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Abstract 
When the event of interest never occurs for a proportion of subjects during the study period, sur-
vival models with a cure fraction are more appropriate in analyzing this type of data. Considering 
the non-linear relationship between response variable and covariates, we propose a class of ge-
neralized transformation models motivated by Zeng et al. [1] transformed proportional time cure 
model, in which fractional polynomials are used instead of the simple linear combination of the 
covariates. Statistical properties of the proposed models are investigated, including identifiability 
of the parameters, asymptotic consistency, and asymptotic normality of the estimated regression 
coefficients. A simulation study is carried out to examine the performance of the power selection 
procedure. The generalized transformation cure rate models are applied to the First National 
Health and Nutrition Examination Survey Epidemiologic Follow-up Study (NHANES1) for the pur-
pose of examining the relationship between survival time of patients and several risk factors. 
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1. Introduction 
Survival data analysis is an important topic in statistics that focuses on analyzing the expected duration of time 
until one or more events occur, such as death or cancer in a targeted population. In a standard survival model, it 
is often assumed that all uncensored subjects will eventually experience the event of interest, which is described 
by a monotone decreasing survival function ( )S t . The function ( )S t  goes to 0 when time t tends to infinity. 
Survival time T is a continuous nonnegative random variable representing the time of an event. The probability 
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of a subject’s surviving till time t is given by ( ) ( ) ( )1 >S t F t P T t= − = , where ( )F t  is the distribution 
function with probability density ( )f t . The hazard function ( )h t  is defined as the instantaneous failure rate 
at time t conditional on survival until time t or later. The cumulative hazard ( )H t  is defined as  

( ) ( )
0

d
t

H t h s s= ∫ , which represents the total amount of risk up to time t. Usually covariates, such as gender, age,  

weight, blood pressure, heart rate, stage of surgery, etc., are modeled through survival models. In this paper, we 
assume that the covariates are independent of time. 

Cox [2] brought the idea of separating time t and individual covariate vector { }1' , , px x= x  in the hazard 
function, which led to the popular proportional hazard model with  

( ) ( ) ( )0, exp ,h t x h t xβ ′=  

where ( )0h t  was the baseline hazard function and β  was a vector of regression coefficients. 
However, in some situations, the event of interest never occurs for a significant proportion of subjects. For 

example, in a cancer clinical trial, the endpoint of interest is often recurrence. For some patients, the disease will 
never relapse after being treated. These patients are considered cured. Sometimes, subjects with long-term 
censored times can be viewed as “cured” as well. Survival models with a cure fraction are very popular in 
analyzing this type of cancer clinical trials. 

Motivated by the transformed proportional time cure model introduced by Zeng et al. [1], we propose a class 
of generalized transformation models to characterize the non-linear relationship between survival function 
( )S t  and relate covariates. Statistical properties of the proposed models are investigated, which include iden- 

tifiability, asymptotic consistency, and asymptotic normality of the estimated regression coefficients. Powers of 
fractional polynomials within the proposed models are selected based on the likelihood function. A simulation 
study is carried out to examine the performance of the power selection procedure. The generalized trans- 
formation cure rate models are applied to coronary heart disease and cancer related medical data from both 
observational cohort studies and clinical trials. 

The first cure rate model is the mixture cure rate model proposed by Berkson and Gage [3], which combines 
the cured and non-cured populations by using a summation function. In their model, the survival function for the 
entire population, denoted by ( )1S t , is given by  

( ) ( ) ( )1 21 ,S t S tπ π= + −  

where π  is the proportion in the cured group and ( )2S t  is the survival function for the non-cured group in 
the entire population. Notice that ( )1S t  is not a proper survival function since ( )1 0S π∞ = > . This mixture 
model has been fully discussed by many authors, including Farewell [4], Gary and Tsiatis [5], Sposto et al. [6], 
Laska and Meisner [7], Sy and Taylor [8], and Lu and Ying [9]. 

Even though the mixture model introduced by Berkson and Gage [3], is attractive and widely used, it has 
several drawbacks. One of them is that the mixture model cannot have a proportional hazards structure if the 
covariates are modeled through π . Ibrahim et al. [10] also pointed out that a mixture model sometimes yields 
improper posterior distribution when noninformative improper priors are used from the Bayesian point of view. 
Yakovlev and Tsodikov [11], Tsodikov [12], Chen et al. [13], and Zeng et al. [1] proposed and studied 
promotion time cure model. Instead of dividing the population into two sub-populations so that some subjects 
are long-term survivors with probability π  and others have a proper survival function ( )S t  with probability 
1 π− , the promotion time cure model takes long-term survivors into account by putting a restriction on the 
cumulative hazard function ( )H t . In general, the population survival function ( )S t  is represented as 
( ) ( )( )expS t H t= − . However, in a cure rate model the function ( )S t  is improper in the sense of 
( ) 0S π∞ = > , which also implies that ( )H t  is bounded by some positive number, say θ . When t goes to ∞ , 

we have ( )lim t H t θ→∞ = . Tsodikov [12] suggested to consider ( ) ( )H t F tθ= , where ( )F t  is the distribution 
function of a nonnegative random variable with ( )0 0F =  and covariates can be modeled through ( ).θ , 

( ) ( )( )exp .S t F tθ= −                                      (1.1) 

The promotion time cure model avoids the drawbacks of a mixture model and has a proportional hazards 
structure through the cure rate parameter. Chen et al. [13] also proposed classes of noninformative and infor- 
mative priors for promotion time cure rate model that lead to proper posterior distributions. 

The promotion time cure rate model and the mixture cure rate model are linked by a mathematical relation- 
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ship, and can be rewritten in a uniform format. Zeng et al. [1] proposed a general promotion time cure model 
with transformation. Their model includes proportional hazards model and proportional odds model as special 
cases. To take into account the unknown and unobservable risk factor for each individual, they used a subject- 
specific frailty variable iξ , 1, ,i n=   in model (1.1). The survival function for the time to relapse is given by 

( ) ( ) ( )( ), exp .i i i iS t F tξ θ ξ= −X X                                 (1.2) 

Different parametric distributions may be applied to the frailty iξ . The most commonly used one is the 
gamma distribution ( )1 ,γ γΓ , where 0γ ≥ . The mean of the gamma distribution needs to be one due to the 
model identification issue. Taking expectations with respect to iξ  on both sides in (1.2), the survival function 
becomes  

( ) ( ) ( )( ) ( ) ( )( ) 1/
exp 1 .i i i ii

S t E F t F t
γ

ξ θ ξ γθ
− = − = + X X X                  (1.3) 

As Zeng et al. [1] pointed out, (1.3) provides a very wide class of transformation cure models with the form: 

( ) ( ) ( )( ) ,i iS t G F tγ θ=X X                                     (1.4) 

where 

( ) ( ) 1/1 , 0,
e , 0.x

xG x
γ

γ
γ γ

γ

−

−

 + >= 
=

                                  (1.5) 

When iξ  takes other distributions, we may get different transformations. A Box-Cox type transformation is 
also considered in Zeng et al. [1] with 

( )

( )1 1
exp , 0,

1 , 0.
1

x

G x

x

γ

γ

γ
γ

γ

  + −  − >    = 


=
+

                            (1.6) 

The proportional hazards model in (1.1) is a special case of the transformation families (1.5) and (1.6) corre- 
sponding to 0γ =  and 1γ = , respectively. Another popular survival model, the proportional odds model, is 
also a special case of (1.5) and (1.6) when 1γ =  and 0γ = , respectively. 

From model (1.4) the cure fraction is ( ) ( )( ) ( )S G F Gγ γθ θ∞ = ∞ = , and the model can be written as a 
standard cure rate model, 

( ) ( ) ( )( ) ( )*1 ,S t G G S tγ γθ θ= + −  

where ( )*S t  is the survival function for the non-cured population,  

( )
( )( ) ( )

( )
* .

1
G F t G

S t
G

γ γ

γ

θ θ
θ
−

=
−

 

The covariates can be modeled through a known and strictly positive increasing link function ( )iθ =X  ( )iη β ′X , where β  is the regression vector including an intercept term. 
In this paper, we extend the transformed proportional time cure model proposed by Zeng et al. [14] to a more 

general class of transformation models, in which fractional polynomials are used instead of the simple linear 
combination of the covariates. The statistical properties of our proposed models will be investigated. Estimation 
and model selection procedures will be discussed. The rest of the paper is organized as follows. In Section 2, we 
introduce the generalized transformation models and study the identifiability and asymptotic properties of the 
proposed models. In Section 3, simulation studies are conducted for the purpose of assessing the performance of 
the power selection procedure. In Section 4, the proposed models will be applied to some real datasets and 
compared with other models. Conclusions and some discussions are given in Section 5. Proofs of the theorems 
in Section 2 are provided in Appendix. 

2. Proposed Models and Their Properties 
In survival data analysis, the relationship between hazard rates and covariates is quite often nonlinear. Motivated 
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by Zeng et al. [1], we propose a generalized transformation cure model by using a general additive function of 
( )1, ,i i ip= X X X  instead of the strictly positive increasing link function ( ) ( )i iθ η β ′=X X . 

