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Abstract 

We present here asymptotic solutions of equations of the type ( )x f t x+ =, 0λ , where λ  is a 

large parameter. The Bessel differential equation 
  

    
x t x

−+ − − =2 2 21 0
4

λ λ  is considered as a 

typical example of the above and the solutions are provided as →∞λ . Furthermore, the beha-
viour of the solutions as well as the stability of the Bessel ode is investigated numerically as the 
parameter grows indefinitely. 
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1. Introduction 
The theory of ordinary homogeneous linear differential equations of the second order, containing a large para-
meter, is well established [1]-[4]. The aim of this paper is to investigate detailed analytical solutions of equations 
of the form;  

( ), 0x f t xλ+ =                                    (1.1) 

where 2:f →   is 0C  and λ  is a real parameter. We shall investigate the behaviour of solutions of this 
differential equation, and the stability of the origin as *λ λ→ . Without loss of generality, we take * .λ = ∞  
First, we make the following remarks:  

a) Any second order linear ODE of the form; ( ) ( ) 0x a t x t xβ+ + =   can be reduced to ( ) 0x q t x+ =  by a 
suitable transformation.  

b) Furthermore, any equation of the form ( ) 0x p x+ =  is conservative. We shall demonstrate this shortly. 
This will help us in our asymptotic stability analysis. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2016.73018
http://dx.doi.org/10.4236/am.2016.73018
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c) In Equation (1.1) if we take; ( ) ( ) ( )2,f t h t r tλ λ= +  then, we have the well known Sturm-Liouville 
problem;  

( ) ( )2 0x h t r t xλ + + =                                   (1.2) 

where [ ],t a b∈ ⊂  , ( )h t  is positive and of class 2C  and ( ) [ ]0 ,  ,r t C t a b∈ ∀ ∈ . 
Introducing the new variables;  

( ) ( )
1 1
2 2d ,    h t t h t xθ µ= =      ∫                               (1.3) 

If we suppress the variable t for the moment, it then follows that; 
1 1 1 1
2 2 2 2d d d d 1

d d d d 2
h x h x h hx h x

t t
µ θ θ
θ θ

−      = = = +              


  

Therefore 

( ) ( )

1 12
2 2

2

1 1 3 1 3 1
22 2 2 2 2 2

d d 1
d 2d

1 1 1 1       
2 4 2 2

h hx h x
t

h hx h x h hx h xh xh h x h x

µ θ θ
θ

θθ θ

−

− − − −

   = +      
   

= + + − + + − +    
   

 



    

   

 

Since 
1
2hθ = , then 

3
21

2
h hθ
−

=  , and after transforming the interval a x b≤ ≤  into α µ β≤ ≤ , with further 
algebraic manipulations, the ode (1.2) becomes;  

( )
2

2
2

d
d
µ λ µ ϕ θ µ
θ

+ =                                  (1.4) 

where  

( )
2

2 3

1 5
4 16

h h r
hh h

ϕ θ = − −
 

                                (1.5) 

is a continuous function of [ ],θ α β∈ ⊂  . It can be shown that the solutions of (1.3) satisfy the Volterra 
integral equation;  

( ) ( ) ( ) ( )1 2
1cos sin sin dc c s s s s

θ

τ

µ θ µθ µθ θ ϕ µ
λ

= + + −∫                    (1.6) 

where α τ β≤ ≤  and 1 2,c c  are arbitrary. ( )µ θ  and 1 2cos sinc cλθ λθ+  have the same value, and the 
same derivate, at θ τ= . The solution to the integral Equation (1.5) can be obtained by successive approxima-
tion in the form;  

( ) ( )
0

, ,j
j

µ θ λ µ θ λ
∞

=

= ∑                                 (1.7) 

where;  

( )

( ) ( ) ( ) ( )

0 1 2

1

, cos sin

1, sin , d ,   0,1, 2,j j
t

c c

x s s s j
θ

µ θ λ λθ λθ

µ θ λ λ θ ϕ µ λ
λ+

= +

= − =∫ 

 

Assuming that the function ( )ϕ θ  is bounded, i.e., there exists a constant M such that ( ) Mϕ θ ≤ , then, one 
can show by induction that;  

( ) 1 2, ,   1, 2,
!

nn

n n

c c M
n

n
θ τ

µ θ λ
λ

 + −
 ≤ =
  

  
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In the case of a finite interval ( ),α β , it follows that (1.7) is uniformly convergent for , 0α τ β λ≤ ≤ > , and 
is also an asymptotic expansion of ( ),µ θ λ  as λ →∞ . Unfortunately, the ( ),nµ θ λ  is very difficult to 
compute. Other approximations for large λ  may be obtained from formal solutions, and these are usually di-
vergent.  

