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Abstract 
The paper resolves the great debate of the 20th century between the three philosophies of mathe-
matics—logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, 
L. E. J. Brouwer and David Hilbert, respectively. The issue: which one provides firm foundations for 
mathematics? None of them won the debate. We make a critique of each, consolidate their contri-
butions, rectify their weakness and add our own to resolve the debate. The resolution forms the 
new foundations of mathematics. Then we apply the new foundations to assess the status of Hil-
bert’s 23 problems most of which in foundations and find out which ones have been solved, which 
ones have flawed solutions that we rectify and which ones are open problems. Problem 6 of Hil-
bert’s problems—Can physics be axiomatized?—is answered yes in E. E. Escultura, Nonlinear 
Analysis, A-Series: 69(2008), which provides the solution, namely, the grand unified theory (GUT). 
We also point to the resolution of the 379-year-old Fermat’s conjecture (popularly known as Fer-
mat’s last theorem) in E. E. Escultura, Exact Solutions of Fermat’s Equations (Definitive Resolution 
of Fermat’s Last Theorem), Nonlinear Studies, 5(2), (1998). Likewise, the proof of the 274-year-old 
Goldbach’s conjecture is in E. E. Escultura, The New Mathematics and Physics, Applied Mathemat-
ics and Computation, 138(1), 2003. 
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1. Introduction 
Technical mathematics—the mathematics in the various specialized fields of mathematics—has expanded tre-
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mendously, especially, nonlinear analysis but work on the foundations of mathematics has stopped by the latter 
half of the 20th Century. Although the only living founder of logicism and pioneer in foundations, Bertrand 
Russell, was still active in the 1960s, he was consumed by his opposition to nuclear weapons and the Vietnam 
War during which time he founded and convened the Bertrand Russell Peace Foundation which tried the United 
States for crimes against humanity in Vietnam (he passed away in 1970 at the age of 97). We revisit the founda-
tions of mathematics and resolve the great debate of the 20th Century among logicism [1], intuitionism [2] and 
formalism [3] founded, respectively, by Bertrand Russell (1872-1970) and A. N. Whitehead (1861-1947) [4] [5], 
L. E. J. Brouwer (1881-1966) [6] and David Hilbert (1862-1946) [7]. The issue: which one provides firm foun-
dations for mathematics [8]? None of them won the debate. Therefore, we consolidate their contributions and 
add our own to resolve the debate and call the resolution the new foundations of mathematics. We apply the new 
foundations to David Hilbert’s 23 problems of mathematics [9] most of which problems in foundations and as-
sess which ones are solved, which solutions are flawed in which case we rectify them and which ones are open 
problems. Problem 6—Can physics be axiomatized?—is answered yes in 2008 and the solution is The Grand 
Unified Theory [10]. We solve other long standing unsolved problems including the 379-year-old Fermat’s con-
jecture (also known as Fermat’s last theorem (FLT) [11] and the 274-year-old Goldbach’s conjecture [12]. The 
paper summarizes the requirements for avoiding uncontained ambiguity and paradox or contradiction. 

We introduce qualitative mathematics, the complement of computation and measurement and qualitative 
model of rational thought [13], part of the main contribution of [14], consisting of this activity: 

Making conclusions, visualizing, abstracting, thought experimenting, learning, creating mathematical spaces, 
intuition, imagination, trial and error to sift out what is correct, negating what is known to gain insights into the 
unknown, altering premises to draw out new conclusions, thinking backwards and devising strategies and tech-
niques that yield results. 

2. The Great 20th Century Debate 
Why is the resolution of this great debate important? Important mainly because technical mathematics cannot 
solve problems in foundations and most long standing unsolved problems, e.g., FLT and Goldbach’s conjecture, 
including most of Hilbert’s 23 problems, belong to this category. To resolve the issue of contention in the debate 
we look at the sources of ambiguity and paradox or contradiction. 

2.1. Sources of Ambiguity 
Ambiguity erodes the foundations of mathematics. Therefore, we identify the sources of ambiguity. Ambiguity 
and contradiction are intertwined because when there is ambiguity in a mathematical space one can find contra-
dictory statements or a counterexample (which is a contradiction) as shown by the work of Imre Lakatos [15] 
where he found a counterexample at every step of Cauchy’s proof of Euler’s formula on the relationship be-
tween the vertices, edges and faces of a polyhedron including his own remedy to the contradiction. We find 
ways to avoid them. 

2.1.1. Vacuous Concept 
One such source of contradiction is vacuous (ill-defined or non-existent) concept. Consider the concept, the root 
of the equation x2 + 1 = 0 (among the real numbers) denoted by 1i = − . Since the equation has no root the 
concept i is vacuous, does not exist. Consequently, 

(1) 1 1 1 1 ii i− = − = = −= , from which follows 1 = 0 and i = 0 which collapse both the real and complex 
number systems. The concept is vacuous for another reason: the mapping a  is defined only on non-negative 
real number a where a is a perfect square. In fact, the nth root of a, i.e., n a  is defined only if a is a perfect nth 
power of some real number. 

Another contradiction arising from a vacuous concept called Perron Paradox [11] follows: 
Let N be the largest integer. Since the integers are linearly ordered by the relation <, one and only one of the 

following holds: N < 1, N = 1, 1 < N. The first inequality is out, so is the second since N < N2 and N would not 
be the greatest integer. Therefore, N = 1 which is false. 

The culprit: N is vacuous, does not exist. 
The concept vacuousity applies to vacuous propositions and problems. This is the reason a careful mathemati-

cian pays particular attention to a suitable theorem on the existence of a solution of a problem before actually 
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solving the problem. The constructivist requires not only existence but also an algorithm for computing the solu-
tion. That algorithm makes sense only when there is a solution. 

