
As shown in Equation (13), this method of evaporation is obtained by combining the evaporation computed by  
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aerodynamic ( aE ) and energy balance method ( rE ). The weighting factors (i.e.,
 

Δ
Δ γ+

 and 
Δ
γ
γ+

) are ap-

plied in combining the methods (i.e., aerodynamic and energy balance). The weighting factors sum to unity. 

Δ
Δ Δr aE E Eγ

γ γ
= +

+ +
                                (13) 

where γ  is the psychrometric constant that is defined by Equation (14). The gradient of the saturated vapor 
pressure ( Δ ) is given by Equation (15). 
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2.4. Penman-Monteith Method 
This method is same as the combination method of Penman. However, in this method, similar to ar , another 
term called surface resistance ( sr ) is introduced to account for resistance associated with movement of water 
vapor from the plant leaves to the air outside. This method is widely used to estimate evapotranspiration. The 
mathematical expression of this method is given by Equation (16). 
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For grass reference crop, 69 s msr =  and 
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= . Therefore, for grass reference crop  
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where 2u  is the wind speed at 2 m. When the wind speed is measured at different elevation, it can be adjusted 
from one level to another by using Equation (17). 
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where Z1, Z2 are measurement heights for levels 1 and 2, respectively. Z0 is the reference height where velocity 
is zero. For open agricultural area, Z0 = 0.03. The inner details of the method are presented in Figure 2. 

3. Sensitivity Analysis 
The mathematical model of a dependent variable ( ( )1 2, , , nY f X X X=  ) is formed by means of model para-
meters/independent variables ( )1 2, , , nX X X  that define the underlying processes. Therefore, there exists a 
need to determine the parameters that are most influential on model outcome and mostly correlated with model 
output. Oftentimes, sensitivity analysis is conducted to identify the influential parameter sets. In general, sensi-
tivity analysis methods are pooled under two categories, namely local and global methods. The local sensitivity 
analysis is the simplest though the combined variability resulting from changing all the parameters simulta-
neously is precluded. Under the local sensitivity analysis method, there are many methods to gauge the sensitiv-
ity analysis depending on the purpose. The differential sensitivity analysis and the One-AT-A-Time (OAT) me-
thod are the most widely used local sensitivity methods. The differential sensitivity analysis is based on partial 
differential equations. This method is efficient if an explicit relationship exists between dependent and indepen-
dent variables. However, the computational effort is intensive and the implementation is complex if the function  
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Figure 2. The spatial operations in computing ET using Penman-Monteith. 

 
and the derivative of the function are quite complex. On the other hand, in OAT method which the developed 
tool uses, at a time, one of the parameters is varied while keeping the other parameters at their base or nominal 
value. Based on how the parameters are varied with respect to the nominal value, many variations of this method 
have been proposed. To represent the entire spectrum of the parameter variability, it has been recommended to 
vary each parameter by certain percentiles while keeping the other parameters at their base value [14]. The per-
centile variation could be based on the probable minimum and maximum of the parameters, which are based on 
mean and the standard deviation of the parameters. 

Sensitivity Index 
In the developed spatial sensitivity tool, since there many variables associated in the sensitivity analysis, to 
summarize the outcome of sensitivity analysis using OAT method, a sensitivity index ( iΦ ) is calculated using 
Equation (18) by varying the parameter from its minimum to its maximum value. 

max min

max
i

y y
y

Φ
−

=                                (18) 

where maxy  and miny  are the maximum and the minimum model outcomes, respectively, when the parameter 
is changed over its entire range (i.e., from its minimum to maximum). 

4. The Development of Spatial Sensitivity Tool at Grid Scale 
ArcGIS provides easy-to-use platform to extend its desktop features by accessing geoprocessing functionalities 
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through programming/scripting languages. Python, an open source programming language supported by a 
growing user community for its extensive collection of standard and third-party libraries, is one of the scripting 
languages supported by Environmental Systems Research Institute (Esri). The communication between ArcGIS 
and Python is through a site-package that is called ArcPy. Using the ArcPy site-package, the customization of 
desktop features could be in three ways: desktop add-in, standard toolbox, Python toolbox. Since the develop-
ment of spatial sensitivity tool at grid scale does not involve an event such as dragging a rectangle over a geo-
graphical map to define an area of interest, Python toolbox is used to develop the spatial sensitivity tool. The 
developed python toolbox is basically an ASCII-based file, which contains scripts written using Python scripting 
language and the ArcPy site-package. As shown in Figure 3, the skeleton of ArcGIS Python toolbox is basically 
a class in Python. A toolbox can have more than one tool. Each tool is defined by a class. The tools are asso-
ciated with the toolbox class by setting the “tools” property of the toolbox within the constructor or the class in-
itialization method of the toolbox class. As shown in Figure 3, a tool named “SpatialETSense”, which is the 
class for the spatial sensitivity tool, is associated with the toolbox. 