2. Formal Solutions  
Let us now consider the general ode;  

( ), 0x f t xλ+ =                                   (2.1) 

If ( ),f t λ  is a formal power series in 1λ−  with coefficients which depend on x, then two linearly indepen-
dent solutions of (2.1) may also be represented by a formal power series in 1λ− . However if the formal expan-
sion of ( ),f t λ  in powers of λ  contains positive powers of λ , then the formal expansion of x will be a 
Laurent series. We shall discover that in the case that ( ),f t λ , as a function of λ , has a pole at λ = ∞ , we 
can still construct formal solutions.  

In (2.1), we shall assume that ( ),f t λ  is of the form;  

( ) ( ) ( ) ( )2 2 2 1
0 1

0
, k n k k

n
n

f t f t f t f tλ λ λ λ
∞

− −

=

= = + +∑                       (2.2) 

where the ( )nf t  are independent of λ , and k +∈  Furthermore, we assume that ( )0f t  does not vanish in 
the interval over which t varies. We shall adopt a first formal solution of the form;  

( ) ( ) ( )
1

0 0
exp

k
n k v

n v
n v

x t q t tλ β λ
∞ −

− −

= =

 =  
 

∑ ∑                            (2.3) 

Substituting (2.3) into (2.1), with the convention that ( ) ( )0, 0n nf t q t= =  for 1, 2, 3, ,n = − − −   and 0vβ =  
for 1, 2, 3, ,v = − − −   and also for , 1, ,v k k= + ∞  All summations may then be assumed over all the integers, 
and we obtain  

( )2 22 0k v k v n k v n n k n n
v v n v n n n nq q q f qβ λ β λ λ β λ λ λ λ λ− − − − − − − − + + + + =  ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

   

Picking out the coefficients of 2k nλ −  we obtain;  

22 0n m m v m v n m m k n m n m n k
m v m m

q f q q qβ β β β− − − − − − −
 + + + + = 
 

∑ ∑ ∑ ∑   

                 (2.4) 

n∀ ∈ . 
This first condition arises when 0n =  Setting 0,1,2, , 1n k= −  in (2.4) we obtain;  

0,     0,1, 2, , 1m v m v
v

f m kβ β −+ = = −∑  

  

It then follows that; 

( )2

0 0 0fβ + =                                     (2.5) 

1

0
1

2 0
m

m m v m v
v

fβ β β β
−

−
=

+ + =∑                                   (2.6) 

1, 2, , 1m k= − . 

Consequent upon these relations, we may restrict our summation to m k≥  in the first sum in Equation (2.4). 
Now for n k=  in (2.4) we get;  

1

0 0 0 0
1

2 0
k

k v k v
v

q q fβ β β β
−

−
=

 + + + = 
 

∑   

                            (2.7) 
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and when we replace n by k n+  in (2.4) we obtain  

1 1

0 0
1 1 1 1

2 2 0
k n k n

n n k v k v n m m k m v k m v n m m n k
v m v m m

q q f q f q qβ β β β β β β β
− −

− − + + − − −
= = = + =

   + + + + + + + + =   
   

∑ ∑ ∑ ∑       

         (2.8) 

1, 2,n =   
It is now obvious that Equation (2.3) satisfies (2.1), provided that nq  and vβ  satisfy (2.5) to (2.8). 
In these equations, empty sums (i.e. those with upper limit<lower limit) are interpreted as zero. Since 0 0f ≠   

we may choose a branch of ( )0f t− , and then (2.5) determines 0β  up to an additive constant. Moreover,  

0 0β ≠ , and hence (2.6) determines 1 2 1, , , kβ β β −  recurrently, up to an additive constant in each. Equation (2.7) 
determines 0q  up to a constant factor, and (2.8) determines 1 2, ,q q   recurrently, up to an additive con- 
stant multiple of 0q  in each. Corresponding to the two branches of ( )0f t− , we obtain two formal solutions 
of the form (2.3).  