2.1.2. Infinity 
In traditional mathematics a set is infinite if it can be put into one-one-correspondence with a proper subset. We 
modify this definition by identifying the concept infinity with its essential property of inexhaustibility. We take 
inexhaustibility as the defining quality of infinity and this clearly includes the traditional definition. For example, 
if we count the digits of a nonterminating decimal and label the digits we have already counted by, say,

1 2, , , nx x x , then a sequence, 1 2, , , , , 1, 2, ,nx x x n =    is generated that has no last element and the count-
ing is never complete. This is an ambiguity. It is not the case with a terminating decimal where there is a last 
element so that its digits are finite. This is an example of countable infinity denoted by ∞. It is a concept that 
pervades mathematics and the only type of infinity that exists as we shall see later. It is neither a real number nor 
a counting number and, naturally, the binary additive and multiplicative operations do not apply to ∞ and if real 
numbers are added to a given real number one at a time ∞ can never be reached. Thus, there is no boundary be-
tween the real numbers and infinity that can be crossed. In other words, none of the binary operations in the real 
number system applies to it. 

Since the binary operations addition and multiplication are defined only on terminating decimals the nonter-
minating decimals are ill-defined and, therefore, ambiguous in the real number system. Therefore, any concept 
defined in terms of nonterminating decimal is ambiguous, ill-defined. An example of such ambiguous concept is 
irrational number (rational for short) defined as nonperiodic nonterminating decimal. Furthermore, periodicity 
or non-periodicity of a nonterminating decimal is not verifiable. Thus, an irrational number has at least two lay-
ers of ambiguity. This ambiguity is illustrated by the fact that the sum of 3  and 2  is unknown. Moreover, 
not every rational numbers (rationals for short), i.e., the quotients of two integers, is a real number; only when 
the divisor has no prime factor other than 2 and 5 is the quotient a terminating decimal, a rational and a real 
number. Thus, the rationals coincide with the terminating decimals and they are the only defined real numbers. 

In the new real number system R* of which the real number system R is a subspace, the concept nonterminat-
ing decimal is defined for the first time [16] [17] but has contained ambiguity. Ambiguity of a concept is con-
tained if it is defined, i.e., it exists, and is approximated with a desired error by a defined concept. As example, 
the infinite set of decimal digits of a nonterminating decimal is contained and its ambiguity is likewise contained 
since if we cut or truncate a nonterminating decimal at the nth decimal digit, the margin or fraction of error is 
less than 10−n. Here, the truncated number is a terminating decimal which is defined in the real number system. 
The error is the upper bound of the value or norm of the discarded tail of the nonterminating decimal in the 
truncation. The maximum error occurs when the discarded digits are all 9 s. In a mathematical space this type of 
ambiguity can be contained or isolated and does not cause a problem; in fact, containing an ambiguity or reduc-
ing an error to a desired number is a standard technique in approximation theory. Therefore, it is admissible. 
Even the definition of a rational (rational for short) as quotient of two integers is ambiguous. In fact, division of 
an integer by a prime other than 2 and 5 is ambiguous since the quotient is a nonterminating decimal. What is 
correct is that the rationals coincide with the terminating decimals. Even the alternative definition of a rational 
as periodic decimal is incorrect. The periodic decimal 0.99… is counterexample to it since neither addition nor 
multiplication is defined on it. 

Ambiguity of a concept means that not all of its properties can be verified. It follows that any proposition in-
cluding axiom or theorem involving an ambiguous concept is ambiguous, i.e., its conclusion is uncertain. In par-
ticular, a proposition involving the universal quantifier every, or the existential quantifier there exists applied to 
an infinite set is ambiguous due to the inexhaustibility of the latter. For example, suppose we want to prove that 
“every element of an infinite set S has property P”. Start with an element x1 and suppose it has this property 
(otherwise, the statement is outright false), then take another element x2 and check if it has this property, etc. 
Then since S is inexhaustible verification of the truth of this statement is never complete, i.e., the statement is 
ambiguous. Similarly, by the same algorithm but starting with an element that does not have this property, it 
may not be possible to prove that there exists an element of S that has this property which is an ambiguity. 
Every infinite mathematical space is presently tainted with this type of ambiguity from the definition of limit of 
real analysis through the field axioms of the real number system [16]. Thus, the real number system is presently 
ambiguous. Consequently, FLT being formulated in it is also ambiguous and has no proof. It was this ambiguity 
of the real number system that catalyzed its critique-rectification as the new real number system [15] [16], the 
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reformulation of FLT in it and its resolution in 1998 that proved it false [18]. In some cases, it may not be possi-
ble to choose a particular element x1 of an infinite set, e.g., in the construction of a non-measurable set the 
axiom of choice was invoked [19] [20]. This axiom is flawed when applied to infinite set because of the ambi-
guity of the latter. 

Consider the axiom of choice, one of the axioms of the Zermelo-Fraenkel set theory or ZFC that says [20]. 
Given any set of mutually disjoint nonempty family of sets there exists at least one set that contains exactly 

one element in common with each of the nonempty sets. 
The elements of the set are mapped one-one into the family of mutually disjoint sets and the mapping is called 

the choice function. 
This seems obvious but it is tainted with ambiguity by the existential quantifier when applied to infinite set. The 

axiom of choice or its variants—the completeness axiom and Dedekind cut—is involved everywhere in analysis, 
e.g., as one of the field axioms of the real number system and in proving limits (which involves the existential and 
universal quantifiers) and existence of a nonmeasurable set [11]. Moreover, there is no flawless proof of existence 
of non-measurable set. In other words, measurability is not an issue at this time. Therefore, real analysis can be 
simplified by dropping the requirement of measurability in analysis. 

Consider Cantor’s diagonal method [21] [22] in proving that the real numbers form a nondenumerable set. This 
method is flawed by the application of the existential quantifier “there exists” on infinite set. Moreover, the set of 
off diagonal elements generated by Cantor’s diagonal method is a countable union of countable sets which is 
countable. Furthermore, it uses the indirect proof which is self-referent and ambiguous. Therefore, Cantor’s di-
agonal method is flawed. With the failure of Cantor’s diagonal method, the continuum hypothesis [23] [24] also 
collapses. This resolves problem 1 of Hilbert’s 23 problems that seeks a transfinite number between a denu-
merable set and the continuum. The problem is vacuous and has no solution since the continuum in the sense of 
Cantor does not exist aside from the use of the indirect proof and the axiom of choice in the proof. 