The graphical user interface of the developed spatial sensitivity tool is shown in Figure 4. The sample code to 
retrieve the datasets and the other inputs specified by the user, and the functionalities of the methods (e.g., get-
ParameterInfo () and execute ()) within the “SpatialETSense” class are discussed in detail by [15]. To estimate 
the spatial ET using Penman-Monteith, this tool adopts the Python source code discussed by [15]. Therefore, 
only the important chunk of code relevant to sensitivity analysis is discussed in this paper. 

Based on the parameter range (i.e., % of the base value of the parameter at each raster cell) and the number of 
simulations specified by the user, the interval of sampling is calculated as shown in the variable named “mu-
lRange”, where the Python variables “inSenseHigh”, “inSenseLow”, and “inNumberSimulations” are the max-
imum value of the parameter, the minimum value of the parameter, and the number of simulations, respectively. 
The maximum value of the parameter and the minimum value of the parameter are calculated within an if-else 
block based on the parameter name that is specified by the user and stored by the tool in the Python variable 
named “inSenseType”. 
 

 
Figure 3. The skeleton of spatial sensitivity tool. 

class Toolbox(object):

def __init__(self):

self.tools = [SpatialET, SpatialETSense, SpatialETSenseLHC]

class SpatialETSense(object):

def __init__(self):

def getParameterInfo(self):

return params

def isLicensed(self):

return True

def updateParameters(self, parameters):

return

def updateMessages(self, parameters):

return

def execute(self, parameters, messages):

return

Spatial Sensitivity of ET (OAT)

Random Sampling (LHS)

Spatial ET

ETToobox.pyt
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Figure 4. The graphical user interface of spatial sensitivity tool. 

 
if(inSenseType==‘Temp’): 

inSenseLow=Raster(inRasterTempF)−parameters[7].value*Raster (inRasterTempF)/100 
inSenseHigh=Raster(inRasterTempF)+parameters[8].value*Raster (inRasterTempF)/100 

elif inSenseType==‘RH’: 
inSenseLow=Raster(inRasterRH)−parameters[7].value*Raster (inRasterRH)/100 
inSenseHigh=Raster (inRasterRH)+parameters[8].value*Raster (inRasterRH)/100 

elif inSenseType==‘Wind’: 
inSenseLow=Raster (inRasterW)–parameters[7].value*Raster (inRasterW)/100 
inSenseHigh=Raster (inRasterW)+parameters[8].value*Raster (inRasterW)/100 

elif inSenseType==‘Solar’: 
inSenseLow=Raster (inSolarRadiation)–parameters[7].value*Raster (inSolarRadiation)/100 
inSenseHigh=Raster (inSolarRadiation)+parameters[8].value*Raster (inSolarRadiation)/100 

inNumberSimulations=parameters [9].value  
mulRange=(inSenseHigh–inSenseLow)/(inNumberSimulations–1) 
The below code shows the variables that are used to store the user specified rasters such as the temperature, 

relative humidity, and wind speed.  
inRasterTempC=(Raster(inRasterTempF)–32)/1.8 
inRasterRH2=Raster(inRasterRH) 
Windspeed=Raster(inRasterW) 
inSolarR=Raster(inSolarRadiation) 
listRaster=“ ” 
As shown below, based on the number of simulations specified by the user, a for-loop is setup. Within the 

for-loop, the variables that are used to store the user specified rasters such as the temperature, relative humidity, 
and wind speed, are updated using the Python variable “mulRange” and the iteration number. Since the sensitiv-
ity analysis is based on the concept of One-AT-A-Time, within the for-loop, an if-else condition is developed to 
identify the raster dataset that needs to be modified. For example, if the user specified parameter name is “RH”, 
the raster dataset associated with relative humidity is modified within the for-loop at each iteration. The other 
raster datasets (i.e., temperature, wind speed, and solar radiation) are kept at their base values for all the iterations. 