The additive models were introduced by Stone [15], which is defined by ( )0
p

j jjE Y f X
=

 =  ∑X , where  

( )0 .f  is a constant term and ( ) ( )1 . , , .pf f  are arbitrary univariate functions, one for each covariate. Additive 
models retain the important additive feature of the linear regression models and are much more flexible to use in 
practice. Royston and Altman [14] suggested using fractional polynomials for each ( )j jf X , which is a family 
of functions of positive covariates. For simplicity, let us consider a single covariate X first. A fractional poly- 
nomial with degree m is described as ( )0 1

m
i iiE Y X f Xβ β

=
  = +  ∑ , where 

( )
( ) ( )

1

1 1

,
log ,

pi
i i

i
i i i

X p p
f X

f X X p p
−

− −

 ≠= 
=

                            (2.1) 

and ( )1 1 2, , ,m mp p p p p= ≤ ≤ ≤ p , is a real-valued vector of powers. If 0ip =  for any i, piX  is 
defined to be ( )log X  by the Box-Tidwell transformation. For example,  

( ) ( )( ) ( )21 1 1 2
0 1 2 3 4 5log log logE Y X X X X X X X Xβ β β β β β− − −  = + + + + +   is a fractional polynomial with 

degree 5m =  and ( )1, 1, 1,0,2= − − −p . Royston and Altman [14] pointed out that special attention should be 
paid to low-order fractional polynomials with degrees one and two, since models with degree higher than two 
are rarely used in practice. They also suggested that the powers could be chosen from the set  

( )( )2, 1, 0.5,0,0.5,1,2, ,max 3, m− − −  , since the set is rich enough to cover all conventional polynomials of 
interest. It is well known that the best estimates of the powers in a transformation model may be determined 
based on the maximum likelihood method. 

For some data sets, especially data from medical studies, fractional polynomials may give a better fit com- 
pared to the conventional polynomial. In our proposed models we use a fractional polynomial instead of Xβ ′  
in the link function ( )η ⋅ . Even though in practice fractional polynomials with degree higher than two are not 
used very often, we consider the following general form for the function ( )θ X  in (1.2),  

( )
0

0 1 2
0 1 0

1 1 1
log ,

q p i i i
i i i

j j i i i i
j i q i i i

X X X
X X X

α α α

θ η β β β β
α α α= = +

  − − −
 = + + +     
∑ ∑           (2.2) 

where ( )1 1, , , , ,q q pX X X X+=  X , { }1, , qX X  are categorical covariates such as ordinal covariates or  
dummy variables, and { }1, ,q pX X+   are positive continuous covariates. An intercept term 0β  is also con-  

sidered in (2.2) when we assume that 0 1X ≡ . Moreover, we assume that 0i iα α≠  for 1q i p+ ≤ ≤ , i.e., a 
degree of three fractional polynomial is used for each continuous covariate iX . For example, for a given 

1q i p+ ≤ ≤  if 0 1, 1i iα α= − = , the powers for predictor iX  are ( )1,1,1i = −p  based on the definition in (2.1). 
In a typical survival analysis setting, survival times are often right censored, which means for some subjects 

we do not know when exactly the failures occurred, but we do know that the survival time is at least beyond 
some certain time point C. Suppose that there are n right censored subjects. For the ith individual the survival 
time and the fixed censoring time are denoted by iT  and iC , respectively. The iT ’s are assumed to be 
independent and identically distributed with a distribution function F. 

The observed time point for the ith subject is ( )min ,i i iY T C= . The exact survival time iT  will be observed 
only if the failure occurred before being censored, otherwise iY  is equal to the censoring time. A triple of 
random variables ( ), ,i i iY X ∆  is used to describe each subject, where iX  is the covariate vector and i∆  is 
defined as the following,  

1,
0, .

i i
i

i i

T C
T C
≤

∆ =  >
 

In a proportional hazard model, the regression coefficient β  is estimated by maximizing the partial 
likelihood function,  

( ) ( ) ( )( )( )
( ) ( )( ) ( )

1

=1

1
0

=1 =1

1

exp .

n
ii

i i
i

n n
i i

i i i
i i

L f Y F Y

h Y X S Yβ

−∆∆

∆ −∆

∝ −

′  =  

∏

∏ ∏

β
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In the model (1.4) with link function (2.2), if the parameter γ  is given the likelihood function is expressed 
by 

( )

( ) ( )( ) ( ) ( ){ } ( ) ( )( ){ } ( )( )
( < )1 ( )

,

( , ( , , , .
I Y I Y

L F

G F Y f Y G F Y Gη η η η
∞∆ −∆ =∞   ′= −    

β

β β β βX X X X
    (2.3) 

Given observations ({ }, ,i i iY ∆X , 1, ,i n=  ) and following the discussion in Zeng et al. [1], the maximum 
likelihood estimates of ( ), Fβ , denoted by ( )ˆ,n nFβ , are derived from the modified semi-parametric version 
of (2.3),  

( )

( ) ( )( ) ( ) { }{ } ( ) ( )( ){ } ( )( )
( )(1 ) ( )

1

,

, , , , ,
ii i i

I Yn I Y

i i i i i i i
i

L F

G F Y F Y G F Y Gη η η η
<∞∆ −∆ =∞

=

    ′= − × ×     
∏

β

β β β βX X X X
(2.4) 

where { }iF Y  is the jump size of F at iY  and ( ) { }1,k k ii kY YF Y F Y
∆ = ≤

= ∑ . 

The three pieces of products in (2.4) are for failures, censored cases, and subjects who never experience 
failure or censoring, respectively. The estimate of ( ), Fβ , denoted by ( )ˆ,n nFβ , can be obtained by using the 
nonparametric maximum likelihood estimation approach and Newton-Raphson algorithm iteratively. 

2.1. Model Identifiability 
For the statistical properties of our proposed models, we first discuss the identifiability of generalized trans- 
formation models. Suppose that we use models (1.4) and (1.5) with the link function defined in (2.2). The 
observed-data likelihood function of parameters ( ), , Fγ θ  is given by  

( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )
( )(1 ) ( )

, ,

.
I Y I Y

L F

G X F Y X f Y G X F Y G Xγ γ γ

γ θ

θ θ θ θ
<∞∆ −∆ =∞   ′= −    

          (2.5) 

The following two lemmas give sufficient conditions of identifiability to a more general class of transfor- 
mations that include the transformation (1.5) as a special case. Proofs of the lemmas are given in Appendix. 

Lemma 1. If ( ).Gγ  satisfies the following conditions: 
(G1) ( ).Gγ  is strictly monotonic and twice continuously differentiable with ( )0 1Gγ =  and ( )0 0Gγ′ ≠ . 
(G2) If γ γ≠  , then ( ) ( )( ) ( ) ( )( )2 2

0 0 0 0G G G Gγ γ γ γ
′′ ′ ′′ ′≠

 

. 

Then ( ) ( )( ) ( ) ( )( )G x F y G x F yγ γθ θ=


   implies that ,γ γ θ θ= =  , and F F=  , i.e., ( ), , Fγ θ  is identi- 
fiable. 

It can be shown that the transformation family given in (1.5) satisfies both conditions (G1) and (G2). Speci- 
fically, we have ( )0 1Gγ′ = −  and ( ) ( ) 2

0 0 1G Gγ γ γ′′ ′  = +  . 
Other transformation families can also be considered as long as the conditions (G1) and (G2) hold. For 

example, the Box-Cox type transformation discussed in Zeng et al. [1], also satisfies conditions (G1) and (G2) 
with ( )0 1Gγ′ = −  and ( ) ( ) 2

0 0 2G Gγ γ γ′′ ′  = −  . 
Next, we consider the following function  

( ) ( ) ( )
0 1

, ,
q p

j j i i
j i q

X X X f Xθ η η β
= = +

 
= = + 

 
∑ ∑β                   (2.6) 

where ( )η ⋅  is strictly monotonic, ( ) ( ), log qp inim
i i imn i im nf X X Xβ= ∑ , imp  and inq  are not equal to zeros 

simultaneously, and ,m n∑  is used for a finite summation since the number of parameters in our proposed 
models is finite. 

Function in (2.6) is a more general function than that defined in (2.2). The following lemma show that the 
parameters jβ ’s and imnβ ’s in the function are all identifiable. 

Lemma 2. For the function ( ), Xη β  defined in (2.6), if ( ) ( ), ,X Xη η=β β , then =β β , i.e., para- 
meters in ( ), Xη β  are identifiable. 
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Based on the results in Lemma 1 and Lemma 2, we have the following theorem on the identifiability of the 
generalized transformation models. 

Theorem 1. For the generalized transformation models defined in (1.4) and (1.5) with the link function 
specified in (2.2), if ( )( ) ( )( ), , , ,L F y L F yγ θ γ θ=  

 , for any y R+∈  and any X, then ,γ γ θ θ= =  , and 
F F=  . In other words, the generalized transformation models are identifiable. 