A recent surprise is the Banach-Tarski paradox [25] which has been used as a counterexample to the axiom of 
choice. First of all, the axiom of choice is ambiguous on its own terms when applied to infinite set and does not 
need a counterexample to confirm it. 

The Banach-Tarski paradox is one of the most celebrated paradoxes in mathematics. One version of it states 
that given any two subsets A and B of R3, which are bounded and have non-empty interior, it is possible to ‘cut’ A 
into a finite number of pieces which can be moved by rigid motions (translations and rotations) to form exactly B. 
This has many amusing consequences; it is most commonly stated as the assertion that a baseball can be cut into a 
finite number of pieces which can then be reassembled without distortion to form a ball as big as the Earth. The 
proof is in [25]; we note the following important points about it: 

(1) In the proof of Proposition 3.1, Section 3, p. 4, which is part of the proof of the paradox, is the expression, 

( )( )2, , 21 3n a b c ,                               (1) 

involving division of an integer by a prime other than 2 and 5; both the quotient and the product are ill-defined 
because they involve decimals which are also ill-defined. Therefore, the quotient 1/3n does not exist and, natu-
rally, the product in (1) does not exist. Ill-defined concepts appear many times in the proof. 

(2) On page 8, the paragraph after fact (3), part of the sentence that begins in line 2 says: 
“…and there are uncountably many lines through the origin in R3” 

which is, again, vacuous since those lines do not exist? 
Only one of items (1) and (2) suffices to show that the Banach-Tarski paradox does not exist. 
The ambiguity of infinity has far reaching implications for mathematics. It affects theorems in infinite ma-

thematical spaces. It limits the domain of the real number system to terminating decimals, i.e., a nonterminating 
decimal is ill-defined (ambiguous). Thus, the concept irrational as nonperiodic nonterminating decimal is ill- 
defined and ambiguous since it is unverifiable. This is the reason it is impossible to add 2  and 3  since 
both terms are ambiguous. The rationals as quotients are limited to terminating decimals because division by a 
prime number other than 2 and 5 is ill-defined the quotient being nonterminating. 

Moreover, ambiguity or uncertainty applies to small and large numbers. For example, changing a small divi-
sor less than 1 (<1) leaves a wide margin of error. Furthermore, the digits of both small and large numbers (de-
pending on context) cannot be entered into the calculator or computer screen and this is an ambiguity. In dealing 
with a large number the scientific notation is used which approximates the number by the largest order of mag-
nitude and discarding the digits and terms of lower orders of magnitude. For a small number the nonzero (de-
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cimal) digits are too far to the right in the decimal expansion that it is difficult to distinguish its location relative 
to 0. This uncertainty applies to tiny object at great speed, e.g., electron at speed close to that of light which ac-
counts for the Heisenberg’s uncertainty principle of physics [26]. This is an example of motion in the real world 
affected by number not because of the numbers involved but the difficulty in determining the position of a tiny 
object and measuring large numbers. Furthermore, large integers have different behavior described by the law of 
large numbers in statistics. For instance, it is noted in [27] that the behavior of an integer N abruptly changes 
when its value goes past 10k, where k = 1070. Thus, both extremes of the norm of a real number suffer from am-
biguity. 

2.1.3. Russell Paradoxes 
In 1901 Bertrand Russell who was then working on the Principles of Mathematics, rocked set theorists and logi-
cians with this discovery named after him (Russell antimony) [28]: 

Let M be the set of all sets where each element does not belong to itself, i.e., M = {m: m ∉ m}. Either M ∈ M 
or M ∉ M. If M ∉ M, its defining conditions hold; therefore M ∈ M. On the other hand, if M ∈ M, then M also 
satisfies its defining condition; therefore M ∈ M and M ∉ M. 

Russell sent it in a letter to G. Frege in 1902 [28] just as Frege had submitted Grundlagen der Arithmetik that, 
like the Principles of Mathematics, attempted to build arithmetic on set theory, the foundation of logicism. The 
letter invalidated much of the rigor of the work and Frege was forced to add a note at the end stating, “A scientist 
can hardly meet with anything more undesirable than to have the foundation give way just as the work is fi-
nished. I was put in this position by a letter from Mr. Bertrand Russell when the work was nearly through the 
press” [28]. 

A contradiction arises whenever the expression “the set of all sets” is involved for it leads to the concept of a 
set being a member of itself and, therefore, not a member of itself. In other words, the universal set and power 
set do not exist, they are vacuous. This, again, is an example, of thought creating nonsense. There are, in fact, 
numerous Russell paradoxes that can be reduced to this type of paradox [29]; we give another example, the bar-
ber paradox [30]: 

The barber of Seville shaves those who do not shave themselves. Who shaves the barber? 
If the barber shaves himself then he does not shave himself; if he does not then he shaves himself. Obviously, 

there is no correct answer here, i.e., the barber of Seville does not exist. Thus, a Russell paradox reduces to a 
vacuous proposition. 

2.1.4. Self-Reference 
If we replace the relation “∈” by other relations that lead to nonsense we get a much larger class of contradic-
tions called self-reference. For example, suppose we replace “∈” by “the ball half its size”, can anyone compre-
hend what that ball is? Belonging to this type of paradox are these relations: “the snake that swallowed itself” 
(let it swallow the tail first) and “the basket inside itself”. The indirect proof is self-referent because the conclu-
sion of the theorem being proved rests on the negation of its hypothesis (a theorem, by the way, includes its 
proof). The indirect proof is based on the principle of the excluded middle of formal logic which is what the 
Russell antimony is and rejected by intuitionism and the broader philosophy of constructivism that extends to 
mathematics education where the teacher does not lecture but sets the right conditions for the student to create 
the appropriate concepts for the situation [31]-[35]. 

Gödel’s second incompleteness theorem states that no consistent axiomatic system which includes Peano 
arithmetic (Peano’s axioms) can prove its own consistency. This can be stated simply and in more general terms: 
No consistent axiomatic system (mathematical space) can prove its own consistency. This theorem is true be-
cause a proof would be self-referent. 

