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Abstract 
We analyse the influence of Brownian motion and thermophoresis on a nonlinearly permeable 
stretching sheet in a nanofluid. The governing partial differential equations are reduced into a 
system of ordinary differential equations using similarity transformation and then solved nu-
merically using the Runge-Kutta with shooting technique. Effects of Brownian motion and ther-
mophoresis on the flow, concentration, temperature, and mass transfer and heat transfer charac-
teristics are investigated. The local Nusselt number and the local Sherwood numbers are pre-
sented and compared with existing results and are found to be in good agreement. 
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1. Introduction 
Nanofluids attract a great deal of interests with their enormous potential to provide enhanced performance prop-
erties, particularly with respect to heat transfer. Nanofluids are used for cooling of microchips in computers and 
other electronics which use microfluidic applications. Using nanofluids as coolants would allow for the radiators 
with smaller sizes and better positioning. Das et al. [1] experimentally showed a two- to four-fold increase in 
thermal conductivity enhancement for water-based nanofluids containing Al2O3 or CuO nanoparticles over a 
small temperature range of 21˚C - 51˚C. A comprehensive survey of convective transport in nanofluids has been 
made by Buongiorno [2], who gave a satisfactory explanation for the abnormal increase of the thermal conduc-

http://www.scirp.org/journal/anp
http://dx.doi.org/10.4236/anp.2016.51014
http://dx.doi.org/10.4236/anp.2016.51014
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


A. Falana et al. 
 

 
124 

tivity. Buongiorno and Hu [3] studied on the nanofluid coolants in advanced nuclear systems. Ahmad and Pop [4] 
investigated mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium 
filled with nanofluids. Boundary layer flow of nanofluids over a moving surface in a flowing fluid was exam-
ined by Bachok et al. [5]. Khan and Pop [6] discussed the boundary-layer flow of a nanofluid past a stretching 
sheet. Makinde and Aziz [7] explained the boundary layer flow of a nanofluid past a stretching sheet with a 
convective boundary condition. Because of the materials with nanometer sizes having unique physical and 
chemical properties, they can flow through very thinly channels without clotting them. Khanafer et al. [8] ex-
plained the behavior of the liquid molecules in thinly channels. The viscosity and thermal conductivity on hy-
dromagnetic flow over a nonlinear stretching sheet was discussed by Prasad et al. [9]. Kumari and Nath [10] 
analysed the flow and heat transfer of a MHD Newtonian fluid over impulsively stretched plane surface by using 
an analytical method namely homotopy analysis. The thermal conductivity of solid particles which is several 
times more than that of the base or convectional fluids was discussed by Das et al. [11] in the book nanofluids 
science and technology. In this book they clearly explained the thermal properties and behavior of the particles 
at different temperatures. The researchers Kumaran and Ramanaiah [12], Elbashbeshy [13] proved that stretch-
ing is not necessarily being a linear and they extended their research on flow over a quadratic stretching sheet 
and nonlinearly stretching sheet respectively. The heat transfer characteristics of the base fluids facing major 
obstacle to the effectives in heat exchange were discussed by Daungthongsuk and Wongwises [14]. Oztop and 
Abu-Nada [15] discussed the heat transfer characteristics on nanofluids by immersing the high conductivity 
nanomaterials in base fluids and they concluded that the effective thermal conductivity of the fluid increases ap-
preciably and consequently enhances the heat transfer characteristics by suspending the high thermal conductiv-
ity of nanomaterials into the base fluids. The two-dimensional mixed convection boundary layer MHD stagna-
tion point flow in porous medium bounded by a stretching vertical plate was studied by Hayat et al. [16]. They 
assumed that the stretching velocity and the surface temperature vary linearly along with the distance from 
stagnation point. The flow of an electrically conducting fluid in presence of uniform magnetic field over a 
stretching elastic sheet was studied by Pavlov [17]. By employing Darcy model for the porous medium, Cheng 
and Minkowycz [18] discussed a problem of natural convection past a vertical plate. They found the effect of 
Brownian motion and thermophoresis parameters on the velocity and temperature profiles. The transition effect 
of the boundary layer flow due to suddenly imposed magnetic field on the viscous flow past a stretching sheet 
and sudden withdrawal of a magnetic field on the viscous flow past a stretching sheet under a magnetic field is 
discussed by Kumaran et al. [19]. They found that in both cases the sheet stretches linearly along the direction of 
the fluid flow. Sandeep et al. [20] discussed radiation effects on unsteady natural convective flow of a nanofluid 
past an infinite vertical plate. Mohan Krishna et al. [21] extended this work by considering heat source effect 
and different nanofluids.  