2.2. Estimation 
Zeng et al. [1] discussed semiparametric transformation models for survival data with a cure fraction and estab- 
lished theorems describing the asymptotic properties of the maximum likelihood estimation of ( ), Fβ , where 
β  is the vector of coefficients and ( ).F  is the promotion time cumulative distribution function in the model. 
In our proposed generalized transformation cure models, fractional polynomials are used instead of the simple 
linear combination of the covariates. Similar to Theorem 1 and Theorem 2 in Zeng et al. [1], we can prove the 
asymptotic properties of the maximum likelihood estimation of ( ), Fβ  in the proposed models. 

To obtain consistency and asymptotic normality, we make the following assumptions: 
(C1) The covariate X belongs to a compact set  .  
(C2) The vector of regression coefficients β  belongs to a compact set 0 . The true value of β , denoted 

by 0β , belongs to the interior of set 0 .  
(C3) F  is a distribution function with jumps when 1∆ = . The true F, denoted by 0F , is differentiable with 
( )0 0F x′ >  for all x R+∈ .  

(C4) Conditional on X , the right censoring time C is independent of T, and ( ) 0CS ∞ >X .  
(C5) The positive link function ( ).η  is a strictly increasing and twice continuously differentiable for X . 
(C6) The transformation G  satisfies ( )0 1G = , ( ) 0G x > , ( ) 0G x′ <  and ( )(3)G x  exists and is conti- 

nuous.  
Under conditions (C1)-(C6), we can prove the following theorems. 
Theorem 2. The maximum likelihood estimates ( )ˆ,n nFβ  based on (2.4) are strongly consistent, that is  

( ) ( )0 0
[0, )

ˆ0, and 0  almost surely.supn n
y

F y F y
∈ ∞

− → − →β β  

Theorem 3. ( )0 0
ˆ,n nn F F− −β β  converges weakly to a Gaussian process. 

Sketched proofs of Theorem 2 and Theorem 3 are provided in Appendix. 

3. Simulations 
In this section, we conduct simulations to study the empirical properties of the generalized transformation 
models and to examine the performance of the proposed power selection procedure on generalized transfor- 
mation models. The model used in this simulation was given in Zeng et al. [1] and has a survival function of the 
form:  

( ) ( ) ( )( ) ,S t G F tγ θ=X X                                    (3.1) 

where ( )G xγ  is given in (1.5). 
For the purpose of illustration, only one continuous variable 1X  and one categorical variable 2X  are con- 

sidered in the simulation. Specifically, we take γ  equal to zero in (1.5) and consider the following link func- 
tion, 

( ) ( )0
0 1 1 2 2exp ,pX Xθ β β β= + +X                               (3.2) 

where 0p  is a nonzero power varying from −2 to 2. Covariate 1X  is a uniformly distributed random variable 
in [0.5, 2] and covariate 2X  is a Bernoulli random variable with probability 0.5. The coefficients 0β , 1β , and 

2β  are assumed to be constants. When 0 0p = , we use 

( ) ( )( )0 1 1 2 2exp log .X Xθ β β β= + +X                            (3.3) 
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( )F t  is a proper distribution function. We choose ( ) ( )1 expF t t= − −  in this simulation. 
Survival times of subjects with covariates 1X  and 2X  are generated. Each subject has a chance of being 

cured. We assume the survival life times T equal to ∞  for the cured population. For example, the ith individual 
in the simulated data set has a cure rate equal to ( )( )exp iθ− X , which means the survival life time iT  equals 
∞  with probability ( )( )exp iθ− X . Moreover, with probability ( )( )1 exp iθ− − X , the survival time iT  is 
finite and follows the distribution ( )1 iS t− X , where ( ). iS X  is the generalized transformation model given 
in (3.1) and (1.5). Therefore, the life time T will be generated from  

( )( )( )( )
( )

log 1 1 exp
log 1

i

i
i

U
T

θ

θ

 − − −
 = − +  
 

X

X
                     (3.4) 

with probability ( )( )1 exp iθ− − X , where U has a uniform distribution in [0, 1]. 
Assume each subject being right-censored with a probability 1q < , for example q = 80%. So, the censoring 

time iC  for the ith individual in the data set will equal ∞  with a 20% of chance. For the rest of the population, 
the censoring time is generated from an exponential distribution with mean one. 

The complete data set ( ){ }, , , 1, ,i i iY i n∆ = X  is given by  

( )

( )1 2

min , ,

, ,

0, ,
1, , ,
2, , .

i i i

i i i

i i

i i i i

i i

Y T C

X X

T C
T C T
T C

=

′=

>
∆ = ≤ ≠ ∞
 = ∞ = ∞

X                             (3.5) 

The whole population is categorized into three groups: right-censoring events when 0∆ = , failure events 
when 1∆ = , and cured population when 2∆ = . 

The coefficients 0β , 1β , and 2β  in model (3.2) are arbitrary constants. We set 0 0.5β = − , 1 1β = , and 
2 0.7β = . As 0p  changes from −2 to 2, the cured proportions vary from 5% to 10%. For each simulated date 

set, we choose a 0p̂  from the set A = (−2, −1.5, −1, 0.5, 0, 0.5, 1, 1.5, 2) based on the likelihood function given 
in (2.3). 

Table 1 shows the power selection results under the proposed generalized transformation model based on 200 
simulated data sets with q = 80% and sample sizes 2000 and 5000, respectively. The columns labeled “mean” 
are the average of the selected powers and the columns labeled “freq.” are the number of times of selecting the  
 
Table 1. Results of power selection under the proposed generalized transformation model based on 200 simulated data sets 
with coefficients 0 0.5β = − , 1 1β = , 2 0.7β = , and the probability of each subject being right-censored 80%q = .             

 n = 2000 n = 5000 

p0 mean freq. mean freq. 

−2 −1.748 127 −1.845 144 

−1.5 −1.488 61 −1.448 91 

−1 −0.995 75 −1.005 104 

−0.5 −0.488 66 −0.528 109 

0 −0.045 69 −0.030 110 

0.5 0.555 74 0.478 110 

1 0.960 90 1.015 115 

1.5 1.500 84 1.508 125 

2 1.865 151 1.909 163 
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true power in the 200 simulations. When the sample size is 5000, the power selection procedure work well. The 
accurate rates of choosing the true power are higher than 50% and the means of the selected powers are very 
close to the true value for most of the cases. For example, when 0 1p = −  the true power is selected for 104 
times and the estimated mean is −1.005. When the sample size decreases to 2000, the power selection results are 
less accurate. For both sample sizes, the accurate rates are higher when 0 2p = −  or 0 2p =  than other cases 
since we select the powers only in the range of −2 to 2. This also explains why the absolute values of means of 
the selected powers when 0 2p = −  or 0 2p =  tends to be smaller. If powers beyond −2 and 2 are allowed to 
be selected, 0 2p = −  or 0 2p =  should have less chance to be underestimated. 

Table 2 presents more results on power selection with 5000n =  and q = 80% based on 200 simulations. In 
the table each column represents one scenario. For example, when 0 1p = − , the true power −1 is selected 104 
times; Powers −1.5 and −0.5 are selected 44 and 42 times, respectively; and powers −1 and 0 are selected 5 
times each. These results indicates that the selected powers are all centering around the true power. 

In this simulation we assume that the probability of each subject being censored is q = 80%. In fact, the 
probability q basically does not affect the performance of the power selection procedure. When q takes different 
values while other factors in the simulation remain the same, the power selection results show a very similar 
pattern as that when q = 80%. 

4. Applications 
In this section, we will illustrate the applications of the proposed generalized transformation models and 
compare the proposed models with the Cox proportional hazards model and the Zeng et al. [1] transformation 
cure model by analyzing data from the First National Health and Nutrition Examination Survey Epidemiologic 
Follow-up Study (NHANES1). The NHANES1 data set is from the Diverse Populations Collaboration (DPC), 
which is a pooled database contributed by a group of investigators to examine issues of heterogeneity of results 
in epidemiological studies. The database includes 21 observational cohorts studies, 3 clinical trials, and 3 
national samples. In the dataset NHANES1, information for 14,407 individuals was collected in four cohorts 
from 1971 to 1992. In this analysis, we use data from two of the four cohorts, the black female cohort and the 
black male cohort. After dropping all missing observations, a total of 2027 patients remains in these two cohorts, 
including 1265 black females and 762 black males. Survival times of the 2027 patients are used as the response 
variable. The endpoint is the overall survival time collected in 1992. In the two cohorts 848 patients, about 40% 
of the total number of patients, died at the end of followup with a maximum survival life time of 7691 days. 
There were 1179 patients whose survival times were right censored, among them 115 patients had survival time 
longer than 7691 days. We consider these 115 patients as cured subjects. 

Covariates selected by fitting the Cox model and using the stepwise backward elimination algorithm will be 
 
Table 2. Results of power selection under the proposed generalized transformation model based on 200 simulated data sets 
with sample size n = 5000 and the probability of each subject being right-censored q = 80%.                              