3. The Status of Set Theory 
The creator of set theory was Georg Cantor [20] [21] who introduced, among others, the concepts infinity, car-
dinal number and the axiom of choice. The subject was revisited by Russell and Whitehead who developed set 
theory on the axioms of formal logic in their joint work, Principia Mathematica [36]-[38]. This work attempts to 
reduce the foundations of mathematics to logic [39] [40]. Although the theory of types in Principia did resolve 
the Russell paradoxes, it was impossible to say that a class was or was not a member of itself. We have resolved 
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this problem by putting the set of all sets where each element does not belong to itself and the set of all sets 
where each element belongs to itself in the category of vacuous set that must be avoided. Today, the most ad-
vanced development of set theory is Zermelo-Fraenkel with the axiom of choice or ZFC [20]. However, both its 
axioms of infinity and choice bring in uncontained ambiguity to it. 

We identify two aspects of set theory: its role (1) as a fundamental language and repository of the basic prin-
ciples of modern mathematics and (2) as an independent branch of formal or mathematical logic (propositional 
calculus). The first role does not apply to any other mathematical spaces since every mathematical space is de-
fined solely by its axioms including its rules of inference for proving theorems. In other words, universal rules 
of inference such as formal logic do not apply to any other mathematical space since they have nothing to do 
with its axioms. As an independent mathematical space it is also flawed by the inclusion of the axiom of infinity 
and the axiom of choice. Therefore, the program of logicism to develop a universal language for mathematics 
failed and whatever concepts of set is needed in mathematics can take refuge in the appropriate mathematical 
spaces where they are defined. 

4. The Participants in the Debate 
We present briefly the three philosophies of or schools of thought in mathematics. 

4.1. Logicism 
What is the status of logicism? It aims to build mathematics on the axioms and propositions (theorems) of for-
mal logic which is cast in the language of set theory. The axioms of formal logic consists of the laws of classical 
logic [40] plus type theory [41] that provides the remedy for the Russell paradoxes and, essentially, avoids va-
cuous concepts such as the set of all sets where each element does not belong to itself from which follows that 
the universal and power sets of a set are vacuous and do not exist and the relation “∈” (“is a member of”) is not 
reflexive. Moreover, we require that the relation “∈” is neither reflexive nor transitive, i.e., A ∈ B and B ∈ C 
does not imply A ∈ C; in other words, there is no conclusion that can be drawn from A ∈ B and B ∈ C. In addi-
tion, an axiom schema [39] is introduced that generates additional axioms. The rules of inference are defined by 
these axioms. A proposition is true by virtue of its form derived from the axioms [1]. The aim of logicism is to 
establish set theory as the universal language of mathematics, i.e., as the language of all mathematical spaces. 
First, the concepts of a mathematical space are defined in terms of the language of set theory. Then its axioms 
are derived from set theory in accordance with the rules of inference of formal logic or propositional calculus. 
Both, of course, are subject to the limitations of set theory. All the three philosophies of mathematics consider 
the axioms self-evident and true. However, what is self-evident to one may not be so to another and, as we have 
seen, thought can create contradictory and vacuous concepts, e.g., the complex number i. Consequently, there 
exist Euclidean and non-Euclidean geometry, Abelian and non-Abelian group and Hausdorff and non-Hausdorff 
mathematical spaces all of which created by thought. This nature of thought is explained in [13] [42] [43]. 

The natural numbers are defined in the language of set theory by the axioms of Peano [20]: 
1) Zero is a number. 
2) If a is a number, the successor of a is a number. 
3) Zero is not the successor of a number. 
4) Two numbers of which the successors are equal are themselves equal. 
5) (Induction Axiom) if a set S of numbers contains zero and also the successor of every number in S, then 

every number is in S. 
Logicism failed to prove the axioms of arithmetic and its goal of deriving arithmetic from formal logic. Recall 

that it is the representation of thought in the real world that constitutes a mathematical space and not the con-
cepts of individual thought. Therefore, writing the concepts of a mathematical space in the language of set 
theory and proving its theorems by the rules of inference of formal logic negates its axioms as the sole determi-
nant of its structure, properties and behavior. 

4.2. Intuitionism 
The rejection of the indirect proof by intuitionism [2] is the foundation of constructivism which has been ex-
tended to a philosophy of mathematics-science education now called creative mathematics-science education 
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[31]-[35]. Consequently, Brouwer had to reject his earlier important contribution to Analysis and Topology 
named after him, the Brouwer fixed point theorem [44], because the proof rests on the indirect proof. However, 
constructivism as a philosophy is more than simply the rejection of the indirect proof and extension to mathe-
matics-science-education since as we have seen it has engendered a new philosophy of education. Like logicism 
and formalism, intuitionism correctly views concepts as creation of thought but incorrectly assumes that human 
thought is invariant or the same among individuals. This is not the case according to [13] [42] [43]. In fact, indi-
vidual thought is conditioned or shaped by the cultural milieu and one’s training and experience. Moreover, we 
recall that individual thought is capable of creating ambiguous, vacuous and contradictory concepts. Construc-
tivism is a modification of the Socratic method of teaching where the student states his opinion on a subject or 
an answer to a question and the teacher asks a series of leading questions towards the correct answer [33]-[35]. 
In constructivist teaching the teacher provides the condition in the classroom so that the student creates the ap-
propriate concepts for the situation. Moreover, intuitionism correctly rejects concept or solution that cannot be 
constructed. Therefore, the solution must be determined by actual construction but the latter preceded by proof 
of its existence. 