for x in range (0, inNumberSimulations): 
messages.addWarningMessage (“The iteration number {0} is going on.”.format (x)) 
if(inSenseType==‘Temp’): 

inRasterTempC=(Raster(inRasterTempF)/Raster(inRasterTempF)*(mulRange*x+inSenseLow)–32)/1.8 
elif inSenseType==‘RH’: 
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inRasterRH2=Raster(inRasterRH)/Raster (inRasterRH)*(mulRange*x+inSenseLow) 
elif inSenseType==‘Wind’: 

Windspeed=Raster(inRasterW)/Raster (inRasterW)*(mulRange*x+inSenseLow) 
elif inSenseType==‘Solar’: 

InSolarR=Raster(inSolarRadiation)/Raster(inSolarRadiation)*(mulRange*x+inSenseLow) 
Having generated the raster dataset for the parameter that is tested in the sensitivity analysis, the ET raster is 

developed as discussed in Section 2.0. The detailed Python code is outlined by [15]. Since the simulation is car-
ried for a specified number of times, the developed ET raster datasets are stored in a systematic way by append-
ing the simulation number. These ET raster datasets are used to “Mosaic” in ArcGIS to get the sensitivity index 
for each raster cell. Since the mosaic operation is in need of names of ET raster datasets, which are separated by 
semicolons, a variable named “listRaster” is used to update the string at each iteration using the concatenation 
operator in Python programming language. 

PenmanMon.save(outRaster1+str (x)) 
listRaster=listRaster+outRaster1+str(x)+“;” 
As shown in the below code, since the sensitivity index discussed in Section 3.1 requires the maximum and 

the minimum values of ET at each raster cell, two new raster datasets are created to store this information. The 
copy_management tool of ArcGIS is used to generate the rasters. 

arcpy.Copy_management(outRaster1+str(x), outRaster1+“max”) #Creating a new raster to store the max ras-
ter from sense analysis 

arcpy.Copy_management(outRaster1+str(x), outRaster1+“min”) #Creating a new raster to store the min raster 
from sense analysis 

The mosaic operation on ET raster datasets as outlined in Figure 5 was used to generate the maximum and 
minimum values of ET spatially (i.e., at each raster cell) for the simulations. The mosaic operation requires a 
string that contains the raster datasets that need to be analyzed to get the maximum/minimum for each raster 
cells. This string (i.e., the Python variable named “listRaster”) was generated as discussed previously. The 
second argument of the mosaic tool is the raster dataset that holds the maximum or minimum values of ET spa-
tially. These two rasters were also developed as discussed previously. The raster for the sensitivity index was 
developed based on the equation discussed in Section 3.1. This raster is saved to the location specified by the 
user through the graphical user interface of the tool. 

 

 
Figure 5. The mosaic operation to produce the maximum and the minimum ET rasters. 
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arcpy.Mosaic_management(listRaster,outRaster1+“max”,“MAXIMUM”,“FIRST”, “0”, “”, “”, “”, “”) 
arcpy.Mosaic_management(listRaster,outRaster1+“min”,“MINIMUM”,“FIRST”, “0”, “”, “”, “”, “”) 
SenseRaster=(Raster(outRaster1+“max”)–Raster(outRaster1+“min”))/Raster(outRaster1+“max”) 
SenseRaster.save(outRaster1+“SenseIndex”) 
As discussed previously, within each iterations, the ET raster datasets are generated to run the mosaic opera-

tion to get the maximum and the minimum ET values for the considered number of simulations for each para-
meter within the given range. After the mosaic operation, the below lines of code with a for-loop are used to de-
lete the ET raster datasets that were used as inputs for the mosaic operation. 

for x in range(0, inNumberSimulations): 
arcpy.Delete_management(outRaster1+str (x)) 

5. The Application of Spatial Sensitivity Tool 
The state of Nebraska that lies in both the Great Plains and the Midwestern United States has a total geographi-
cal area of 200,520 km2. The total population of the state is 1.8 Million [16]. Both the surface and groundwater 
are used to meet the demand for wide range of purposes. Around 94.8% of the estimated total groundwater 
withdrawals is used to meet the irrigation demand [17]. As of November 2014, around 95,000 irrigation wells 
are registered in the state. The developed tool is demonstrated for the state of Nebraska using the meteorological 
data from Automated Weather Data Network (AWDN) that gathers climatological observational data and the 
information for High Plains Region and provides its shareholders in fields such as agriculture. Figure 6 shows 
the spatial locations of the climate stations in AWDN. 
 

 
Figure 6. The spatial locations of the climate stations from AWDN network in Nebraska. 