 True power 

Selected power −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 

−2 144 46 5       

−1.5 50 91 44 3      

−1 6 59 104 48 4     

−0.5  4 42 109 47 3    

0   5 37 110 48 1   

0.5    3 35 110 38   

1     4 33 115 36  

1.5      6 46 125 37 

2        39 163 
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included to compare different survival models. These covariates are Age, Systolic blood pressure (Sbp), Sex, 
Body Mass Index (BMI), Diabetes (Diab), and Coronary heart disease (Chd). Summary statistics of continuous 
covariates are list in Table 3. Diab and Chd are categorical and only take the values of 0 and 1 for absence and 
presence of the corresponding disease. Among the 2027 patients in the two cohorts, there were 121 of them 
having diabetes and 82 of them having coronary heart disease. 

The results of the Cox proportional hazard model are summarized in Table 4. All covariates are highly signi- 
ficant at the 0.05α =  level. The results show that males have a higher hazard rate than females and older 
patients have a higher hazard rate than younger patients. People with diabetes or coronary heart disease face a 
higher hazard rate than people who did not have such disease. The hazard of death increases by 0.4% when the 
Sbp level of a patient increases 1 mmHg. The results also show that the higher the value of BMI of a patient the 
lower the hazard rate she/he will face. Particularly, the hazard will decrease about 1.2% when the value of BMI 
increases by 1 kg/m2, which is not quite reasonable. The values of BMI often ranges from 15 kg/m2 to 60 kg/m2. 
BMI in the range of 21 kg/m2 to 25 kg/m2 is considered as normal weight; 30 kg/m2 or greater is considered as 
obesity. It is well known that being obesity will increase the hazard to develop many coronary heart diseases or 
even death. The relationship between survival time and BMI may not be linear. Therefore, a transformation on 
the covariate BMI may be needed for the NHANES1 data. 

A transformation of 0γ =  is chosen with maximum likelihood from Zeng et al. [1] model with trans- 
formation family (1.5). The observed log-likelihood is shown in Figure 1 with different values of γ. The corre- 
sponding estimates of regression coefficients are summarized in Table 5. The results are comparable with that in 
the Cox proportional hazards model. 

There are three continuous covariates in our analysis, Age, BMI, and Sbp. The main relationship of interest is 
between mortality and the factor BMI. In the next step, we will focus on choosing an appropriate power from the 
set A = (−2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2) for BMI within our proposed models. To do so, we fit models  

( ) ( ) ( )( ), ,S t G F tγ θ= βX X  

with link function ( ) ( ), exp ,θ =β βX X . In stead of using the linear terms as in Zeng et al. [1] models, we use 
the following four expressions in the function ( ),θ β X : 

( ) 01
0 1 2 3 4 5 6, ,pAge Sbp Sex BMI Diab Chdθ = + + + + + +β β β β β β β βX           (4.1) 

( ) 02
0 1 2 3 4 5 6, ,pAge Sbp Sex BMI Diab Chdθ = + + + + + +β β β β β β β βX           (4.2) 

 
Table 3. Summary statistics of continuous covariates in the NHANES1 study.                                                

Variable Min Max Mean Std.Dev. 

Age 25 75 50.12 15.55 

BMI 15.07 72.31 26.98 6.11 

Sbp 85 266 142.35 28.21 

 
Table 4. Fitted Cox proportional hazards model for the NHANES1 study.                                                

Variable Coef. Std. Err. z Prob z>  

Age 0.020 0.002 10.31 0.000 

Sbp 0.004 0.001 4.31 0.000 

Sex 0.275 0.050 5.46 0.000 

BMI −0.012 0.005 −2.65 0.008 

Diab 0.299 0.104 2.87 0.004 

Chd 0.724 0.126 5.76 0.000 
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Figure 1. Log-likelihood in Zeng et al. [1] model from transformation 
(1.5) with different γ for the NHANES1 study.                            

 
Table 5. Estimates of regression coefficients in Zeng et al. [1] model based on transformation class (1.5) with γ = 0 for the 
NHANES1 study.                                                                                          

Variable Coef Std. Err. Prob z>  

Intercept −4.580 0.290 0.000 

Age 0.062 0.003 0.000 

Sbp 0.008 0.001 0.000 

Sex 0.488 0.072 0.000 

BMI −0.020 0.007 0.004 

Diab 0.633 0.113 0.000 

Chd 0.692 0.129 0.000 

 
( ) 03 1

0 1 2 3 4 5 6, ,pAge Sbp Sex BMI Diab Chdθ −= + + + + + +β β β β β β β βX           (4.3) 

( ) 04 2
0 1 2 3 4 5 6, .pAge Sbp Sex BMI Diab Chdθ −= + + + + + +β β β β β β β βX           (4.4) 

In model (4.1), when we fix Age and Sbp, power 01 2p = −  is selected for BMI. The observed log-likelihood 
is plotted in Figure 2(a). In the next model (4.2), we fix BMI and Sbp, trying to find a transformation for Age. 
Power 02 1p =  is selected based on the log-likelihood, which is plotted in Figure 2(b). The selected model 
corresponds to Zeng et al’s model. In many statistical models, the inverse of BMI, 1BMI − , lean body mass 
index is used. So we fit a model (4.3) where 1BMI −  and Sbp are fixed. In model (4.4), 2BMI −  and Sbp fixed. 
Both model (4.3) and model (4.4) select power=1 for Age. The results are plotted in Figure 2(c) and Figure 
2(d). As a summary, the best transformation based on log-likelihood from model (4.1)-(4.4) is  

( ) 2
0 1 2 3 4 5 6, .Age Sbp Sex BMI Diab Chdθ −= + + + + + +β β β β β β β βX              (4.5) 

The corresponding estimates of regression coefficients are listed in Table 6. 
Now let us compare the Cox model, Zeng et al. [1] models, and the proposed models by using the Brier score. 

The Brier score was originally proposed by Brier [16] to verify the accuracy of weather forecasts and then  
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Figure 2. Log-likelihood and selected power in the proposed models from transformation (1.5) 
for the NHANES1 study. (a) Model (4.1), (b) Model (4.2), (c) Model (4.3), (d) Model (4.4).             

 
Table 6. Estimates of regression coefficients in the proposed models (4.1) based on transformation class (1.5) with 0γ =  
and transformation on BMI ( 0 2p = − ) for the NHANES1 study.                                                          

Variable Coef Std. Err. Prob z>  

Intercept −5.665 0.256 0.000 

Age 0.062 0.003 0.000 

Sbp 0.008 0.001 0.000 

Sex 0.473 0.071 0.000 

BMI 328.498 56.203 0.000 

Diab 0.646 0.113 0.000 

Chd 0.726 0.129 0.000 

 
extended by May et al. [17] to survival models. The Brier score (BS) at time *t  is given by  

( )
( ) ( )( )2

* *

* 1

ˆ
,

n

i i
i

I Y t S t
BS t

n
=

> −
=
∑ X

                       (4.6) 

where n is the total sample size, iY  is the observed survival time of the ith patient, ( )*
iI Y t>  is the indicator 

function representing the occurrence of the event, and ( )*ˆ
iS t X  is the predicted probability of the ith patient 

surviving beyond time *t . The choices of the time *t  can be arbitrary, such as the quartiles of follow up time, 
the quartiles of the survival time, or a fixed number of years. 
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Table 7. Brier scores for different survival models for the NHANES1 study.                                           

*t  in days Cox Model Zeng et al.’s Model Proposed Model 

Q1 = 2089.5 0.0851 0.0824 0.0815 

Q2 = 3894.5 0.1396 0.1308 0.1297 

Q3 = 5498.75 0.1890 0.1855 0.1838 

 
It is obvious that the Brier score takes minimum value of 0 for perfect prediction of survival status and its 

range is from 0 to 1. The lower the value of the Brier score, the better the prediction. To compare the Cox model, 
Zeng et al. [1] models, and proposed models, we calculated the Brier scores at the first quartile Q1, median Q2, 
and last quartile Q3 of 848 uncensored survival times in the NHANES1 study. The results are summarized in 
Table 7. We can see that the proposed models has the smallest Brier scores at all there time points. For example, 
at the median uncensored survival time Q2 = 3894.5 days, the Brier score is 0.1396 for the Cox model. It is 
0.1308 for Zeng et al. [1] model. The value of Brier score drops to 0.1297 for the selected proposed model, 
which indicates the chosen proposed model can well predict the survival outcome as the other two models, and 
sometimes better. 

5. Conclusions and Discussion 
In this paper, we proposed a class of generalized transformation models. Zeng et al. [14] introduced semi- 
parametric transformation models for survival data with a cure fraction, which included the commonly used 
proportional hazards cure rate models and proportional odds models as special cases. Similar to the structure 
suggested in Zeng et al. [1], covariates related to the event of interest were modeled through a link function 
( ) ( )Xθ η ′= βX , where ( ).η  was a known and strictly positive increasing function, such as exponential 

functions. In our proposed models, we used generalized additive models instead of X′β  in the link function 
( ).η . Specifically, we considered fractional polynomials proposed by Royston and Altman [14]. We proved that 

the proposed model was identifiable as long as the transformation families ( ).Gγ  to satisfy some very general 
conditions. To select transformation powers in fractional polynomials, we proposed choosing powers from set A 
= (−2, −1.5, −1, 0.5, 0, 0.5, 1, 1.5, 2) by comparing likelihood functions. Simulation results showed the power 
selection procedure works well. An improvement in this direction could consider the power as a parameter and 
estimate the power by using maximum likelihood methods rather than selecting the power from set A. 