3. Another Formal Solution  
A second type of formal solution is given by 

( ) ( )
0

exp k n
n

n
x t tβ λ

∞
−

=

 =  
 
∑                               (2.9) 

Substituting (2.9) into (2.1) we get;  

( )2 2 0k n k n k n
n n nfβ λ β λ λ− − −+ + =∑ ∑ ∑   

Equating coefficients of 2k nλ − , 

( )2

0 0 0fβ + =                                  (2.10) 

1

0
1

2 0,         1, 2, , 1
n

n n m n m
m

f n kβ β β β
−

−
=

+ + = = −∑   

                      (2.11) 

1

0
1

2 0,         , 1,
n

n n m n m n k
m

f n k kβ β β β β
−

− −
=

+ + + = = +∑    

                    (2.12) 

There are two linearly independent formal solutions of this type. The obvious connection between these two 
types of formal solutions can be seen from the fact that equations (2.10) and (2.11) are identical with (2.5) and  

(2.6), and n
nq λ−∑  is the formal expansion of exp k n

n
n k

β λ
∞

−

=

 
 
 
∑ . 

3.1. Remark  
In the foregoing, we have assumed that ( ),f t λ  as a function of λ , has a pole of even order at λ = ∞ . If the 
pole is of odd order, then no solution of the form (2.3) or (2.9) exists, and instead of powers of λ , we must ex-
pand in powers of 

1
2λ .  

3.2. Asymptotic Solutions  
We shall now demonstrate that under certain assumptions, the differential Equation (2.1) possesses a fundamen-
tal system of solutions which are represented asymptotically by the formal solutions obtained in preceding sec-
tion. It actually does not matter whether we compare solution of (2.1) with  

( ) ( ) ( )
1 1

0 0
exp

N k
n k v

n v
n v

x t q t tλ β λ
− −

− −

= =

 =   
∑ ∑  
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where the nq  and nβ  satisfy (2.5) to (2.8), or with  

( ) ( )
1

0
exp

k N
k n

n
n

x t tβ λ
+ −

−

=

 =  
 
∑  

where the nβ  satisfy (2.10) to (2.12), for the q’s and β ’s can be so chosen that the ratio of these two expres-
sions is ( )1 NO λ−+ .  

We now fix a positive integer N, and set;  

( ) ( )
2 1

0
exp

k N
k n

j nj
n

t tβ λ
+ −

−

=

 Λ =   
∑                             (3.1) 

with 01 01β β= −  , and for each j, the njβ  satisfy (2.10) to (2.12). These coefficients are completely determined 
by 0 2 1, , k Nf f + − , and certain derivatives of these functions, and we shall say that the nf  are sufficiently often 
differentiable if all the derivatives entering the determination of the , 0,1, , 2 1,nj n k Nβ = + −  exist and are 
continuous functions of t. We allow t to vary over a bounded and closed interval { }:I t a t b= ≤ ≤ , and λ  over 
a sectorial domain { }1 0 1, argS λ λ φ φ= ≥ ≤ ≤ . We have the following theorem.  

3.3. Theorem  
Let S and I be as defined above then for each fixed ( ), ,S f tλ λ∈  is a continuous function of t over I; If  

( ) ( ) ( )
2 1

2

0
,

k N
k n N

n
n

f t f t Oλ λ λ
+ −

− −

=

= +∑                          (3.2) 

Uniformly in t and argλ , as λ →∞  in S, where the ( )nf t  are sufficiently often differentiable in I, and  

( ){ }0Re 0k f tλ − ≠                                (3.3) 

,S t Iλ∀ ∈ ∈ , then the differential equation  

( ), 0x f t xλ+ =                                  (3.4) 

possesses a fundamental system of solutions, ( )1x t  and ( )2x t , such that  

( ) ( ) ( )1 N
j jx t t O λ = Λ +  , 

( ) ( ) ( )1 N
j jx t t O λ− = Λ + 



                               (3.5) 