4.3. Formalism 
Formalism recognizes the ambiguity of the concepts of individual thought since it is not accessible to others and 
cannot be discussed collectively [3]. Therefore, it requires concepts to be objects in the real world that can be 
collectively observed such as words, symbols, figures and chess pieces. In a chess game the axioms are the rules 
of the game. In other words, the subject matter of mathematics cannot be the concepts of individual thought but 
objects in the real world (also called concepts) subject to the axioms of the given mathematical space. Both lo-
gicism and intuitionism hold that an axiom is self-evident by virtue of its form regardless of content [1] [2]; in-
tuitionism says that a concept or an axiom is “evident from profound intuitionist reflection” [2]. At the same time, 
intuitionism admits correct ideas based on intuition but limits them to those that can be constructed or actualized 
which is consistent with the rejection of the principle of excluded middle, the basis of the indirect proof and a 
contradiction. Formalism does not challenge the logicist view but retains the indirect proof [3]. This contradicts 
the formalist requirement that the concepts and propositions of a mathematical space be subject to consistent 
axioms. Among the implications of this requirement are: 1) mathematical truth is not absolute but relative to the 
axioms of a mathematical space. In other words, when we say that a theorem is true it is relative to the mathe-
matical space where the theorem belongs. A theorem in our sense is a sequence of arguments or propositions 
from the hypothesis to the conclusion, where each proposition except the hypothesis follows from the preceding 
proposition; 2) to avoid ambiguity every concept of a mathematical space must be defined by its axioms and the 
choice of the axioms is not complete until every concept is defined, i.e., undefined terms are inadmissible. 3) 
The rules of inference must follow from the axioms. 4) Therefore, as noted earlier, universalrulesofinferencein-
cludingformallogicdonotapplytoanyothermathematicalspace. 5) Consequently, there cannot be a single set of 
axioms that defines traditional mathematics (which is the goal of logicism) or even geometry since there are 
contradictory mathematical spaces, e.g., Euclidean and Non-Euclidean geometry and Archimedean and 
non-Archimedean number systems. 6) The goal of logicism which is to derive arithmetic from formal logic is 
not achievable because formal logic has its own independent set of axioms. 

Intuition still plays a role in mathematics based on experience but needs verification by the axioms or expe-
rience. For example, a skillful chess player takes the next move based on intuition (that comes with experience) 
and the position of the pieces; in this case, however, he cannot prove the correctness of his next move from the 
rules of the game due to time limitation. In this regard, we pose an open problem: Is there a position of a play-
er’s pieces that insures a win when attained in the course of a game? 

The main contribution of logicism is the discovery of the Russell paradoxes and the remedy by type theory 
but left unresolved the flaw in set theory and contradiction in self-reference. It also failed to derive arithmetic 
from set theory. The main contribution of intuitionism is constructivist mathematics with the rejection of the in-
direct proof and the requirement that concepts and propositions be constructible, that of formalism the represen-
tation of thought by objects in the real world subject to consistent axioms. All three schools of thought agree that 
concepts are created by thought but do not distinguish between abstract concept, i.e., concept that has no referent 
in the real world such as mathematical concepts, and physical concept, i.e., concept that has referent in the real 
world such as atom, star and our universe. Moreover, formalism retains the indirect proof and like intuitionism 
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does not openly challenge the logicist proof of theorems. However, in practice the formalist proves theorems di-
rectly from the axioms. Technical mathematics, especially, those with applications to science is constructivist. 
Non-constructivist applications of mathematics are unreliable and could be dangerous as what happened to the 
disastrous final flight of the Columbia Space Shuttle in 2004 [45] [46]. 

5. The New Foundations of Mathematics 
The resolution of the great debate which includes the critique-rectification of the foundations of traditional ma-
thematics plus new requirements on every mathematical space to avoid uncontained ambiguity constitutes the 
new foundations of mathematics. The requirements include what axioms to choose that define a mathematical 
space. Our aim is to choose axioms that serve science and its applications, e.g., natural science, engineering, 
medicine and social science. The new requirements are: 

1) Constructivism which requires the new mathematical methodology, qualitative mathematics. Among the 
earliest constructivist mathematical space is the rectified calculus of variations together with functional analysis 
and optimal control theory spurred by the discovery of the generalized curves and surfaces by L. C. Young that 
solved the calculus of variations and optimal control problems on curves and surfaces starting in 1937 [47]-[52]. 
Incidentally, this is also the constructivist solution of Problem 23 of Hilbert’s 23 problems [20] posed a century 
ago. The most recent constructivist mathematics is the mathematics of GUT [53] that includes the new real 
number system and complex vector plane, nested generalized physical fractal and generalized integral and de-
rivative [16] [17] [54]-[57]. 

2) Admission of concepts only when defined solely by the axioms; this is a departure from traditional mathe-
matics that admits undefined terms or concepts other than grammatical connectives which have no bearing on 
thought. The choice of the axioms of a mathematical space is not complete until every concept is defined; when 
this phase is completed the mathematical space becomes deductive and every theorem follows from the axioms. 

3) Avoidance of uncontained ambiguity. 
4) Anchoring the rules of inference on the axioms. 
5) Enhancing accuracy, clarity and simplicity by defining the relation “=” to mean “the same as” or “equiva-

lent to” so that it is an equivalence relation and satisfies the identity, reflexivity, and transitivity properties which 
need not be taken as axioms. 

At this point we focus on the real number system which lies at the foundations of mathematics. We have al-
ready noted the inconsistency arising from the ambiguity of the axiom of choice one of its defining field axioms. 
Then in the early 1920s Brouwer constructed a counterexample to the trichotomy axiom, another Field axiom 
[58]. In 1992 the author constructed a counterexample to it ([16]) independently which showed at the same time 
that the real number system is not linearly ordered; the latter collapses not only the real number system but also 
real and complex analysis. The counterexample is a theorem in [16] [17] [30] [57]. These inconsistences of the 
real number system are the rationale for its reconstruction into the consistent new real number system which 
provided the counterexample to FLT that proved it false [16]. The counterexample has since then been extended 
to countably infinite counterexamples in [16]-[18] [30] [57] [59]. 