The proposed generalized transformation models can be applied to a variety of survival data. Even though the 
cure models are motivated from clinical trials where the end point is not death, such as relapse-free survival time, 
it can be used to overall survival time as well. In this article, the applications of the proposed models are illu- 
strated by examining the relationship between the survival time of a patient and several risk factors based on two 
cohorts data from the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. 
In terms of the Brier scores, the selected proposed model provides better fitting compared with the Cox 
proportional hazards model and the Zeng et al. [1] transformation cure model. It should be pointed out that even 
though the Brier score is commonly used in practice for model comparison, it has its own disadvantages. For 
instance, although the Brier score can be calculated at any arbitrary time point, but it dose not discriminate 
competing models over the whole time period. Other model comparison methodologies will be explored in our 
future study. For example, receiver operating characteristic (ROC) curves may be used to measure the diffe- 
rences of the models over all the relevant time periods. 
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Appendix: Proofs of the Main Results 
In Appendix, we first prove the Lemmas on model identifiability listed in Section 2.1. Then we will show the 
asymptotic properties of the semi-parametric estimates in the proposed models under conditions (C1)-(C6) given 
in Section 2.2. Proofs of the Theorems 2 and 3 are similar to those of Theorems 1 and 2 in Zeng et al. [14] with 
some modifications. 

a. Proofs of Model Identifiability 
Proof of Lemma 1: Suppose that ( )Xθ  can take two different non-zero values 1α  and 2α , such that  

( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

, ,

, ,

x x

x x

θ α θ α

θ β θ β

= =

= = 

 

then we will have the following two equations about ( )G ⋅ ,  

( )( ) ( )( )
( )( ) ( )( )

1 1

2 2

,

.

G F y G F y

G F y G F y

γ γ

γ γ

α β

α β

=

=









                            (A.1) 

The inverse function of ( )Gγ ⋅


 exists because of the monotonicity of ( )Gγ ⋅


. Applying ( )1Gγ
− ⋅


 to the above 
we get,  

( )( ) ( )
( )( ) ( )

1
1 1

1
2 2

,

.

G G F y F y

G G F y F y
γ γ

γ γ

α β

α β

−

−

=

=













                            (A.2) 

We want to show that ( ) ( )1g G Gγ γ
−⋅ = ⋅


  is an identity function. Function ( )g ⋅  is monotonic since both 
( )Gγ ⋅


 and ( )1Gγ
− ⋅


 are monotonic, which implies that both 1β  and 2β  can not be zero. Otherwise 
( ) 0g y ≡  when y takes different values. Take the ratio of the two equations in (A.2) and let ( )s F y= . The 

following equation holds for [ ]0,1s∈ , 

( ) ( )1
1 2

2

.g s g sβ
α α

β
=                               (A.3) 

Suppose that γ γ≠   and the conditions (G1) and (G2) hold. Noting that ( )( ) ( )G g x G xγ γ=


, we have  

( )( )( )
( )
( )

( )
( ) ( )( )( ) ( )( ) ( )( )

( )( )( )
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             (A.4) 

Calculating the first and second order derivatives in both sides of (3), plugging in 0s = , and taking ratio of 
the two equations, we will have 1 2α α= . This contradiction leads to γ γ=  . This concludes that ( )g ⋅  is an 
identity function. Therefore, ( ) ( ) ( ) ( )X F y X F yθ θ=   . Letting y →∞ , we get ( ) ( )X Xθ θ=   and there- 
fore ( ) ( )F y F y=  .                                                                       □  

Proof of Lemma 2: Suppose that ( ) ( ), ,X Xη η=β β . Since ( )η ⋅  is a strictly monotonic function, we have  
( ) ( )0 1 0 1

q p q p
j j i i j j i ij i q j i qX f X X f Xβ β

= = + = = +
+ = +∑ ∑ ∑ ∑  . Now, let’s fix 1, , qX X  and 2 , ,q pX X+   for ex-  

ample, and only consider ( )1 1q qf X+ + , where 1qX +  is a continuous covariate,  
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                         (A.5) 

Without loss of generality, assume that 1, 1,q m q mp p+ +=   and 1, 1,q n q nq q+ +=  , since we can always add more 
terms with coefficients zero to both sides of (A.5). 

Let 1,0 1,0 0q qp q+ += =  and 1,00 1,00,q qM Mβ β+ += =  , we have the following equation,  

( ) ( ) 1,1,
1, 1, 1 1

,
log 0.q nq m qp

q mn q mn q q
m n

X Xβ β ++
+ + + +− =∑                      (A.6) 

Because the function in the left side on (A.6) is analytic in some interval I R+∈ , it holds for any 1qX R+
+ ∈ . 

For different 1,q mp +  or 1,q nq + , ( ) 1,1,
1 1log q nq m qp

q qX X ++
+ + ’s have different orders when 1qX + → ∞ . But since their 

summation is always zero, the coefficients for each term must be zero. Therefore, we have ( ) ( )1 1. .q qf f+ +=  . 
Similarly, we can prove that ( ) ( )j jf f⋅ = ⋅  for 1q j p+ ≤ ≤ . 

To prove the identifiability of the coefficient of a categorical covariate, for example 1β , fixing 2 , , pX X  
we have 1 1 1 1X M X Mβ β+ = +  . Coefficient 1β  is identifiable if 1X  can take at least two different values. 

Thus all parameters in ( ), Xη β  are identifiable.                                              □  

b. Proofs of Strong Consistency of the Maximum Likelihood Estimates 
Let nE  be the empirical measure of n iid observations and E be the expectation, respectively. For any mea-  

surable function ( ), ,g Y X∆ , define ( )( ) ( )1

1, , , ,n
n i i iig Y X g Y X

n =
∆ = ∆∑E . Suppose that there are n in-  

dependent right censored observations. For the ith observation, we have { }, ,i i iY ∆X , 1, ,i n=  , where  

( )min , ,i i iY T C=                                    (A.7) 

0, ,
1, .

i i
i

i i

T C
T C
>

∆ =  ≤
                                  (A.8) 

In applications we may use 

0, ,
1, , ,
2, , .

i i

i i i i

i i

T C
T C T
T C

>
∆ = ≤ ≠ ∞
 = ∞ = ∞

 

to differ the cured and uncured population. which will not affect the proof of consistency and asymptotic nor- 
mality of the maximum likelihood estimates. 

The modified semi-parametric version observed-data likelihood function of parameters ( ), Fβ , denoted by  
( ),L Fβ , is given in (2.4). Let nβ , { }( )ˆ 1,2, ,n iF Y i n= 

 be the estimates of β  and F  such that ( ),L Fβ   

reaches its maximum. The log likelihood function ( ),l Fβ  is given by  

( ) ( ) ( )( )( ) ( ) { }{ } ( )

( ) ( ) ( )( ){ } ( )

( )( ){ } ( )

1

1

1

, log , log , log

1 log ,

log , ,

n

j j j j j j
j

n

j j j j
j

n

j j
j

l F G X F Y X F Y I Y

G X F Y I Y

G X I Y

η η

η

η

=

=

=

′= ∆ − + + < ∞

+ −∆ < ∞

+ = ∞

∑

∑

∑

β β β

β

β

        (A.9) 

where { }( ), 1, ,iF Y i n=   satisfy the restricted condition ( ) { }1 1n
iiG F F Y

=
= =∑  with { } 0iF Y >  when  

1i∆ =  and { } 0iF Y =  when 0i∆ = . When 1i∆ =  for { }1,2, ,i n∈  , we have 



Y. Liu et al. 
 

 
148 

( )
{ }

( )
{ }

ˆ ˆ( ,
ˆ ,

n n n
n

n i n i

l F G F
n

F Y F Y
λ

∂ ∂
=

∂ ∂

β
                                (A.10) 

by the method of Lagrange multipliers, where n̂λ  is the Lagrange multiplier. That is, 

{ } ( )1 ˆˆ, , ,ˆ n i n n n
n i

nH Y F n
F Y

λ+ =β                               (A.11) 

for 1i∆ = , where  

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

ˆ, ,1ˆ ˆ, ,
ˆ,

ˆ, ,
1 .