Legend

AWDN Climate Stations

Nebraska Boundary
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The AWDN has around 63 stations to cover the state of Nebraska. The data is available on hourly, daily, and 
sub-daily basis since 1985. To demonstrate the tool, the daily data in 2010 was downloaded from the online ser-
vices provided by AWDN. As discussed in Section 2.0, the developed tool requires raster datasets on tempera-
ture, relative humidity, wind speed, and solar radiation. Therefore, at first, the average daily data in 2010 was 
developed based on the daily data of temperature, relative humidity, and wind speed. Using ArcGIS and the spa-
tial locations of the climate stations, the tabular datasets of average daily data in 2010 were transformed to geo-
graphical data. Subsequently, the Spatial Analyst Extension of ArcGIS was used to develop the grid level values 
of temperature, relative humidity, and wind speed at a resolution of 1 km. The Kriging spatial interpolation 
technique packaged with ArcGIS was used to develop the rasters of required inputs. To ensure that the Krigged 
data covers the whole state, the extent of the interpolation was set using the state map of Nebraska. The research 
work carried out by [4] was used to develop the solar radiation raster. 

The estimated ET using Penman-Monteith method is shown in Figure 7(a). Figure 7(b) shows the catego-
rized version of Figure 7(a). For the state of Nebraska in 2010, the estimated ET using Penman-Monteith me-
thod varies from 0.77 to 1.04 mm/day. In other words, the maximum spatial variation of estimated ET using  

Penman-Monteith method is = 1.04 mm/day 0.77 mm/day 100% 26%
1.04 mm/day

−
× = . Moreover, the highest estimated  

ET using Penman-Monteith method is registered in the Eastern part of Nebraska. However, the geographical 
extent of such high ET is limited to a very small area in contrast to the geographical area with estimated ET us-
ing Penman-Monteith method in the range of 0.77 - 0.96, as shown in Figure 7(b). Furthermore, an increasing 
trend of spatial variation is observed from Western part of Nebraska to Eastern part of Nebraska in the direction 
of North West to South East. 

Figures 8(a)-(d) show the maps of spatial sensitivity index of ET using Penman-Monteith method for relative 
humidity, solar radiation, wind, and temperature, respectively. For these maps, as indicated in the legends of the 
maps, the number of simulations was set to 50, and the variation of the said parameters were set to 25% with 
respect to the base value for each raster cell. In other words, for each raster cell, the maximum and the minimum 
are considered as 125% and 75% of the base value for each raster cell, respectively. As can be observed from 
Figure 8, among the considered parameters in the sensitivity analysis of ET using Penman-Monteith, solar radi-
ation has the highest sensitivity index in the range of 0.50 - 0.51, followed by temperature in the range of 0.40 - 
0.42 for the state of Nebraska. The computed sensitivity index of wind speed and the relative humidity are not 
that significant compared to the sensitivity index of solar radiation and temperature. The sensitivity index of rel-
ative humidity is the lowest among the considered parameters. It is also noted that the spatial sensitivity index of 
solar radiation increases in the direction of South East to North West, in contrast to the trend of the computed 
ET that is shown in Figure 7. In other words, the regions that have higher ET and the regions that have higher 
spatial sensitivity index of solar radiation are not the same. Moreover, it is also observable that the regions that 
have lower ET (i.e., in the direction of North West) are associated with lower spatial sensitivity index of 
 

 
Figure 7. The estimation of ET (mm/day) using Penman-Monteith method. 
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Figure 8. The spatial sensitivity index of ET using Penman-Monteith method for (a) relative humidity, (b) solar radiation, (c) 
wind speed, and (d) temperature. 

 
temperature, but higher spatial sensitivity index of solar radiation. 

Figures 9(a)-(c) show the spatial sensitivity index of ET using energy balance method for relative humidity, 
solar radiation, and temperature, respectively. Since the energy balance method discussed in Section 2.2 is not 
influenced by wind speed, the spatial sensitivity index of ET using energy balance method for wind speed is not 
shown in Figure 9. As in the case of ET using Penman-Monteith, the solar radiation is the most influencing pa-
rameter on the computed ET using energy balance method. However, it is worth to note that although the tem-
perature raster is the second sensitive parameter on ET using Penman-Monteith as pronounced through its mag-
nitude of sensitivity index (i.e., 0.40 - 0.42), the magnitude of sensitivity index(i.e., 0.04 - 0.06) has diminished 
in influencing the ET using energy balance method. In other words, the ET using energy balance method is sen-
sitive to solar radiation, whereas the ET using Penman-Monteith is sensitive for both the solar radiation and the 
temperature. It is also noted that the spatial sensitivity index of solar radiation increases in the direction of South 
East to North West, similar to what is observed in Figure 7. 