The axioms of the new real number system R* are: Axiom 1: 0, 1 ∈ R* where 0 and 1 are the additive and 
multiplicative identities defined by the addition and multiplication tables, respectively; Axiom 2: the addition ta-
ble, and Axiom 3: the multiplication table. The identity elements 0 and 1, are defined by the addition and multip-
lication tables of Axioms 2 and 3; so are the rest of the integers which are the successors of 0, 1, 2, ∙∙∙, (by integ-
ers we mean their representation in the real world since the concepts of thought are ambiguous; at present we 
use the Hindu-Arabic numerals for the integers and the metric system for the real numbers). Then in the defini-
tion of the real numbers (decimals) in [16] the integers are formally defined as the integral parts of the decimals. 
Then for the first time the isomorphism between the natural numbers and the integers was established defining at 
the same time that the natural numbers are the integers. Moreover, the addition to the identity, reflexivity and 
transitivity properties of “=”, the commutativity and associativity of addition and multiplication and the distribu-
tivity of multiplication with respect to addition follow from the addition and multiplication tables and need not 
be taken as additional axioms for the real number system. How do we interpret 2 + 3 = 5? Addition is a binary 
mapping or operation f+ on R* so that 2 + 3 = f+(2, 3) = 5, the image of (2, 3) under f+ in accordance with the ad-
dition table. This shuts off the controversy in cyberspace around the equation 1 = 0.99∙∙∙ which raged for over a 
decade since 1998. The equation is wrong because 1 and 0.99∙∙∙ are distinct objects; it is akin to the equation 
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orange = apple. In fact, in the new real number system, 0.99∙∙∙ < 1 and 1 − 0.99∙∙∙ = the dark number d* which is 
not a decimal but an element of R*. 

Consider the paradoxes (contradictions) that we have identified. The Russell paradoxes involve relations that 
are reducible to the relation ∈ = “is a member of” or ∉ = “is not a member of” which have been resolved by 
Russell’s theory of types that orders propositions into a linear hierarchy of orders [41]. Then the power set of a 
nonempty set A is inadmissible for it would lead to the Russell antimony m ∈ m; so is the universal set. The 
resolution of self-reference is simply to avoid it. If we eliminate self-referent propositions the indirect proof col-
lapses since its conclusion rests on the negation of the hypothesis, a case of self-reference. Thus, the resolution 
of the Great Debate is constructivist and meets the other requirements we have set to avoid uncontained ambigu-
ity (Constructivist mathematics is the subject of a sequel to this paper which will be illustrated in the construc-
tivist development of R*, the g-closure of R [16] [17]). 

Finally, we include in the new foundations of mathematics the rectification work on the real number system R 
and complex number system C which is the replacement of the field axioms by the axioms of the new real 
number system and the replacement of the complex number i by the plane vector operator j: 

Axiom 1. R* contains the elements 0, 1. 
Axiom 2. The addition table (Table 1). 
Axiom 3. The multiplication table (Table 2). 
The partial Table 1 and Table 2 below are axioms because they insure the existence of the integers, define 

addition and multiplication as binary operations on them and specify their properties. We first construct the 
 

Table 1. The addition table. 

+ 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9  

2 2 3 4 5 6 7 8 9   

3 3 4 5 6 7 8 9    

4 4 5 6 7 8 9     

5 5 6 7 8 9      

6 6 7 8 9       

7 7 8 9        

8 8 9         

9 9          

 
Table 2. The multiplication table. 

× 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 4 6 8      

3 0 3 6 9       

4 0 4 8        

5 0 5         

6 0 6         

7 0 7         

8 0 8         

9 0 9         
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digits or basic integers: 2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, 5 = 4 + 1, 6 = 5 + 1, 7 = 6 + 1, 8 = 7 + 1, 9 = 8 + 1 which 
apply only to the integers which are sums and products. It is also the metric system of numeration or scientific 
notation for large numbers. To this end, we define the base integer 10 = 1 + 9. 

Their extension to the full tables using the Hindu Arabic or base 10 numerals is quite familiar and will not 
concern us here. 

Since the tables define finite sums and products the laws of addition and multiplication of arithmetic can be 
verified from them. In either case, finite mathematical induction can be applied if needed. The system of Hin-
du-Arabic numerals quantitatively models the metric system as a system of measurement. 

Our proposed remedy for the vacuous concept i of the complex number system C is its replacement by the 
operator j defined as left-right operator on or mapping of a plane vector by positive (counterclockwise) rotation 
about the origin by π/2. Then the coordinate axes are: the x-axis (x, 0), application of j on the x-axis (rotation of 
(x, 0) by π/2), to obtain the y-axis, i.e., j(x, 0) = jy; application of j on y-axis (rotation of the y-axis by π/2) to 
obtain the –x-axis, i.e., jj(x, 0) = −(x, 0) = (−x, 0); application of j on the –x-axis (rotation by π/2) to obtain the 
–y-axis; , i.e., j(−x, 0) = −jy and application of j on the −y-axis (rotation by π/2) to obtain the x-axis, i.e., j(−y, 0) 
= (x, 0). Thus, we have the cyclic values of the composites of j with itself: 

( ) ( ) ( ) ( )2 2 3 3 4, , ,= = = − = = − = =j 1 j jj 1 j 1 jj 1 j j j j j 1 .                    (2) 

where 1 is the unit vector along the x-axis. 
They are the vector basis of the complex vector plane [10]. We define the operator −j as inverse operator of j, 

i.e., when applied on a vector v we rotate it clockwise through π/2. Note: −j(1) = j(−1). Applying composite 
mappings on the unit vector 1 along the x-axis successively, we have the four cyclic images of 1 in (2) in reverse 
order. For n > 4, the cycle is repeated and we obtain jn = j(jn−1), n = 1, 2, ∙∙∙, where we define j0 = 1. Then by re-
placing both the x-axis and yi axis by the new real number system and yj, where y ranges through the new real 
numbers, we obtain the complex vector plane C*, the full rectification of the complex number system [17]. The 
constructivist development of the new real number system and complex vector plane will be the content of a se-
quel to this paper. 

6. Status of Hilbert’s Problems and Other Long-Standing Problems of Mathematics 
Hilbert’s problems originally consist of  unsolved problems in mathematics proposed by Hilbert. Ten of them 
were presented at the Second International Congress of Mathematicians in Paris on August 8, 1900. They were 
problems 1, 2, 6, 7, 8, 13, 16, 19, 21, and 22. The complete list is in [9]. They were designed to serve as exam-
ples of the kinds of problems the solutions of which would advance mathematics. As such, some were areas for 
investigation not strictly “problems”. Reference [60] lists over a hundred problems including some of Hilbert’s 
problems that have been solved but we focus on Hilbert’s problems. 