ˆ,

n j n j n j
n n n j j

Y j n j n j

n j n j n j
j j

n j n j

G X F Y X
H y F I Y y

n G X F Y

G X F Y X
I Y y

G X F Y

η η
β

η

η η

η

<∞

 ′′= ∆ ≥
′

′ + − ∆ ≥ 


∑
β β

β

β β

β

            (A.12) 

Equation (A.11) can be written as  

{ }
( )( )

ˆ
ˆ ˆ, ,

i
n i

n n i n n

F Y
n H Y Fλ

∆
=

− β
                             (A.13) 

for i { }1,2, ,i n∈   when 1i∆ = . When 0i∆ = , we have the same expression for { }n̂ iF Y  considering 
{ }ˆ 0n iF Y = . Therefore,  

( ) ( ) ( )
0

1

1ˆ ˆ ˆ, , d .
n

n i i n n n n
i

I Y H y F F y
n

λ
∞

=

= ∆ < ∞ +∑ ∫ β                       (A.14) 

Since ( ).nH  is bounded, the sequence { }ˆ , 1, 2,n nλ = 
 is also bounded. Thus we can choose a subsequence  

from n̂λ  such that *
n̂λ λ→  almost surely; choose a further subsequence of nβ  such that *

n β→β   
almost surely since nβ  belong to a compact set 0 ; choose a subsequence of n̂F  such that *

n̂F F→   
pointwise. Notice that *F  is monotone and ( ) ( )( )* * 1lim xF F x→∞∞ = ≤ . Later we will prove ( )* 1F ∞ =  
and *F  is a proper distribution function. 

The structure of the limit function *F  can be derived from the results of Lemmas 3 and 4. In particular, 
Lemma 3 shows the convergence of ( )ˆ, ,n n nH y Fβ . Proof of the lemma was given in Zeng et al. [1]. 

Lemma 3. Under conditions (C1)-(C6), ( ) ( ). . *ˆ, , a s
n n nH y F H y→β  uniformly in y, where  

( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )( )

*

* * * * * *

* * * *

, , , ,
1 .

, ,

H y

G F Y I Y y G F Y I Y y
E

G F Y G F Y

η η η η

η η

 ′′ ′∞ > ≥ ∞ > ≥ = ∆ + − ∆ 
′  

β β β β

β β

X X X X

X X

 

(A.15) 
Actually, the right hand side of Equation (A.14) converges to  

( )( ) ( ) ( ) ( )( )* * *
0

d
Y

E I Y E I Y H y F yλ = ∆ < ∞ + < ∞ ∫ . For the difference ( )* *H yλ − , we have the following 

result. 

Lemma 4. Under conditions (C1)-(C6), ( )* * 0H yλ − >  for 0 y≤ < ∞ , and ( )
( )* * 1.

I Y
E

H Yλ
 ∆ < ∞

≤  − 
 

Proof: Because { }1
ˆ 1n
n ii F Y

=
=∑ , we have 
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( )
( )
( )
( )

( )
( )

( )

1

1

2* *
1

11
ˆ ˆ, ,

1
ˆ ˆ, ,

11 .

n
i i

i n n i n n

n
i i

i n n i n n

n
i i n

i i

I Y
n H Y F

I Y
n H Y F

I Y o
n H Y

λ

λ ε

ελ ε

=

=

=

∆ < ∞
=

−

∆ < ∞
≥

− +

∆ < ∞
≥ +

− +

∑

∑

∑

β

β
                       (A.16) 

Letting n →∞ , then 0ε → , we obtain 

( )
( )* *

<
1 .

I Y
E

H Yλ

 ∆ ∞ ≥
 − 

                                (A.17) 

We then calculate the right hand side of (A.17) by using conditional expectations.  

( )
( )

( )
( )

( ) ( )
( )

( ) ( ) ( )( ) ( )( )
( )

( )

( ) ( )
( )

* * * *

* *

0 0 0
0* *0

0
* *0

,

, ,
d

d ,

T X C

c
T X

X c

I Y I T
E E E E T X T

H Y H T

S T X I T
E E T

H T

E S T X G X F T X
f T T

H T

k T f T
T

H T

λ λ

λ

η β η β

λ

λ

∞

∞

    ∆ < ∞ ∆ < ∞     =     − −       
  < ∞  =
  −  

′−
=

−

=
−

∫

∫

          (A.18) 

where 
( ) ( ) ( ) ( )( ) ( )( )0 0 0, , .X ck T E S T X G X F T Xη β η β′= −                     (A.19) 

Function ( ) ( ) ( ) ( )( ) ( )0 0 0, ,ct T S T X G X F T Xη β η β′= −  is positive and continuous on [ )0,∞ . When  
T →∞ , ( ) ( ) ( )( ) ( )0 0, ,ct S X G X Xη β η β′∞ = − ∞  exists and is positive. Therefore there exists positive con-  

stants 0 1,c c  such that ( )0 1c t T c≤ ≤ , for any T. Hence ( )0 1c k T c≤ ≤  for any T. Combining (A.17) and  

(A.18), we then have 
( )

( )
0

0 * *0
1 d

f T
c T

H Tλ
∞

≥
−∫ . 

It can be shown that ( )*H y  is Lipshitz continuous and ( )* * 0H Tλ − ≠  for any [ )0,T ∈ ∞ . Because of  

the continuity of ( )*H y  and { }
( )( )

ˆ 0
ˆ ˆ ˆ, ,

i
n i

n n i n n

F Y
n H Y Fλ β

∆
= >

−
 for 1i∆ = , we have  

( )ˆ ˆ ˆ, , > 0n n i n nH Y Fλ β− . Therefore, for any i we have  

( )( )
1

1 ˆ ˆ ˆ, , 0,
n

i n n i n n
i

H Y F
n

λ β
=

∆ − ≥∑  

which implies that ( )( )( )* * 0E H Yλ∆ − ≥  and ( )( )* * 0H Yλ∆ − ≥ . Taking T C≤ , we have  

( )* * 0H Tλ − >  for any [ )0,T ∈ ∞ .                                                         □  
Based on the results in Lemma 4, for a given M there exists ( ) 0Mδ δ= >  such that ( )* *H yλ δ− ≥  for  

any [ ]0,y M∈ . Define class ( )
( ) [ ]* * : 0, .M

I Y y
y M

H Yλ
 ∆ ≤ = ∈ 

−  
 . Class M  is a Donsker class (van der Vaart,  
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A. W. and Wellner, J. A. [18]) because ( )* *H Yλ −  is bounded away from zero. Thus, ( )n̂F y  converges to  
( )

( )* *

I Y y
E

H Yλ
 ∆ ≤
  − 

 uniformly in [ ]0,y M∈ , i..e,  

( ) ( )
( )

( ) ( )
( )

*
* *

1

1ˆ .
ˆ ˆ ˆ, ,

n
i i

n
i n n i n n

I Y y I Y y
F y F y E

n H YH Y F λλ β=

 ∆ ≤ ∆ ≤
= → =   −−  

∑           (A.20) 

Following the calculations in (A.18), we have ( ) ( )
( )

( )*
0* *0

d
y k t

F y f t t
H tλ

=
−∫  with the density function 

( ) ( )
( )

( )*
0* *

k y
f y f y

H yλ
=

−
. 

Based on the expression of ( )*F y , we can construct a sequence of distribution functions { }nF  with jumps 
{ }n iF Y  such that ( ) ( )0nF y F y→  for any ( )0,y∈ ∞ . For 1i∆ =  and iY < ∞ , define  

{ } ( )
( )

1 ,i i
n i

n i

I Y
F Y

nC k Y
∆ < ∞

=                            (A.21) 

where nC  is a constant such that { }1 1n
n ii F Y

=
=∑   and ( )k Y  is defined in (A.19). Let  

( ) { } ( ) ( )
( )1 1

1 1 .
n n

i i
n n i i

i in i

I Y y
F y F Y I Y y

C n k Y= =

∆ ≤
= ≤ =∑ ∑                 (A.22) 

Then it is obviously ( ) 1nF ∞ = . Because ( )k Y  is bounded away from zero, we have  

( )
( )

( )
( ) ( )00

1

1 d 1.
n

i i
n

i i

I Y I Y
C E f T T

n k Y k Y
∞

=

 ∆ ≤ ∞ ∆ ≤ ∞
= → = =  

 
∑ ∫             (A.23) 

The calculation here is similar to that in (A.18) with ( )k Y  in the denominator instead of ( )* *H Yλ − . 
Therefore, combining (A.22) and (A.23) we have  

( ) ( )
( ) ( ) ( )0 00

d .
y

n

I Y y
F y E f T T F y

k Y
 ∆ ≤

→ = =  
 

∫                  (A.24) 

Because ˆ,n nFβ  are the maximum likelihood estimates, from (A.9) we have 

( )
( )

( ) { }
{ }

( )
( )( )
( )( )

( )
( ) ( )( ) ( )
( ) ( )( ) ( )

( )
( ) ( )( )
( ) ( )( )

0

1 1 0

1 0 0 0

ˆ ˆ,
log

,

ˆ ,ˆ1 1log log
,

ˆ ˆ ˆˆ ˆ, , ,1 log 1 0.
, , ,

n n

n

n n n in i
i i i

i in i i

n n i n i n i n i n i

i i i
i n i i i n i

L F

L F

G XF Y
I Y I Y

n nF Y G X

G X F Y X G X F Y
I Y

n G X F Y X G X F Y

β

β

η β

η β

η β η β η β

η β η β η β

= =

=

= ∆ < ∞ + = ∞

 ′
 + < ∞ ∆ + −∆ ≥ ′ 
 

∑ ∑

∑





 

    (A.25) 

For the strong convergency of the maximum likelihood estimates, we need to show that * *
0 0, F Fβ β= = .  