However, to the best of authors’ knowledge, no attempt has been made to analyse the simultaneous effects of 
thermal radiation, Brownian motion and thermophoresis on the rate of heat and mass transfer flow of nanofluids 
over a non-linear stretching sheet. Hence, it is the reason why this problem is investigated. 

2. Mathematical Formulation 
Here, consideration is given to a steady, laminar, and incompressible and two dimensional boundary layer flow 
and heat transfer of a nanofluid past a permeable stretching/shrinking sheet. The pressure gradient and other ex-
ternal forces are neglected. Applying the boundary layer approximation, the governing equations for the conser-
vation of mass, momentum, thermal energy and nanoparticle concentration are expressed as follows: 
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The boundary conditions for Equations (1)-(4) are: 
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where λ is the stretching/shrinking parameter, with λ > 0 for a stretching surface and λ < 0 for a shrinking surface.  
By using Roseland approximation, the radiation heat flux qr is given by: 
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*
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Tq
yk

σ ∂
= −

∂
                                                (6) 

where *σ  and *k  are the Stefan-Boltzmann constant and the mean absorption coefficient respectively. Con-
sidering the temperature differences within the flow sufficiently small such that 4T  may be expressed as the 
linear function of temperature. Then expanding 4T  in Taylor series about T∞  and neglecting higher-order 
terms takes the form: 
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In view of Equation (3) reduces to 
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Further, we seek for a similarity solution of Equations (1) to (4) subject to the boundary conditions (5). The 
governing partial differential forms can be solved by converting them to ordinary differential equations; this is 
done by using similarity functions: 
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where prime denotes differentiation with respect to eta (η). To have similarity solution of Equations (1) to (5),  

we assume: 
( ) 1

2
1

2

na n
v x S

ν −+
= − , where the constant parameter S corresponds to suction (S > 0). By applying  

these similarity variables on the governing partial differential equations, transformed conservation equations and 
boundary conditions are then obtained as follows: 
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However, the quantities of physical and engineering interest are the reduced Nusselt number ( θ ′− ) and re-
duced Sherwood number ( φ′− ). From the knowledge of the Nusselt number, the local convection coefficient 
may be found and the local heat flux may then be computed. The reduced Sherwood number on the other hand is 
the parameter that defines the dimensionless concentration gradient at the surface, and it provides a measure of 
the convection mass transfer occurring at the surface. The skin friction coefficient can be used to compute 
stresses developing at the wall. 
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The local heat transfer rate (Local Nusselt) number is given by 
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And then the local Sherwood number is; 
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where wq  and mq  denotes the wall heat and mass flux rates respectively. 

3. Reduction of the Ordinary Differential Equations  
The set of Equations (10) to (12) under the boundary conditions (16) have been solved numerically using shoot-
ing technique. We consider: 1 2 3 4 5 6 7, , , , ,y f y f y f y y y yθ θ φ φ′ ′′ ′ ′= = = = = = = . Equations (10) to (12) are 
transformed into systems of first order differential equations. We assume the unspecified initial guesses for the 
transformed boundary conditions and integrated the equations numerically as an initial valued problem. 