Proof  
Top establish the existence and asymptotic property of ( )1x t , we substitute  

( ) ( ) ( )1 1x t t v t= Λ                                   (3.6) 

in Equation (3.4) to get  

( )1

1

2 , 0v v F t λΛ
+ + =

Λ



                                  (3.7) 

where  

( ) ( )
22 1 2 1

1
1 1

0 01

,
k N k N

k n k n N
n n

n n
F t f f Oλ β λ β λ λ

+ − + −
− − −

= =

Λ  = + = + + = Λ  
∑ ∑



                   (3.8) 

uniformly in t and arg ,λ λ →∞  in S, by (3.2) and (2.10) to (2.12). Equation (3.7) may be written as  

( ) ( ) ( )2 2
1 1

d d , 0
d d

vt t F t v
t t

λ Λ + Λ =  
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By two successive integrations, and a suitable choice of the constants of integration, we obtain;  

( ) ( ) ( ) ( )1 , , dv t K t s F s v s s
α

λ= − ∫                             (3.9) 

where  

( ) ( ) ( )2 2
1 1, d

x

s
K t s s x x−= Λ Λ∫  

Since ( )1 tΛ  is an increasing function, we have ( ) ( )1 1 ,t s t sΛ ≤ Λ ∀ ≤  and ( ) ( ),K t s b a≤ −   
a s t b∀ ≤ ≤ ≤ . 
The existence of ( )v t  follows immediately from the theory of Volterra integral equations, or can be estab-

lished by successive approximations. From (3.8) and (3.9), we have ( ) ( )1 Nv t O λ−= + , uniformly in t and 
arg ,λ λ →∞  in S. Furthermore ( )v t  is differentiable, i.e.  

( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 , d Nv t s t F s v s s O

α
λ λ− −= − Λ Λ =∫  

and 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1

1 1 1
1

1 Nt
x t t v t v t t O

t
λ− Λ  = Λ + = Λ +   Λ  

 

 



 

This proves (3.5) for 1j = . The proof for 2j =  is very much similar, except that b rather than a, must be 
chosen as fixed limit of integration in the integral equation.  

4. Application  
The methods of the last two sections can be applied to prove the asymptotic formulae for the Bessel functions 
[1], viz;  

1) ( ) ( ) [ ]
1
2sech 2π tanh exp tan ,    as .Jλ λ β λ β λ β λβ λ−≈ − →∞  

2) ( ) ( )
1
21 1 πsec π tan exp tan ,    as .

2 4
H iλ λ β λ β λ β λβ λ

−
   ≈ − − →∞      

 

3) ( )
1
22 1 πsec π tan exp tan ,    as .

2 4
H iλ λ β λ β λ β λβ λ

−     ≈ − − − →∞        
 

Equation (1) holds for 0β > , uniformly in 0β >  if 1 20 .β β β< ≤ ≤ < ∞  

Equations (2) and (3) hold for 
π0
2

β< <  uniformly in 0β >  if 
π0 .
2

ε β ε< ≤ ≤ −  

We observe that the functions; ( ) ( )
1 1

22 2,  t J t t H tλ λλ λ  are solutions of the differential equation  

2 2 21 0
4

x t xλ λ −  + − − =    
                                 (3.10) 

This equation is of the form (3.4) with ( ) ( ) ( ) 22
0 21, 1 , 2k f t t f t t −= = − =  all other ( )nf t  vanishing identi-

cally. The points 0,t = ∞  are singular points of (3.10) and 1t =  is a so called transition point at which the 
condition (3.3) is violated for any value λ . 

5. Stability Analysis 
In Section 1.0, we claimed that any equation of the form ( ) 0x p x+ =  is conservative. It turns out that such 
systems are characterized by closed curves in the phase plane. For the former equation, we only need to show 
that it possesses a Hamiltonian H, such that d d 0H t = . 