Letting n →∞  in (A.25), we have 
( )
( )

* *

0 0

,
log 0

,

L F
E

L F

β

β

 
  ≥
 
 

. By the Jenson inequality, we have  

( )
( )

( )
( )

* * * *

0 0 0 0

, ,
log log 0

, ,

L F L F
E E

L F L F

β β

β β

   
   ≥ ≥
   
   

, where “=” holds if and only if ( ) ( )* *
0 0, ,L F L Fβ β≡  which con-  
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cludes * *
0 0, F Fβ β= =  since the model is identifiable. Therefore, We only need to show 

( )
( )

* *

0 0

,
1

,

L F
E

L F

β

β

 
  ≤
 
 

. 

Theorem 2. Under conditions (C1)-(C6), 
( )
( )

* *

0 0

,
1

,

L F
E

L F

β

β

 
  =
 
 

. The maximum likelihood estimates ( )ˆ,n nFβ   

based on the modified likelihood function are strongly consistent, that is 0 0,nβ β− →  and  
( ) ( )0[0, )

ˆ 0sup ny F y F y∈ ∞ − →  a.s., where 0β  is the true value of β  and function 0F  is the true promotion 

time cumulative distribution function. 

Proof: First of all, we want to prove 
( )
( )

* *

0 0

,
1

,

L F
E

L F

β

β

 
  ≤
 
 

. In fact, from (A.9) we have  

( )
( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )
( ) ( )( )
( ) ( )( )

( )
( )( )
( )( )

( ) ( ) ( )( )
( ) ( )( )

* * * ** *

0 0 0 0 0 0

* *

0 0

*

0

* *

*

, ,,

, , ,

,
1

,

,

,

1 ,

,

X C

X C

G X F Y X f YL F
E E I Y

L F G X F Y X f Y

G X F Y
E I Y

G X F Y

G X
E I Y

G X

E S X G X F

E S X G X

η β η ββ

β η β η β

η β

η β

η β

η β

η β

η β

   ′
   = ∆ < ∞
   ′

   
 
 + − ∆ < ∞
 
 
 
 + = ∞
 
 

 = − ∞ ∞ 

 + ∞  

          (A.26) 

by a direct calculation. 
Because ( )* 1F ∞ ≤  and ( )G ⋅  is a monotone decreasing function, which implies that  

( ) ( ) ( )* * *, ,G X F G Xη β η β   ∞ ≥     

and 

( ) ( ) ( )( ) ( ) ( )( )* * *, , .X C X CE S X G X F E S X G Xη β η β   ∞ ∞ ≥ ∞     

Thus from (A.26) we have 
( )
( )

* *

0 0

,
1

,

L F
E

L F

β

β

 
  ≤
 
 

. Thus ( ) ( )* *
0 0, ,L F L Fβ β≡ , which concludes *

0 , β β=   

*
0F F=  and also concludes ( ) ( )*

0 1F F∞ = ∞ = . 
We have proved that any subsequence of nβ , which is also denoted by nβ , converges to 0β  almost 

surely. Therefore, we conclude that the whole sequence nβ  converges to 0β  with probability 1. 
We also proved that ( )n̂F y  converges to ( )0F y  uniformly in y on [ ]0, M  for any fixed M and ( )n̂F y  

converges to ( )0F y  pointwise on [ )0,∞  since ( )0 1F ∞ = . Therefore, ( )n̂F y  converges to ( )0F y  
uniformly in y on [ )0,∞  because of the continuity of 0F .                                          

c. Proofs of Asymptotic Normality of the Maximum Likelihood Estimates 
We consider the likelihood function 

( )

( ) ( )( ) ( ) ( ){ } ( ) ( )( ){ } ( )( )
( )1 ( )

,

, , } , , ,
I Y I Y

L F

G F Y f Y G F Y Gη η η η
<∞−∆ =∞∆   ′= −    

β

β β β βX X X X
    (A.27) 
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and write ( ),L Fβ  as ( ) ( ) ( )( ), ,I YL F f Y K F∆ <∞=β β , where  

( )

( ) ( )( ) ( ){ } ( ) ( )( ){ } ( )( )
( )1 ( )

,

, , , , .
I Y I Y

K F

G F Y G F Y Gη η η η
<∞∆ −∆ =∞   ′= −    

β

β β β βX X X X
 

Then the log likelihood function, denoted by ( ),l Fβ , can be written as  

( ) ( ) ( ) ( ), log log , .l F I Y f Y K F= ∆ < ∞ +β β                       (A.28) 

Lemma 5. For any β  and any distribution function F with a density, we have  

( )( ) ( )( )0 0log , log , ,L F L F≥β βE E                             (A.29) 

where ( ),L Fβ  is the likelihood function given in (A.27), 0β  is the true value of β  and 0F  is the true 
promotion time cumulative distribution function. 

Proof: By Jensen inequality ( )
( )

( )
( )0 0 0 0

, ,
log log

, ,
L F L F

L F L F
β β
β β

   
≤      

   
E E . Thus, it suffices to show that  

( )
( )0 0

,
1

,
L F

L F
β
β

 
=  

 
E . The proof is similar to that of Theorem 2 thus omitted.                             

From (A.29) we can derive a differential equation with ( )0 0, Fβ . Let us consider function ( )H t  such that: 
(1) ( )H t  is continuously differentiable with ( ) ( )H t h t′ = .  
(2) ( )0 0H = , ( ) ( )lim 0tH H t→∞∞ = = .  
(3) For IRν ∈  and ν  is small enough, ( ) ( )0 0f t h tν+ ≥ .  
Under conditions (1)-(3), ( ) ( )0f t h tν+  is a density function with corresponding distribution ( ) ( )0F t H tν+ . 

For any IR d∈α , where d is the dimension of β , we have 0 IR dν+ ∈β α , and  
( )( ) ( )( )0 0 0 0log , log ,L F L F Hν α ν≥ + +β βE E  when ν  is small. Therefore,  

( ) ( ) ( )0 0 0 0
0

log , log , 0.hI Y K F H K F
f F

 ∂ ∂
∆ < ∞ + + = ∂ ∂ 

β β α
β

E             (A.30) 

Particularly, we can construct ( )H t  satisfying conditions (1)-(3) through a function ( )h t , which is defined 
on [ )0,∞  with bounded total variation. The total variation of ( )h t  is given by  

( ) ( )( )11sup m
i iiV

h t h t h t+=
= −∑ , where the supreme is taken over all finite partitions  

1 2 10 mt t t += < < < = ∞ . 
Define  

( ) ( ) ( ) ( )
( ) ( ) ( )

00 0

00[0, ]

d ,

d .

F

Fy

Q h y h y h y F y

H y Q h s F s

∞
= −

=

∫
∫

                           (A.31) 

We can show ( )H y  in (A.31) satisfies conditions (1)-(3). Equation (A.30) can be written as   

( ) ( ) ( )0 0 0 0 00 0[0, ]
log , d log , 0.F FY

I Y Q h K F Q h F K F
F β

 ∂ ∂
∆ < ∞ + + = ∂ ∂ 

∫β β αE           (A.32) 

Let us consider a modified semiparametric version likelihood function,  

( )

( ) ( )( ) ( ) { }{ } ( ) ( )( ){ } ( )( )

{ } ( )

1

( )1 ( )

( < )

,

, , , ,

, ,

n

I Y
I Y

n n n

I Y
n n

L F

G F Y F Y G F Y G

F Y K F

η η η η
<∞∆ −∆ =∞

∆ ∞

   ′= −    

=

β

β β β β

β

X X X X     (A.33) 

where 
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( )

( ) ( )( ) ( ){ } ( ) ( )( ){ } ( )( )
( )1 ( )

,

, , , , .

n

I Y I Y

n n

K F

G F Y G F Y Gη η η η
<∞∆ −∆ =∞   ′= −    

β

β β β βX X X X
       (A.34) 

For any β  and any step function ( ).n nF ∈ , where  

( ) { } { } { }
1

. : 0 at  when 1, 0 o.w. , 1 .
n

n n n i i i n i n i
i

F F Y Y F Y F Y
=

 = > ∆ = = = 
 

∑  

we have  

( )( ) ( )( )1 1
ˆlog , log , ,n n n n nL F L F≥β βE E                         (A.35) 

where ( )ˆ,n nFβ  is the maximum likelihood estimate of ( ), nFβ  based on (A.33). 
Similar to the continuous case, now we can derive a differential equation with ( )ˆ,n nFβ . Consider function 
( ).nH  satisfying the following conditions:  

(1)′ ( ).nH  has a jump of size { }n iH Y  at iY  when 1i∆ =  and a value of zero elsewhere.  
(2)′ The summation of ( ).nH  over all 'iY s  is zero, that is { }1 0n

n ii H Y
=

=∑ . 
(3)′ When ν  is small enough, { } { }ˆ 0n i n iF Y H Yν+ ≥  for any iY .  
Under conditions (1)′ -(3)′, n̂ nF Hν+  is a qualified distribution function for likelihood (A.33). Take  