1) “Cantor’s problem of the cardinal number of the continuum.” The question of whether there is a transfinite 
number between that of a denumerable set and the numbers of the continuum was answered by Gödel and Cohen 
in their solution to the continuum hypothesis to the effect that the answer depends on the particular version of set 
theory assumed. The question of whether the continuum of numbers should be considered a well ordered set is 
related to Zermelo’s axiom of choice. In 1963, the axiom of choice was demonstrated to be independent of all 
other axioms of set theory. There is universal consensus on whether these results give a solution to this problem. 
(Of course, mathematics is not a matter of consensus) 

2) “The compatibility of the arithmetical axioms.” Gödel’s second incompleteness theorem indicated that it 
cannot be proven that the axioms of logic are consistent in the sense that any formal system interesting enough to 
formulate its own consistency can prove its own consistency if it is inconsistent. There is no consensus if the re-
sults of Gödel and Gentzen provide a solution. 

3) Give two tetrahedra that cannot be decomposed into congruent tetrahedra directly or by adjoining congruent 
tetrahedra. Dehn (1900, 1902) showed that a regular tetrahedron cannot be decomposed into a finite number of 
congruent tetrahedra (directly or by joining congruent tetrahedra) which can be reassembled to make a cube. It 
follows immediately from this result that two tetrahedra cannot be decomposed, as Hilbert proposed. 

4) Find geometries whose axioms are closest to those of Euclidean geometry if the ordering and incidence 
axioms are retained, the congruence axioms weakened, and the equivalent of the parallel postulate omitted. This 
problem was solved by G. Hamel. 
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5) Can the assumption of differentiability for functions defining a continuous transformation group be avoided? 
This is a generalization of the Cauchy functional equation solved by John von Neumann in 1930 for bicompact 
groups. Also solved for the Abelian case, and for the solvable case in 1952 with complementary results by 
Montgomery and Zippin (subsequently combined by Yamabe in 1953). Andrew Gleason showed in 1952 that the 
answer is also “yes” for all locally bicompact groups. 

6) Can physics be axiomatized? 
7) Let α ≠ 1 ≠ 0 be algebraic and β irrational. Is αβ transcendental? In particular, are the Gelfond-Schneider 

constant 22  and Gelfond’s constant eπ transcendental (Wells, 1986)? Α β is known to be transcendental for the 
special case of an irrational algebraic number, as proved in 1934 by Aleksander Gelfond in a result now known as 
Gelfond’s theorem (Courant and Robins, 1996). However, the case of nonalgebraic irrational β has not been re-
solved, with solutions known only for degenerate constructions such as α = 2, β = ln3/ln2. 

8) Prove the Riemann hypothesis. The conjecture has been neither proved nor disproved. 
9) Construct generalizations of the reciprocity theorem of number theory. 
10) Does there exist a universal algorithm for solving Diophantine equations? The impossibility of obtaining a 

general solution was proven by Yuri Matiyasevich in 1970 (Matiyasevich, 1970; Davis, 1973; Davis and Hersh, 
1973; Davis, 1982; Matiyasevich, 1993) by showing that the relation n = F2m (where is the (2 m)Th Fibonacci 
number) is Diophantine. More specifically, Matiyasevich showed that there is a polynomial Pin n, m, and a 
number of other variables x, y, z, ∙∙∙ having the property that n = F2m iff there exist integers x, y, z, ∙∙∙ such that P(n, 
m, x, y, z) = 0. 

11) Extend the results obtained for quadratic fields to arbitrary integer algebraic fields. 
12) Extend a theorem of Kronecker to arbitrary algebraic fields by explicitly constructing Hilbert class fields 

using special values. This calls for the construction of holomorphic functions in several variables which have 
properties analogous to the exponential function and elliptic modular functions (Holzapfel, 1995). 

13) Show the impossibility of solving the general seventh degree equation by functions of two variables. 
14) Show the finiteness of systems of relatively integral functions. 
15) Justify Schubert’s enumerative geometry (Bell, 1945). 
16) Study the topology of real algebraic curves and surfaces. See Gudkov and Utkin (1978), Ilyashenko and 

Yakovenko (1995), and Smale (2000) for additional details. 
17) Find a representation of definite form by squares. 
18) Build spaces with congruent polyhedra. 
19) Analyze the analytic character of solutions to variational problems. 
20) Solve general boundary value problems. 
21) Solve differential equations given a monodromy group. More technically, prove that there always exists a 

Fuchsian system with given singularities and a given monodromy group. Several special cases had been solved, 
but a negative solution was found in 1989 by B. Bolibruch (Anasov and Bolibruch, 1994). 

22) Uniformization. 
23) Extend the methods of calculus of variations. 

Assessment of Hilbert’s Problems 
We mark by an asterisk (*) when the solution of a problem has been challenged or replaced by the author, by 
double asterisk (**) when the solution of a problem has not been reviewed by the author and by triple asterisk 
(***) when a problem has been solved but not listed among the solved problems. An unmarked problem is open. 

1)* Problem 1 was supposedly solved by Gödel and Cohen in their proof of the continuum hypothesis [23] 
[24] according to [9]. There are two reasons why the proof is flawed: (1) Cantor’s proof that the reals are non-
denumerable is flawed because it involves the application of the axiom of choice on infinite set and (2) the pow-
er set S of a denumerable set does not exist being a Russell antimony type paradox that leads to the conclusion S 
∈ S and S ∉ S. Therefore, the problem is vacuous and has no solution. Moreover, the discussion of the solution 
confirms our position that the language of set theory cannot be a universal language for mathematics because the 
arguments and conclusions vary with the kind of or axioms for the set theory being applied. 

2)* Problem 2 is incorrectly formulated and we replace it by a general theorem: Any mathematical space 
(consistent axiom system) cannot prove its own consistency or inconsistency for such a proof would be self-re- 
ferent and flawed. Consensus is inadmissible in constructivist mathematics being a deductive system; a theorem 
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or solution to a problem follows from the axioms. 
3)** It is reported in [9] that the solution follows from a result by Dehn (1900, 1902). 
4)** It is reported in [9] that Problem 4 has been solved by G. Hamel. 
5)** The problem has been solved for special cases [9]. 
6)*** The answer to problem 6 is yes and the author provided the solution in 2008, namely, the Grand Uni-

fied Theory (GUT) [10]. The solution is constructivist. 
7)* Problem 7 has been partially solved according to [9] but based on the new foundations of mathematics the 

problem itself is ambiguous because it involves the ill-defined irrational and, naturally, the supposed partial so-
lution is flawed. 