Similarly, Figure 10(a) and Figure 10(b) show the variation of spatial sensitivity of ET using aerodynamic 
method for temperature and relative humidity, respectively. The spatial sensitivity of ET using aerodynamic 
method for wind speed is not shown as the computed sensitivity index was zero. Since the aerodynamic method 
discussed in Section 2.1 is not influenced by solar radiation, the spatial sensitivity index of ET using aerody-
namic method for solar radiation is not shown in Figure 10. In other words, in contrast to ET using Penman- 
Monteith and ET using energy balance method, solar radiation is not a significant factor in determining the ET 
using aerodynamic method. The relative humidity followed by temperature is the most influencing parameter in the 
computation of ET using aerodynamic method. Moreover, the spatial sensitivity index of ET using aerodynamic 
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Figure 9. The spatial sensitivity index of ET using energy balance method for (a) relative humidity, (b) solar radiation, and 
(c) temperature. 

 

 
Figure 10. The spatial sensitivity index of ET using aerodynamic method for (a) relative humidity, and (b) temperature. 

 
method is higher than the spatial sensitivity index of ET using Penman-Monteith and the energy balance me-
thod. 

To understand the influence of parameter variation (as a % of the base value for each raster cell) on the trend 
of computed spatial sensitivity index, simulations were carried out for parameter variations of 5%, 10%, 15%, 
20%, and 25% of the base value for each raster cell. As previously, the number of simulations was fixed to 50. 
The outcome of these simulations is placed in Figure 11 and Figure 12. Figure 11 and Figure 12 show the 
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maximum and minimum sensitivity index registered in the study area, respectively, for the parameter variations 
outlined above. Both the maximum and minimum sensitivity index vary linearly and increase as the considered  
 

 
Figure 11. The maximum spatial sensitivity index of ET using Penman-Monteith method for 
different parameter variation for (a) relative humidity, (b) wind speed, (c) temperature, and (d) 
solar radiation. 

 

 
Figure 12. The minimum spatial sensitivity index of ET using Penman-Monteith method for 
different parameter variation for (a) relative humidity, (b) wind speed, (c) temperature, and (d) 
solar radiation. 
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parameter variations increase. In other words, with more variation expressed with the base value, the computed 
maximum and minimum sensitivity index also increase for all the parameters. The range that is denoted between 
the minimum and the maximum value of the computed sensitivity index for the selected parameters, too in-
creases with the increased parameter variations. Furthermore, the fitted equations whose strengths are explained 
through the statistical measure (R2) also reveal that the rate of increase with the increase of parameter variation 
decreases in the order of solar radiation, temperature, wind speed, and relative humidity. 

6. Conclusion and Recommendations 
In this paper, a spatial sensitivity tool that can geographically encompass all the best available climate datasets 
to produce ET and its sensitivity at different spatial scales is developed. Based on the outcome of this study, the 
following points are highlighted: 

1) Among the considered parameters in the sensitivity analysis of ET using Penman-Monteith, solar radiation 
registers the highest sensitivity index followed by the temperature for the state of Nebraska. The computed sen-
sitivity index of wind speed and the relative humidity are not that significant compared to the sensitivity index 
of solar radiation and temperature. 

2) Though the local sensitivity analysis such as One-AT-A-Time is the simplest method of sensitive analysis, 
the combined variability resulting from changing all the parameters simultaneously is precluded. Therefore, ex-
tending the developed tool with random sampling methods such as Latin Hypercube could be one of the future 
research needs. 

3) In demonstrating the developed spatial sensitivity tool, the simulations are carried by varying the base val-
ue of the parameters, such as the temperature and solar radiation, for each raster cell by a given percentile. The 
percentile variation of the base value for each raster cell could be based on historical temporal datasets at each 
raster cell. 

4) The developed spatial sensitivity tool is tested for parameters such as temperature, relative humidity, solar 
radiation, and wind speed. The develop tool can also further be tuned to test the sensitivity of ET with the inter-
mediate or secondary parameters that are derived from the user specified parameters. The developed tool could 
also be potentially extended to establish multiple regressed equations to predict ET values at each raster cell 
based on the sensitivity analysis at each raster cell. 
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