4. Results and Discussion 
The results obtained shows the influences of the non-dimensional governing parameters, namely Radiation pa-
rameter R, Suction parameter S, Lewis number Le, thermophoresis parameter Nt and Brownian motion parameter 
Nb on temperature profile, nanoparticle concentration profile, a the local Nusselt number and the Sherwood 
number. For numerical results we used Le = 2, Ec = 0.5, n = 2, S = 2 and λ = 2 for different values of Nb, Nt and 
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R in entire study. These values are kept constant except the varied values shown in the figures. The numerical 
results obtained, i.e., the present results for Nusselt number and Sherwood number were compared with those 
obtained by Khairy, Anuar Ishak and Ioan Pop [22] for the case of a stretching surface by setting R = 0, Le = 2, 
n = 2, Nb = 0.5, Nt = 0.5 and Pr = 6.2. 

In order to get a clear insight of the physical problem, numerical computation have been carried out as de-
scribed above for various values of different parameters (Table 1). 

To assess the accuracy of the method, the results are compared with those reported in literature by Khairy, 
Anuar and Ioan Pop [22]. The results are found to be in good agreement. 

Figure 1 and Figure 2 illustrate the effect of themophoresis on the temperature and the rate of heat transfer 
respectively. Both these figures show the variation of the temperature and the heat transfer profiles with in-
creasing thermophoresis parameter. 

With increase thermophoresis parameter, both figures show that the boundary layer thickness increases, lead-
ing to increase in temperature. The rate of heat transfer increases rapidly initially (up to the point η = 0.4) and 
later decreases to a non-zero value. In Figure 3 and Figure 4, with increasing thermophoresis, the concentration 
boundary layer thickness increases while for the rate of mass transfer, the boundary layer thickness reduces. 
These show that while concentration increases within the boundary layer, the rate of mass transfer reduces. 

 
Table 1. Values of θ′− (0) and φ′− (0) for different values of S and λ when n = 2, Le = 2, Nt = 0.5, Nb = 0.5 and Pr = 6.2 
with Khairyzaimi, Anuar and Ioan Pop [22].  

  Khairyzaimi, Anuar and Ioan Pop [22] Present results 

S λ θ ′− (0) φ′− (0) θ ′− (0) φ′− (0) 

2.5 −0.5 7.887191 −6.070289 7.88719 −6.07029 

3.0 2.0 7.984141 −4.499616 7.9841 −4.4996 

3.5 −0.5 10.790697 −8.043106 10.7907 −8.0431 

4.0 2.0 10.750182 −6.361137 10.7502 −6.3611 

5.0 −0.5 15.266129 −11.207552 15.2661 −11.2076 

2.5 2.0 7.151258 −4.446270 7.1513 −4.4463 

3.0 −0.5 9.681430 −6.311584 9.6814 −6.3116 

3.5 2.0 9.366247 −5.434047 9.3663 −5.4305 

4.0 −0.5 12.274461 −9.083765 12.2745 −9.0838 

5.0 2.0 14.788043 −10.216636 14.7795 −10.2166 

 

 
Figure 1. Effect of thermophoresis on temperature profiles θ (η). 
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Figure 2. Effect of thermophoresis on rate of heat transfer 
θ′− (η). 

 

 
Figure 3. Effect of thermophoresis on concentration profiles 
φ(η). 

 

 
Figure 4. Effect of thermophoresis on rate of mass transfer 
φ′− (η). 
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We now concentrate on the effects of Brownian motion on the temperature, concentration, rate of heat trans-
fer and the rate of mass transfer. In Figure 5 and Figure 6, with increasing Brownian motion parameter the 
temperature and rate of heat transfer boundary layer thickness increase. This shows increasing temperature 
leading to heating while the heat transfer rate increases rapidly (up to the point, η = 0.3) and decreases thereafter. 
With Figure 7 and Figure 8, we see decreasing concentration with increasing Brownian motion parameter while 
the rate of mass transfer increases with increasing Brownian motion parameter. 