Let us begin by multiplying the equation ( ) 0x p x+ =  by x , i.e., 



S. O. Maliki, R. N. Okereke 
 

 
189 

( ) 0xx xp x+ =                                     (3.11) 

Observing that 

( ) ( )2 2d 1 d2
d 2 d

x xx xx x
t t

= ⇒ =     

Hence (3.11) becomes 

( ) ( )21 d 0
2 d

x xp x
t

+ =   

( ) ( )21 d d constant
2 d

xx p x t
t

⇒ + =∫  

Thus, the required Hamiltonian is ( )21 d constant
2

H x p x x= + =∫ . 

The Bessel differential equation  

2 2 21 0
4

x t xλ λ −  + − − =    
  

can be recast in vector form as  

1 2

2 2 2
2 1

1
4

x x

x t xλ λ −

=


   = − − −     





 

Clearly the origin (0, 0) is the only critical point and the corresponding Hamiltonian is; 

2 2 2 21 1 d constant
2 4

H x t x xλ λ −  = + − − =    
∫  

We use the above Hamiltonian to construct a Lyapunov function given by; 

( ) ( )2
1 2 2 1 1

1, d
2

V x x x p x x= + ∫  

with ( ) 2 2 21
4

p x t xλ λ −  = − −    
 and ( )0 0p = . We note that ( )0,0 0V = , furthermore; 

( )1 2 1 1 2 2
1 2

2 2 2 2 2 2
1 2 2 1

2 2 2
1 2

2

1 12
4 4

1
4

V VV x x p x x x x
x x

t x x x x t

x x t

λ λ λ λ

λ λ

− −

−

∂ ∂
= + = +
∂ ∂

       = − − + − − −              
  = − − −    



   

 

Thus 2 2 2
1 2

1
4

V x x tλ λ −  = − − −    
 . Since 2 2 21 ,  0

4
t tλ λ − > − ∀ > 

 
, it follows that 0V ≤  and hence the 

origin is asymptotically stable for all λ  and 0t > . 

6. Numerical Investigation of Asymptotic Solutions 
In what follows, we employ the Runge-Kutta algorithm provided by MathCAD [5] software to obtain a numeri-
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cal solution for large values of λ .  

6.1. MathCAD Runge-Kutta Algorithm 
We define the following for the MathCAD algorithm. 

t0: = 0.2 t1: = 10 Solution interval endpoint 
0

:
1

ic  
=  
 

 Initial condition vector  

N: = 1500 Number of solution values on [t0, t1] 

( ) ( )
1

2
2

02

0.25, :

X

D t X
X

t

λ
λ

 
 

 −=  
 − − ⋅ 
    

 Derivative function 

S: = rkfixed (ic, t0, t1, N, D) Runge-Kutta algorithm. 
T: = S<0> Independent variable values. 
X0: = S<1> First solution function values. 
X1: = S<2> Second solution function values. 
Remark: X0 represents solution values x satisfying the Bessel ODE, while X1 represents the derivative of X0 

i.e. x . S<j> represents the jth column vector in the solution matrix S, j = 0, 1, 2 (Figure 1). 

6.2. Simulations 
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λ = 100

 

λ = 100

  
λ = 300

 

λ = 300

  
λ = 500

 

λ = 500

  
 

 
Figure 1. Section of solution matrix S. 

6.3. Observations 
For 550λ ≥  solutions no longer exist as they become unbounded. From the graphs shown, it is clear that the 
given Bessel differential equation is very sensitive to the parameter λ , and as λ →∞  the effect is to increase 
the oscillations until the solutions become unstable and die out. Furthermore, the phase portrait depicted shows 
that the Bessel differential equation represents a conservative system. This is clearly evident from the closed 
curves. However for 500λ = , the phase portrait no longer appears like a closed curve but more like an explo-
sion from the centre. 

6.4. Conclusion 
In this work, we have studied asymptotic solutions of equations of the type ( ), 0x f t xλ+ = , where λ  is a 
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large parameter. We have shown that equations of this form represent a conservative system, meaning that they 
possess a conserved quantity, namely the Hamiltonian which is computed. As a special example, we consider the  

Bessel differential equation 2 2 21 0
4

x t xλ λ −  + − − =    
  for which the behaviour of the solutions as well as  

the stability of the origin is investigated numerically as the parameter grows indefinitely. 
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