8) Problems 8 and 9 are open. 
10)** We have seen that the real number system is not well defined because two of its axioms, the axiom of 

choice or its variants—the Dedekind cut and completeness—are ambiguous and false on infinite set. At the same 
time, the claim of impossibility of obtaining a general solution by Yuri Matiyasevich, Davis and Hershis are not 
true for the same reason. 

11) Problems 11 to 15 are open. 
16)** Gudkov and Utkin (1978), Ilyashenko and Yakovenko (1995) and Smale (2000) have done what Prob-

lem 16 asks for according to [9]. 
17) Problems 17 to 20 are open. 
21)** Several special cases of Problem 21 had been solved, but a negative solution was found in 1989 by B. 

Bolibruch (Anasov and Bolibruch, 1994) according to [9]. 
22) Candidly, the author does not understand Problem 22. 
23)*** L. C. Young not only extended the methods of the calculus of variations asked in Problem 23 but also 

introduced a new method that he applied to functional analysis and optimal control theory in Rn, n ≥ 3, and 
solved the general calculus of variations and optimal control problems in the mathematical spaces of curves and 
surfaces [47]-[52]. The method entails enrichment of the domains of curves and surfaces with the introduction of 
generalized curves and surfaces, respectively, and a suitable norm called Young measure to achieve a complete 
space in the norm for each space so that the optimal solution is calculated as the limit in this norm of a sequence 
of simplicial curves or surfaces which is a generalized curve or surface in either case. The solution is construc-
tivist. There is no indication at all in Young’s work that he was aware he solve done of Hilbert’s problems. His 
method of enrichment in a suitable norm has become a standard method that the authored rediscovered and used 
to develop the new real number system. Although Brouwer introduced the idea of constructivist mathematics 
and proved theorems that are constructivist, it was Young who first developed a whole body of constructivist 
mathematics in the 20th Century. 

The list in [60] erred in not reporting this major development in mathematics from which sprung modern con-
trol theory. It also erred in not reporting the solution of Problem 6 among Hilbert’s problems as the most recent 
major development in mathematics. 

***The 378-year-old conjecture by Fermat (popularly known as Fermat’s last theorem (FLT)) [11] that says, 
“The Diophantine equation xn + yn = zn has no integer solutions for n > 2, xyz ≠ 0”, was supposedly solved by 
Wiles and Taylor [61] [62] according to [60]. Unfortunately, the solution was not informed by the counterexam-
ple to the trichotomy axiom constructed by Brouwer in 1985 [58] and independently by the author in 1998 [16]. 
The trichotomy axiom is one of the defining axioms of the real number system [9]. The counterexample to it is 
another proof that the real number system R is inconsistent. Since FLT is formulated in R, it is also ambiguous 
and, naturally, has no solution. Consequently, the proof by Wiles and Taylor is false. To resolve FLT it was ne-
cessary to reconstruct the real number system R into the consistent constructivist new real number system R* 
and reformulate FLT in it. The construction was started in 1998 [16] with the introduction of the new integers 
N.99⋅⋅⋅, and the dark number d* = N − (N − 1). 99∙∙∙, 1 − 0.99∙∙∙, N = 1, ∙∙∙, where N is an integer. The element d* 
is a new real number but not a real number; 0 < d* < x, x ∈ R. It is both the qualitative and quantitative model 
of the superstring, fundamental building block of matter [63]. The first countable counterexamples to FLT (1998 
[18] is the solution of the above Diophantine equation with (x, y, z) = ((0.99∙∙∙)10T, d*, 10T), T = 1, 2, ∙∙∙, that 
clearly satisfies it. The countably infinite solutions are the triples (kx, ky, kz), k = 1, 2, ∙∙∙, which also satisfy 
Fermat’s equation. The existence of such countably infinite solutions is a theorem in [16]-[18] [30] [57] [59]. 
The full construction of R* will be published in a sequel, The Constructivist New Real Number System. 

***The 273-year old strong Goldbach’s conjecture [12] that says, All positive even integers ≥ 4 can be ex-
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pressed as the sum of two primes, was proved in 2003 [16]. It is a theorem in [17] [30] [57] [59] [63]. The con-
jecture and its proof are incorrectly excluded from the list of solved problems listed in [60]. The proof is like-
wise constructivist. 

7. Conclusions 
One thing stands out in this paper: to pursue constructivist mathematics a new mathematical methodology is 
needed: qualitative mathematics, the qualitative model of rational thought [13] and the complement of computa-
tion and measurement, and a suitable norm, in this case, the g-norm [16] [17]. In the work of L. C. Young this 
translates into the method of enrichment and the Young Measure.  

Examples of qualitative mathematics are abstract mathematical spaces and the search for the laws of nature. 
In science, the appropriate methodology is qualitative mathematics and modeling [13] that explains how nature 
works its tool qualitative mathematics. It is the main contribution of [14] and was applied to physics for the first 
time to solve the gravitational n-body problem [64]. Qualitative mathematics and modeling shifts the subject 
matter of science from the appearances of nature (natural phenomena) to nature itself and how it works and lifts 
traditional science to the new science [65] articulated by GUT and its theoretical applications [13] [30] [43] [44] 
[46] [66]-[68]. Through this methodology GUT unites the natural sciences on the natural laws, the common 
thread being the superstring. It is clear that natural science and mathematics are distinct disciplines: natural 
science is the study of nature its language mathematics. On the philosophical side: at the micro and super micro 
scale nothing is certain and deterministic in nature because of the uncertainty of small numbers that manifests 
itself in the Heisenberg uncertainty principle. Moreover, while at the micro scale the second law of thermody-
namics says that a closed system tends towards greater disorder or chaos or zero entropy [69], the opposite is 
true at the macro scale. For example, from the chaos of the big bang [70] and the cosmic burst [71], our universe 
has evolved to its present order in accordance with natural laws [66]. 
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