IR d∈α  such that IR d
n ν+ ∈β α . Therefore, because of (A.35) we have 

( )( ) ( )( )1 1
ˆ ˆlog , log ,n n n n n n nL F L F Hν α ν≥ + +β βE E , when ν  is small enough. After some algebra, we 

obtain 

( ) { }
{ } ( ) ( )

1

1 ˆ ˆlog , log , 0.ˆ
n

n i
i i n n n n n n

i n i

H Y
I Y E K F H K F

n FF Y=

 ∂ ∂
∆ < ∞ + + = ∂ ∂ 

∑ β β α
β

          (A.36) 

Define  

( ) ( ) ( ) ( )

( ) ( ) { }

ˆ 0

1

ˆd

ˆ

nFn

i n i
i

Q h y h y h s F s

h y h Y F Y

∞

∞

=

= −

= −

∫

∑
 

( ) ( ) ( ) ( ) { }ˆ ˆ[0, ]
ˆ ˆd .

n n
i

n n i n iF Fy
Y y

H y Q h s F s Q h Y F Y
≤

= = ∑∫                      (A.37) 

With such a function nH  in (A.37), we have 

( ) ( ) ( )ˆ ˆ[0, ]
ˆ ˆ ˆlog , d log , 0.

n nn n n n n nF FY
I Y Q h K F Q F K F

F
 ∂ ∂
∆ < ∞ + + = ∂ ∂ 

∫β β α
β

E           (A.38) 

Now, let us consider functions h with bounded total variation such that ( ) ( )00
d 0h y F y

∞
=∫  and define a set 

of such functions as { }0 00
d 0V h V h F

∞
= ∈ =∫ . For any ( ) 0, IR dh V∈ ×α , define 

( ) ( ) ( )
2 2

0 0 0 0 02 [0, ]
, log , log , d ,

Y
h K F K F h F

Fβ α
   ∂ ∂

Ω = +   ∂ ∂∂   
∫α β β

ββ
E E            (A.39) 

( ) 00
, d ,F h Fω ω

∞
Ω = − ∫α  

where 
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( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

0 0 0

2

0 0 02 [0, ]

2

0 0

log ,

log , d

log , .

Y

I Y K F F Y I Y s h
F

K F I Y s h F
F

K F I Y s
F

ω

α

∂ = − ∆ < ∞ + − ≥ ∂ 
 ∂

+ ≥ ∂ 
 ∂

+ ≥ ∂ ∂ 

∫

β

β

β
β

E

E

E

 

Lemma 6. With the notations defined in (A.39), we have  

( )( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

0 00

0 0 0 0 0[0, ]

0 0

ˆ, , d

log , log , d

ˆ 1 ,

n F n

n Y

p n n pL

n h h F F

n L F L F h F
F

o n n F F o

β β

β β
∞

∞
Ω − + Ω −

 ∂ ∂
= − − + ∂ ∂ 

+ − + − +

∫

∫

α β α

β α β
β

E E               (A.40) 

where 0h V∈  and ( ),L ⋅ ⋅  is the likelihood function given in (A.27). 
Proof: It follows from (A.32) and (A.38) that 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
0 0

ˆ ˆ[0, ]

ˆ ˆ[0, ]

0 0 0 0 0[0, ]

ˆ ˆ ˆlog , d log ,

ˆ ˆ ˆlog , d log ,

log , d log , .

n n

n n

n n n n n nF FY

n n n n nF FY

F FY

n I Y Q h K F Q h F K F
F

n I Y Q h K F Q h F K F
F

n I Y Q h K F Q h F K F
F

 ∂ ∂
− − ∆ < ∞ + + ∂ ∂ 

 ∂ ∂
= ∆ < ∞ + + ∂ ∂ 

 ∂ ∂
− ∆ < ∞ + + ∂ ∂ 

∫

∫

∫

β β α
β

β β α
β

β β α
β

E E

E

E

        (A.41) 

We consider a class  , 

( ) ( )

( )

[0, ]

0 0

log , d

log , : 1, 1, 1 .

F FY

V L

I Y Q h K F Q h F
F

K F h F F ∞

∂= ∆ < ∞ +
∂

∂
+ ≤ ≤ − + − ≤ 
∂ 

∫ β

β α α β β
β

                (A.42) 

  is a Donsker class. By Theorem 3.3.1 in van der Vaart and Wellner [18], the left hand side of (A.41) 
equals 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0

0 0 0 0 0[0, ]

0 0 0 0 0[0, ]

< log , d log , 1

log , d log , 1 .

n F F pY

n F pY

n I Y Q h K F Q h F K F o
F

n L F Q h F L F o
F

 ∂ ∂
− − ∆ ∞ + + + ∂ ∂ 

 ∂ ∂
= − − + + ∂ ∂ 

∫

∫

β β α
β

β β α
β

E E

E E
   (A.43) 

Using the Taylor expansion at ( )0 0, Fβ  for the right hand side of (A.41) and notations (A.39), Equation 
(A.41) can be simplified as  

( )( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

0 00

0 0 0 0 0[0, ]

0 0

ˆ, , d

log , log , d

ˆ 1 .

n F n

n Y

p n n pL

n h h F F

n L F L F h F
F

o n n F F o

β β

β

β β
∞

∞
Ω − + Ω −

 ∂ ∂
= − − + ∂ ∂ 

+ − + − +

∫

∫

α β α

β α βE E             (A.44) 

□  
Lemma 7. The linear operator ( ) ( ) ( )( ), , , ,Fh h hβ→ Ω Ωα α α  is invertible from 0IR d V×  to itself. 
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Proof: Decompose ( ),F hΩ α  as a summation of ( )1 hΩ  and ( )2 ,hΩ α , and  

( )

( )

1

1 1 1 0 00 0

1 2

2 2 2 00

,

d d ,

,

, d .

gh

h F gh gh F

h F

ω

ω ω

ω ω ω

ω ω

∞ ∞

∞

=

Ω = − = − +

= +

Ω = −

∫ ∫

∫α

                        (A.45) 

We can show ( )1 hΩ  is an invertible operator from 0V  to 0V , and ( )2 ,hΩ α  is a compact operator. 
Rewrite Ω  as ( ) ( ) ( )1 2, , ,F d dI Iβ βΩ = Ω Ω = Ω + Ω − Ω . To prove Ω  is invertible, we only need to show  

( ) { }0Ker Ω = . Suppose that ( ) ( ) 00
, , d 0Fh h h Fβ

∞
Ω + Ω =∫α α α . Because 

( ) ( ) ( ) ( )
2

0 0 0 0 0 00 [0, ]
, , d log , log , dF Y
h h h F E F F h F

Fβ
∞  ∂ ∂

Ω + Ω = − + ∂ ∂ 
∫ ∫α α α β α β

β
         (A.46) 

with probability one, we have 

( ) ( )0 0 0 0 0[0, ]
log , log , d 0,

Y
F F h F

F
∂ ∂

+ =
∂ ∂ ∫β α β
β

                    (A.47) 

which implies 0=α  and 0h = .                                                            □  
Theorem 3. Under condition (C1)-(C6), ( )0 0

ˆ,n nn F F− −β β  converges weakly to a Gaussian process in 
( )0IR dl V∞ × . 
Proof: Because ( ) ( ) ( )( ), , , ,Fh h hβ→ Ω Ωα α α  has an inverse, denoted by ( ) ( ) ( )( ), , , ,Fh h hβ→ Ω Ω α α α , 

Equation (A.44) can be written as 

( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )

0 00

0 0 0 0 0[0, ]

0 0

ˆd

log , , log , , d

ˆ 1 .

n n

n FY

p n n pL

n h F F

n L F h L F h F
F

o n n F F o

β

∞

∞
− + −

 ∂ ∂
= − − Ω + Ω ∂ ∂ 

+ − + − +

∫

∫ 

α β β

β α β α
β

β β

P P          (A.48) 

Immediately from (A.44) and (A.48), we have ( ) ( )0 0
ˆ 1n n pn F F oβ β− + − = . Back to (A.48), we obtain 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

0 00

0 0 0 0 0[0, ]

ˆd

log , , log , , d 1 .

n n

n F pY

n h F F

n L F h L F h F o
Fβ

∞
− + −

 ∂ ∂
= − − Ω + Ω + ∂ ∂ 

∫

∫ 

α β β

β α β α
β

P P
      (A.49) 

Equation (A.49) holds uniformly for any 1≤α  and 1Vh ≤ . By using Theorem 3.3.1 in van der Vaart 
and Wellner [18], ( )0 0

ˆ,n nn F F− −β β  converges weakly to a Gaussian process in ( )0IR dl V∞ × .       □  


	Transformation Models for Survival Data Analysis with Applications
	Abstract
	Keywords
	1. Introduction
	2. Proposed Models and Their Properties
	2.1. Model Identifiability
	2.2. Estimation

	3. Simulations
	4. Applications
	5. Conclusions and Discussion
	Acknowledgements
	References
	Appendix: Proofs of the Main Results
	a. Proofs of Model Identifiability
	b. Proofs of Strong Consistency of the Maximum Likelihood Estimates
	c. Proofs of Asymptotic Normality of the Maximum Likelihood Estimates