Next, we look at the effects of the stretching parameter. Figure 9 and Figure 10 depict the effects of the 
stretching parameter (λ) on the velocity and the skin friction. It is seen that increasing stretching parameter leads 
to increase in velocity and decrease in the skin friction. On the other hand, Figure 11 and Figure 12 show in-
crease in temperature and decrease in concentration with increasing stretching parameter. 

Figure 13 and Figure 14 show that with increasing stretching parameter, the rate of heat transfer increases 
initially and later decreases rapidly while the rate of mass transfer increases with increasing stretching parameter. 

5. Conclusions 
This study analysed the influence of Brownian motion and thermophoresis in nonlinearly permeable stretching  
 

 
Figure 5. Effect of Brownian motion on temperature profiles θ (η). 

 

 
Figure 6. Effect of Brownian motion on rate of heat transfer θ′− (η). 
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Figure 7. Effect of Brownian motion on concentration pro-
files φ(η). 

 

 
Figure 8. Effect of Brownian motion on rate of mass transfer 
φ′− (η). 

 

 
Figure 9. Velocity profiles ƒ′(η) with variation in stretching 
parameter (λ) for a stretching case, when Nb = 0.5 and Nt = 
0.5. 
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Figure 10. Skin friction ƒ′′(η) with variation in stretching parameter (λ) 
for a stretching case, when Nb = 0.5 and Nt = 0.5. 

 

 
Figure 11. Temperature profiles θ(η) with variation in stretching pa-
rameter (λ) for a stretching case, when Nb = 0.5 and Nt = 0.5. 

 

 
Figure 12. Showing concentration profiles φ(η) with variation in 
stretching parameter (λ) for a stretching case, when Nb = 0.5 and Nt = 0.5. 
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Figure 13. Rate of heat transfer (reduced Nusselt) θ′− (η) with 
variation in stretching parameter (λ) for a stretching case, when 
Nb = 0.5 and Nt = 0.5. 

 

 
Figure 14. Rate of mass transfer (Reduced Sherwood) φ′− (η) 
with variation in stretching parameter (λ) for a stretching case, 
when Nb = 0.5 and Nt = 0.5. 

 
sheet in a nanofluid. The non-linear partial differential equations and their associated boundary conditions have 
been transformed to non-dimensional ordinary differential equations using the similarity transformations and the 
resultant initial value problem is solved by an iterative Runge-Kutta method along with shooting technique. The 
present results are compared with the existing results in literature and were found to agree well. The influences 
of the governing parameters on the temperature, concentration, heat and mass transfer rates have been system-
atically examined. From the present numerical investigation, the following conclusion can be made: 
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result increase in the Sherwood number. 
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Nomenclature 
a: a positive constant 
u, v: velocity components in x and y directions respectively 
λ: the stretching/shrinking parameter (λ > 0 for stretching surface and λ < 0) for shrinking surface 

BD : Brownian diffusion coefficient 
TD : thermophoretic diffusion coefficient 
bN : Brownian motion parameter, defined Nomenclature 

Le: Lewis number 
tN : thermophoresis parameter 

xNu : reduced Nusselt number 
Pr: Prandtl number 
m: wall mass flux 
w: wall heat flux 
Rex: local Reynolds number 

xSh : reduced Sherwood number 
wT : sheet surface (wall) temperature 

T∞ : ambient temperature 
x: coordinate along the sheet 
y: coordinate normal to the sheet 
C: nanoparticle volume fraction 

wC : nanoparticle volume fraction at the sheet surface (wall) 
C∞ : nanoparticle volume fraction at large values of y (ambient) 
 
Greek symbols 

( ) ( )p fc cτ ρ ρ=  
( ) fcρ : heat capacity of the base fluid 
( ) pcρ : heat capacity of the nanoparticle material 

wu ax=  
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